1
|
Han D, Wang F, Shen D. Nanomedicines as Guardians of the Heart: Unleashing the Power of Antioxidants to Alleviate Myocardial Ischemic Injury. Theranostics 2024; 14:5336-5370. [PMID: 39267789 PMCID: PMC11388064 DOI: 10.7150/thno.99961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Ischemic heart disease (IHD) is increasingly recognized as a significant cardiovascular disease with a growing global incidence. Interventions targeting the oxidative microenvironment have long been pivotal in therapeutic strategies. However, many antioxidant drugs face limitations due to pharmacokinetic and delivery challenges, such as short half-life, poor stability, low bioavailability, and significant side effects. Fortunately, nanotherapies exhibit considerable potential in addressing IHD. Nanomedicines offer advantages such as passive/active targeting, prolonged circulation time, enhanced bioavailability, and diverse carrier options. This comprehensive review explores the advancements in nanomedicines for mitigating IHD through oxidative stress regulation, providing an extensive overview for researchers in the field of antioxidant nanomedicines. By inspiring further research, this study aims to accelerate the development of novel therapies for myocardial injury.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
2
|
Li X, Ding X, He Y, Yi W, Zhu Y, Han W, Liao B, Han X, Bai D. Ultrasound Tissue Engineering Technology for Regulating Immune Microenvironment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe immune microenvironment is critical for the occurrence, progression, and treatment of diseases. Ultrasound tissue engineering technology utilizes ultrasound and the principles of tissue engineering to repair, regenerate, and functionally reconstruct biological tissues. Ultrasound therapy is a non‐invasive treatment modality that regulates the immune microenvironment and maintains homeostasis through various characteristic effects. Ultrasound‐responsive biomaterials utilize biological properties or drug/gene delivery to regulate the immune microenvironment under ultrasound stimulation for targeted and purposeful treatment. This article comprehensively and systematically reviews advancements in ultrasound tissue engineering technology for regulating the immune microenvironment. First, the changes in the immune microenvironment at different stages of the disease is briefly illustrated. It is then reviewed the regulation of the immune microenvironment by ultrasound and ultrasound‐responsive biomaterials in five types of diseases: tumor, cardiovascular system diseases, nervous system diseases, musculoskeletal diseases, and wound. Finally, the prospects of the ultrasound tissue engineering technology for regulating the immune microenvironment is summarized.
Collapse
Affiliation(s)
- Xinhe Li
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Yi He
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Ying Zhu
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Dingqun Bai
- Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
3
|
Zhao K, Wang M. miR-92b-3p Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting MAP3K2 in a Mouse Model. Thorac Cardiovasc Surg 2024. [PMID: 38692270 DOI: 10.1055/s-0044-1786528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE MicroRNAs are well-known RNA regulators modulating biological functions in complex signaling networks. This work aims to explore the impact of microRNA-92b-3p (miR-92b-3p) on myocardial ischemia-reperfusion (I/R) injury. MATERIALS AND METHODS The I/R model was established by left anterior descending coronary artery ligation in mice. The hemodynamic parameters were detected through a multichannel physiological recorder. Myocardial injury markers: serum cardiac troponin I, myocardial kinase isoenzyme (creatine kinase-MB), and serum inflammatory factors (tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were evaluated by enzyme-linked immunosorbent assay. Cardiac tissue oxidative stress-related factors (malondialdehyde, glutathione peroxidase, total antioxidation capability, and superoxide dismutase) were assessed by colorimetry, myocardial pathology was observed by hematoxylin-eosin staining, and cardiomyocyte apoptosis was measured by triphosphate nick end-labeling staining, as well as the expression of miR-92b-3p and mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in cardiac tissues were determined by reverse transcription quantitative polymerase chain reaction or western blot assay. The targeting relationship between miR-92b-3p and MAP3K2 was verified by bioinformatics, RNA immunoprecipitation, and luciferase reporter assays. RESULTS miR-92b-3p was lowly expressed and MAP3K2 was highly expressed in myocardial I/R injury mice. Upregulation of miR-92b-3p improved hemodynamic indices, decreased serum levels of myocardial injury biomarkers, inhibited serum inflammatory response, alleviated cardiac tissue oxidative stress, relieved myocardial pathology, and reduced cardiomyocyte apoptosis during the myocardial I/R injury in mice. MAP3K2 was a direct target gene of miR-92b-3p. CONCLUSION This research suggests that miR-92b-3p protects against myocardial I/R injury by inhibiting MAP3K2, which may provide novel candidates for treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Emergency, Second Hospital of Hebei Medical University, East Campus, Shijiazhuang, Hebei, China
| | - Mei Wang
- Department of Cardiovascular Medicine, Second Hospital of Hebei Medical University, East Branch, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Cui J, Wang X, Dong L, Wang Q. Curcumin reduces myocardial ischemia-reperfusion injury, by increasing endogenous H 2S levels and further modulating m 6A. Mol Biol Rep 2024; 51:558. [PMID: 38643323 DOI: 10.1007/s11033-024-09478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.
Collapse
Affiliation(s)
- Jiankun Cui
- Cardiovascular Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26 Heping Road, Harbin, Heilongjiang, 150040, China
| | - Xin Wang
- Department of Chinese Medicine Treating Preventable Diseases, Dezhou Traditional Chinese Medicine Hospital, No. 1165 Tianqu East Road, Dezhou, 253000, China
| | - Lingling Dong
- Department of Intensive Medicine, Dezhou Traditional Chinese Medicine Hospital, No. 1165 Tianqu East Road, Dezhou, 253000, China.
| | - Qinwen Wang
- Beijing Garrison District Haidian Retired Cadres Twenty-Fifth, Beijing, 100039, China.
| |
Collapse
|
5
|
Wang L, Dan Q, Xu B, Chen Y, Zheng T. Research progress on gas signal molecular therapy for Parkinson's disease. Open Life Sci 2023; 18:20220658. [PMID: 37588999 PMCID: PMC10426759 DOI: 10.1515/biol-2022-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023] Open
Abstract
The pathogenesis of Parkinson's disease (PD) remains unclear. Among the pathological manifestations is the progressive degeneration of the nigrostriatal dopaminergic pathway, leading to massive loss of neurons in the substantia nigra pars compacta and dopamine (DA) depletion. Therefore, the current drug treatment is primarily based on DA supplementation and delaying the progression of the disease. However, as patients' symptoms continue to worsen, the drug effect will gradually decrease or even disappear, thereby further aggravating clinical symptoms. Gas signaling molecules, such as hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and hydrogen (H2), exhibit pleiotropic biological functions and play crucial roles in physiological and pathological effects. In common neurodegenerative diseases including Alzheimer's disease and PD, gas signal molecules can prevent or delay disease occurrence via the primary mechanisms of antioxidation, anti-inflammatory response, and antiapoptosis. This article reviews the therapeutic progress of gas signaling molecules in PD models and discusses the possibility of their clinical applications.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Qing Dan
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Bingxuan Xu
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Yun Chen
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Tingting Zheng
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| |
Collapse
|
6
|
Ho YJ, Hsu HC, Wu BH, Lin YC, Liao LD, Yeh CK. Preventing ischemia-reperfusion injury by acousto-mechanical local oxygen delivery. J Control Release 2023; 356:481-492. [PMID: 36921723 DOI: 10.1016/j.jconrel.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a pathological process that causes vascular damage and dysfunction which increases recurrence and/or mortality in myocardial infarction, ischemic stroke, and organ transplantation. We hypothesized that ultrasound-stimulated oxygen-loaded microbubble (O2-MB) cavitation would enhance mechanical force on endothelium and simultaneously release oxygen locally at the targeted vessels. This cooperation between biomechanical and biochemical stimuli might modulate endothelial metabolism, providing a potential clinical approach to the prevention of I/R injury. Murine hindlimb and cardiac I/R models were used to demonstrate the feasibility of injury prevention by O2-MB cavitation. Increased mechanical force on endothelium induced eNOS-activated vasodilation and angiogenesis to prevent re-occlusion at the I/R vessels. Local oxygen therapy increased endothelial oxygenation that inhibited HIF-1α expression, increased ATP generation, and activated cyclin D1 for cell repair. Moreover, a decrease in interstitial H2O2 level reduced the expression of caspase3, NFκB, TNFα, and IL6, thus ameliorating inflammatory responses. O2-MB cavitation showed efficacy in maintaining cardiac function and preventing myocardial fibrosis after I/R. Finally, we present a potential pathway for the modulation of endothelial metabolism by O2-MB cavitation in relation to I/R injury, wound healing, and vascular bioeffects.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Hui-Ching Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Bing-Huan Wu
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Pathak V, Roemhild K, Schipper S, Groß-Weege N, Nolte T, Ruetten S, Buhl EM, El Shafei A, Weiler M, Martin L, Marx G, Schulz V, Kiessling F, Lammers T, Koczera P. Theranostic Trigger-Responsive Carbon Monoxide-Generating Microbubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200924. [PMID: 35363403 DOI: 10.1002/smll.202200924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy. COMB are synthesized via a straightforward one-step loading protocol, present a narrow size distribution peaking at 2 µm, and show excellent performance as a CORM-1 carrier and US contrast agent. Light irradiation of COMB induces local production and release of CO, as well as enhanced longitudinal and transversal relaxation rates, enabling MRI monitoring of CO delivery. Proof-of-concept studies for COMB-enabled light-triggered CO release show saturation of hemoglobin with CO in human blood, anti-inflammatory differentiation of macrophages, reduction of hypoxia-induced reactive oxygen species (ROS) production, and inhibition of ischemia-induced apoptosis in endothelial cells and cardiomyocytes. These findings indicate that CO-generating MB are interesting theranostic tools for attenuating hypoxia-associated and ROS-mediated cell and tissue damage in cardiovascular disease.
Collapse
Affiliation(s)
- Vertika Pathak
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Karolin Roemhild
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Sandra Schipper
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of General, Visceral and Transplantation Surgery, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Nicolas Groß-Weege
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Teresa Nolte
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Stephan Ruetten
- Electron Microscopy, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Asmaa El Shafei
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, 3584CG, The Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| |
Collapse
|
8
|
Liang Z, Chen H, Gong X, Shi B, Lin L, Tao F, Wu Q, Fang M, Li H, Lu C, Xu H, Zhao Y, Chen B. Ultrasound-Induced Destruction of Nitric Oxide-Loaded Microbubbles in the Treatment of Thrombus and Ischemia-Reperfusion Injury. Front Pharmacol 2022; 12:745693. [PMID: 35082664 PMCID: PMC8785684 DOI: 10.3389/fphar.2021.745693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: Early recanalization of large vessels in thromboembolism, such as myocardial infarction and ischemic stroke, is associated with improved clinical outcomes. Nitric oxide (NO), a biological gas signaling molecule, has been proven to protect against ischemia-reperfusion injury (IRI). However, the underlying mechanisms remain to be explored. This study investigated whether NO could mitigate IRI and the role of NO during acoustic cavitation. Methods: In vivo, thrombi in the iliac artery of rats were induced by 5% FeCl3. NO-loaded microbubbles (NO-MBs) and ultrasound (US) were used to treat thrombi. B-mode and Doppler US and histological analyses were utilized to evaluate the thrombolysis effect in rats with thrombi. Immunohistochemistry, immunofluorescence, and western blotting were conducted to investigate the underlying mechanisms of NO during acoustic cavitation. In vitro, hypoxia was used to stimulate cells, and NO-MBs were employed to alleviate oxidative stress and apoptosis. Results: We developed NO-MBs that significantly improve the circulation time of NO in vivo, are visible, and effectively release therapeutic gas under US. US-targeted microbubble destruction (UTMD) and NO-loaded UTMD (NO + UTMD) caused a significant decrease in the thrombus area and an increase in the recanalization rates and blood flow velocities compared to the control and US groups. We discovered that UTMD induced NO generation through activation of endothelial NO synthase (eNOS) in vivo. More importantly, we also observed significantly increased NO content and eNOS expression in the NO + UTMD group compared to the UTMD group. NO + UTMD can mitigate oxidative stress and apoptosis in the hind limb muscle without influencing blood pressure or liver and kidney functions. In vitro, NO-MBs alleviated oxidative stress and apoptosis in cells pretreated with hypoxia. Conclusion: Based on these data, UTMD affects the vascular endothelium by activating eNOS, and NO exerts a protective effect against IRI.
Collapse
Affiliation(s)
- Zenghui Liang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Chen
- The Office of Drug Clinical Trial Institution, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuehao Gong
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, China
| | - Binbin Shi
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Lin
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyi Tao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qilong Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingling Fang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cuitao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Helin Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingzheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Ultrasound, First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
9
|
Fang Y, Cheng J, Shen Z, You T, Ding S, Hu J. Ultrasound-Mediated Release of Gaseous Signaling Molecules for Biomedical Applications. Macromol Rapid Commun 2022; 43:e2100814. [PMID: 35032066 DOI: 10.1002/marc.202100814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Indexed: 11/07/2022]
Abstract
Although nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S) have been considered as notorious gas pollutants for decades, they are considered as endogenous gaseous signaling molecules (GSMs), which have been widely recognized for their important signaling functions and prominent medical applications in human physiology. To achieve local delivery of GSMs to optimize therapeutic efficacy and reduce systemic side effects, stimuli-responsive nanocarriers have been successfully developed. Among them, ultrasound is considered as an attractive theranostic modality that can be used to track drug carriers, trigger drug release, and improve drug deposition, etc. In this minireview, we summarize recent achievements in designing ultrasound-responsive nanocarriers for the controlled delivery of GSMs and their biomedical applications. This emerging research direction enables the controlled delivery of GSMs to deep tissues, and the combination of ultrasound imaging techniques offers many possibilities for the fabrication of new theranostic platforms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuanmeng Fang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tao You
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
10
|
Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021; 35:341-356. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Inflammation and immune response are associated with many pathological disorders, including rheumatoid arthritis, lupus, heart failure, and cancer(s). In recent times, important roles of hydrogen sulfide (H2S) have been evidenced by researchers in inflammatory responses, as well as immunomodulatory effects in several disease models. Recent Advances: Numerous biological targets, including cytochrome c oxidase, various kinases, enzymes involved in epigenetic changes, transcription factors, namely nuclear factor kappa B and nuclear factor erythroid 2-related factor 2, and several membrane ion channels, are shown to be sensitive to H2S and have been widely investigated in various preclinical models. Critical Issues: A complete understanding of the effects of H2S in inflammatory and immune response is vital in the development of novel H2S generating therapeutics. In this review, the biological effects and pharmacological properties of H2S in inflammation and immune response are addressed. The review also covers some of the novel H2S releasing prodrugs developed in recent years as tools to study this fascinating molecule. Future Directions: H2S plays important roles in inflammation and immunity-related processes. Future researches are needed to further assess the immunomodulatory effects of H2S and to assist in the design of more efficient H2S carrier systems, or drug formulations, for the management of immune-related conditions in humans. Antioxid. Redox Signal. 35, 341-356.
Collapse
Affiliation(s)
- Meng Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jianchun Mao
- Department of Rheumatology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizhun Zhu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Deng Y, Cai L, Wang F, Huang J, Wang H, Li L, Lv H. RETRACTED: Upregulated microRNA-381-5p strengthens the effect of dexmedetomidine preconditioning to protect against myocardial ischemia-reperfusion injury in mouse models by inhibiting CHI3L1. Int Immunopharmacol 2021; 92:107326. [PMID: 33461162 DOI: 10.1016/j.intimp.2020.107326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1F, 2F, 3F, 4F and 5F, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yanan Deng
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China
| | - Liang Cai
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China
| | - Fang Wang
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China
| | - Jingyuan Huang
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China
| | - Haili Wang
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China
| | - Lu Li
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China
| | - Haigang Lv
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054 Shaanxi, China.
| |
Collapse
|
12
|
Zhong J, Sun Y, Han Y, Chen X, Li H, Ma Y, Lai Y, Wei G, He X, Li M, Liao W, Liao Y, Cao S, Bin J. Hydrogen sulfide-loaded microbubbles combined with ultrasound mediate thrombolysis and simultaneously mitigate ischemia-reperfusion injury in a rat hindlimb model. J Thromb Haemost 2021; 19:738-752. [PMID: 32979007 PMCID: PMC7986145 DOI: 10.1111/jth.15110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thromboembolism and subsequent ischemia/reperfusion injury (IRI) remain major clinical challenges. OBJECTIVES To investigate whether hydrogen sulfide (H2 S)-loaded microbubbles (hs-Mbs) combined with ultrasound (US) radiation (hs-Mbs+US) dissolve thrombi and simultaneously alleviate tissue IRI through local H2 S release. METHODS hs-Mbs were manufactured and US-triggered H2 S release was recorded. White and red thromboembolisms were established ex vivo and in rats left iliac artery. All subjects randomly received control, US, Mbs+US, or hs-Mbs+US treatment for 30 minutes. RESULTS H2 S was released from hs-Mbs+US both ex vivo and in vivo. Compared with control and US, hs-Mbs+US and Mbs+US showed comparable substantial decreases in thrombotic area, clot mass, and flow velocity increases for both ex vivo macrothrombi. In vivo, hs-Mbs+US and Mbs+US caused similarly increased recanalization rates, blood flow velocities, and hindlimb perfusion for both thrombi compared with the other treatments, with no obvious influence on hemodynamics, respiration, and macrophage vitality. More importantly, hs-Mbs+US substantially alleviated skeletal muscle IRI by reducing reactive oxygen species, cellular apoptosis, and proapoptotic Bax, caspase-3, and caspase-9 and increasing antiapoptotic Bcl-2 compared with other treatments. In vitro, hypoxia/reoxygenation-predisposed skeletal muscle cells and endothelial cells treated with normal saline solution exhibited similar trends, which were largely reversed by an H2 S scavenger or an inhibitor of Akt phosphorylation. CONCLUSION hs-Mbs+US effectively dissolved both white and red macrothrombi and simultaneously alleviated skeletal muscle IRI through the US-triggered, organ-specific release of H2 S. This integrated therapeutic strategy holds promise for treating thromboembolic diseases and subsequent IRI.
Collapse
Affiliation(s)
- Jiayuan Zhong
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of CardiologyLiuzhou People's HospitalLiuzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Yili Sun
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Yuan Han
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Xiaoqiang Chen
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hairui Li
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yusheng Ma
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanxian Lai
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guoquan Wei
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiang He
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mengsha Li
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wangjun Liao
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yulin Liao
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shiping Cao
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Jianping Bin
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| |
Collapse
|
13
|
Lingling XMM, Yihan CMM, Qiaofeng JP, Li ZMD, Wenpei FBS, Shan LMM, Ling LBS, Rui WBS, Dandan CMM, Zhengyang HMM, Mingxing XMD, Yali YMD. Targeted Delivery of Therapeutic Gas by Microbubbles. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Song K, Li L, Quan Q, Wei Y, Hu S. Inhibited histone deacetylase 3 ameliorates myocardial ischemia-reperfusion injury in a rat model by elevating microRNA-19a-3p and reducing cyclin-dependent kinase 2. IUBMB Life 2020; 72:2696-2709. [PMID: 33217223 DOI: 10.1002/iub.2402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Over the years, the roles of microRNAs (miRNAs) and histone deacetylase 3 (HDAC3) in human diseases have been investigated. This study focused on the effect of miR-19a-3p and HDAC3 in myocardial ischemia-reperfusion (I/R) injury (MIRI) by targeting cyclin-dependent kinase 2 (CDK2). METHODS The I/R rat models were established by coronary artery ligation, which were then treated with RGFP966 (an inhibitor of HDAC3), miR-19a-3p agomir or antagomir, or silenced CDK2 to explore their roles in the cardiac function, pathological changes of myocardial tissues, myocardial infarction area, inflammatory factors and oxidative stress factors in rats with MIRI. The expression of miR-19a-3p, HDAC3, and CDK2 was determined by RT-qPCR and western blot assay, and the interaction among which was also verified by online prediction, luciferase activity assay and ChIP assay. RESULTS The results indicated that HDAC3 and CDK2 were upregulated while miR-19a-3p was downregulated in myocardial tissues of I/R rats. The inhibited HDAC3/CDK2 or elevated miR-19a-3p could promote cardiac function, attenuate pathological changes, inflammatory reaction, oxidative stress, myocardial infarction area and apoptosis of myocardial tissues. HDAC3 mediates miR-19a-3p and CDK2 is targeted by miR-19a-3p. CONCLUSION Inhibited HDAC3 ameliorates MIRI in a rat model by elevating miR-19a-3p and reducing CDK2, which may contribute to the treatment of MIRI.
Collapse
Affiliation(s)
- Kaiyou Song
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| | - Lianting Li
- Internal Medicine Department, Junan County Hospital of Traditional Chinese Medicine, Linyi, China
| | - Qingqing Quan
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, China
| | - Yanjin Wei
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| | - Shunpeng Hu
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| |
Collapse
|
15
|
Pan Y, Fu M, Chen X, Guo J, Chen B, Tao X. Dietary methionine restriction attenuates renal ischaemia/reperfusion-induced myocardial injury by activating the CSE/H2S/ERS pathway in diabetic mice. J Cell Mol Med 2020; 24:9890-9897. [PMID: 32790060 PMCID: PMC7520309 DOI: 10.1111/jcmm.15578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022] Open
Abstract
Methionine restrictive diet may alleviate ischaemia/reperfusion (I/R)‐induced myocardial injury, but its underlying mechanism remains unclear. HE staining was performed to evaluate the myocardial injury caused by I/R and the effect of methionine‐restricted diet (MRD) in I/R mice. IHC and Western blot were carried out to analyse the expression of CSE, CHOP and active caspase3 in I/R mice and hypoxia/reoxygenation (H/R) cells. TUNEL assay and flow cytometry were used to assess the apoptotic status of I/R mice and H/R cells. MTT was performed to analyse the proliferation of H/R cells. H2S assay was used to evaluate the concentration of H2S in the myocardial tissues and peripheral blood of I/R mice. I/R‐induced mediated myocardial injury and apoptosis were partially reversed by methionine‐restricted diet (MRD) via the down‐regulation of CSE expression and up‐regulation of CHOP and active caspase3 expression. The decreased H2S concentration in myocardial tissues and peripheral blood of I/R mice was increased by MRD. Accordingly, in a cellular model of I/R injury established with H9C2 cells, cell proliferation was inhibited, cell apoptosis was increased, and the expressions of CSE, CHOP and active caspase3 were dysregulated, whereas NaHS treatment alleviated the effect of I/R injury in H9C2 cells in a dose‐dependent manner. This study provided a deep insight into the mechanism underlying the role of MRD in I/R‐induced myocardial injury.
Collapse
Affiliation(s)
- Yuanyuan Pan
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Minghuan Fu
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaohan Chen
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Guo
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Biao Chen
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xuefei Tao
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
16
|
miR-378a-3p inhibits ischemia/reperfusion-induced apoptosis in H9C2 cardiomyocytes by targeting TRIM55 via the DUSP1-JNK1/2 signaling pathway. Aging (Albany NY) 2020; 12:8939-8952. [PMID: 32463795 PMCID: PMC7288954 DOI: 10.18632/aging.103106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are involved in many pathological and biological processes, such as ischemia/reperfusion (I/R) injury by modulating gene expression. Increasing evidence indicates that miR-378a-3p might provide a potential cardioprotective effect against ischemic heart disease. Cell apoptosis is a crucial mechanism in I/R injury. As such, this study evaluated the protective effects and underlying mechanisms of action of miR-378a-3p on H9C2 cardiomyocyte apoptosis following I/R injury. We found that I/R-induced H9C2 cardiomyocytes exhibited a decrease in miR-378a-3p expression, while treatment with a miR-378a-3p mimic suppressed cell apoptosis, JNK1/2 activation, cleavage of PARP and caspase-3, and Bax/Bcl-2 ratio but increased DUSP1 expression, which subsequently inhibited JNK1/2 phosphorylation. TRIM55 was shown to be a target of miR-378a-3p and its downregulation inhibited the miR-378a-3p inhibitor-induced increase in cell apoptosis and JNK1/2 activation. TRIM55 inhibited DUSP1 protein expression through ubiquitination of DUSP1. Moreover, DUSP1 overexpression inhibited the TRIM55 overexpression-induced increase in cell apoptosis and JNK1/2 activation. The protective effect of miR-378a-3p was subsequently confirmed in a rat myocardial I/R model, as evidenced by a decrease in cardiomyocyte apoptosis of cardiomyocytes, TRIM55 expression, and JNK1/2 activation. Taken together, these results suggest that miR-378a-3p may protect against I/R-induced cardiomyocyte apoptosis via TRIM55/DUSP1/JNK signaling.
Collapse
|
17
|
Langeveld SAG, Schwieger C, Beekers I, Blaffert J, van Rooij T, Blume A, Kooiman K. Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3221-3233. [PMID: 32109064 PMCID: PMC7279639 DOI: 10.1021/acs.langmuir.9b03912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10-12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5-8 μm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
- E-mail: . Phone: +31107044041
| | - Christian Schwieger
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Institute
for Biochemistry and Biotechnology, Interdisciplinary Research Center
HALOmem, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle (Saale), Germany
| | - Inés Beekers
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Jacob Blaffert
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Tom van Rooij
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Alfred Blume
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Klazina Kooiman
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
18
|
Ho YJ, Chu SW, Liao EC, Fan CH, Chan HL, Wei KC, Yeh CK. Normalization of Tumor Vasculature by Oxygen Microbubbles with Ultrasound. Am J Cancer Res 2019; 9:7370-7383. [PMID: 31695774 PMCID: PMC6831304 DOI: 10.7150/thno.37750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor microenvironment influences the efficacy of anti-cancer therapies. The dysfunctional tumor vasculature limits the efficiency of oxygenation and drug delivery to reduce treatment outcome. A concept of tumor vascular normalization (VN), which inhibits angiogenesis to improve vessel maturity, blood perfusion, and oxygenation, has been demonstrated under the anti-angiogenic therapy. The efficiency of drug delivery and penetration is increased by enhancing perfusion and reducing interstitial fluid pressure during the time window of VN. However, anti-angiogenic agents only induce transient VN and then prune vessels to aggravate tumor hypoxia. To repair tumor vessels without altering vessel density, we proposed to induce tumor VN by local oxygen release via oxygen microbubbles with ultrasound. With tumor perfusion enhancement under ultrasound contrast imaging tracing, the time window of VN was defined as 2-8 days after a single oxygen microbubble treatment. The enhanced tumor oxygenation after oxygen microbubble treatment inhibited hypoxia inducible factor-1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF) pathway to improve the morphology and function of tumor vasculature. The pericyte coverage and Hoechst penetration of tumor vessels increased without any changes to the vessel density. Finally, the intratumoral accumulation of anti-cancer drug doxorubicin could be increased 3-4 folds during tumor VN. These findings demonstrate that regulating tumor oxygenation by oxygen microbubbles could normalize dysfunctional vessels to enhance vascular maturity, blood perfusion, and drug penetration. Furthermore, ultrasound perfusion imaging provides a simple and non-invasive way to detect the VN time window, which increases the feasibility of VN in clinical cancer applications.
Collapse
|
19
|
Shekhar H, Palaniappan A, Peng T, Lafond M, Moody MR, Haworth KJ, Huang S, McPherson DD, Holland CK. Characterization and Imaging of Lipid-Shelled Microbubbles for Ultrasound-Triggered Release of Xenon. Neurotherapeutics 2019; 16:878-890. [PMID: 31020629 PMCID: PMC6694347 DOI: 10.1007/s13311-019-00733-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Xenon (Xe) is a bioactive gas capable of reducing and stabilizing neurologic injury in stroke. The goal of this work was to develop lipid-shelled microbubbles for xenon loading and ultrasound-triggered release. Microbubbles loaded with either xenon (Xe-MB) or xenon and octafluoropropane (Xe-OFP-MB) (9:1 v/v) were synthesized by high-shear mixing. The size distribution and the frequency-dependent attenuation coefficient of Xe-MB and Xe-OFP-MB were measured using a Coulter counter and a broadband acoustic attenuation spectroscopy system, respectively. The Xe dose was evaluated using gas chromatography/mass spectrometry. The total Xe doses in Xe-MB and Xe-OFP-MB were 113.1 ± 13.5 and 145.6 ± 25.5 μl per mg of lipid, respectively. Co-encapsulation of OFP increased the total xenon dose, attenuation coefficient, microbubble stability (in an undersaturated solution), and shelf life of the agent. Triggered release of gas payload was demonstrated with 6-MHz duplex Doppler and 220-kHz pulsed ultrasound. These results constitute the first step toward the use of lipid-shelled microbubbles for applications such as neuroprotection in stroke.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Arunkumar Palaniappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tao Peng
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maxime Lafond
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Melanie R Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shaoling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David D McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
21
|
Dong F, Zhang J, Wang K, Liu Z, Guo J, Zhang J. Cold plasma gas loaded microbubbles as a novel ultrasound contrast agent. NANOSCALE 2019; 11:1123-1130. [PMID: 30574971 DOI: 10.1039/c8nr08451c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nowadays, cold atmospheric plasma (CAP) that contains lots of active free radicals has tremendous potential applications in biomedical engineering, and target delivery of a controllable dose of plasma gas is highly desired in clinical use. In this conceptual study, we developed a novel microbubble loaded by plasma gas and proposed an ultrasound-triggered strategy for the ultrasound-triggered release of free radicals from the microbubbles. The plasma microbubbles (PMBs) were fabricated by mixing plasma gas in the core of the surfactant microbubbles by a modified emulsification process. The resulting PMBs with an average size of 2.54 ± 2.28 μm were successfully fabricated using the proposed approach and the experimental result showed that PMBs exhibited a satisfactory ability to meet the requirement of ultrasound contrast-enhanced imaging. Furthermore, we depicted that ultrasound induced PMB destruction to release the plasma gas and PMBs with ultrasound stimulation could significantly improve the concentration of nitric oxide and hydrogen peroxide compared with the control group. In addition, Dil acting as a model drug was loaded into the PMBs and an in vitro cell experiment showed that Dil and plasma gas could be released from PMBs and internalized by PIEC cells with ultrasound mediation. Our experimental results showed that ultrasound induced PMB destruction could successfully release many active free radicals in plasma gas, including nitric oxide and hydrogen peroxide. The developed novel microbubbles demonstrated the technical potential of plasma gas loaded MBs for disease diagnostics and therapy with ultrasound imaging guidance.
Collapse
Affiliation(s)
- Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
22
|
Li X, He X, Wang H, Li M, Huang S, Chen G, Jing Y, Wang S, Chen Y, Liao W, Liao Y, Bin J. Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 2018; 114:1642-1655. [PMID: 29584819 PMCID: PMC6148334 DOI: 10.1093/cvr/cvy075] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/23/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Aims Long noncoding RNAs (lncRNAs) are critical regulators of cardiovascular lineage commitment and heart wall development, but their roles in regulating endogenous cardiac regeneration are unclear. The present study investigated the role of human-derived lncRNA in regulating endogenous cardiac regeneration as well as the underlying mechanisms. Methods and results We compared RNA sequencing data from human foetal and adult hearts and identified a novel lncRNA that was upregulated in adult hearts (Genesymbol NONHSAG000971/NONHSAT002258 or ENST00000497710.5), which was a splice variant of the AZIN2 gene (AZIN2-sv). We used quantitative PCR to confirm the increased expression of AZIN2-sv in adult rat hearts. Coexpression network analysis indicated that AZIN2-sv could regulate proliferation. Loss- and gain-of-function approaches demonstrated that AZIN2-sv negatively regulated endogenous cardiomyocyte proliferation in vitro and in vivo. Knockdown of AZIN2-sv attenuated ventricular remodelling and improved cardiac function after myocardial infarction. Phosphatase and tensin homolog (PTEN) was identified as a target of AZIN2-sv, their direct binding increased PTEN stability. Furthermore, AZIN2-sv acted as a microRNA-214 sponge to release PTEN, which blocked activation of the PI3 kinase/Akt pathway to inhibit cardiomyocyte proliferation. Conclusions The newly discovered AZIN2-sv suppressed endogenous cardiac regeneration by targeting the PTEN/Akt pathway. Thus, AZIN2-sv may be a novel therapeutic target for preventing and treating heart failure.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - He Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yuanwen Jing
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Shifei Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| |
Collapse
|
23
|
Karwi QG, Bice JS, Baxter GF. Pre- and postconditioning the heart with hydrogen sulfide (H 2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Res Cardiol 2018; 113:6. [PMID: 29242986 PMCID: PMC5730622 DOI: 10.1007/s00395-017-0664-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Conditioning-like infarct limitation by enhanced level of hydrogen sulfide (H2S) has been demonstrated in many animal models of myocardial ischemia/reperfusion injury (MIRI) in vivo. We sought to evaluate the effect of H2S on myocardial infarction across in vivo pre-clinical studies of MIRI using a comprehensive systematic review followed by meta-analysis. Embase, Pubmed and Web of Science were searched for pre-clinical investigation of the effect of H2S on MIRI in vivo. Retained records (6031) were subjected to our pre-defined inclusion criteria then were objectively critiqued. Thirty-two reports were considered eligible to be included in this study and were grouped, based on the time of H2S application, into preconditioning and postconditioning groups. Data were pooled using random effect meta-analysis. We also investigated the possible impact of different experimental variables and the risk of bias on the observed effect size. Preconditioning with H2S (n = 23) caused a significant infarct limitation of - 20.25% (95% CI - 25.02, - 15.47). Similarly, postconditioning with H2S (n = 40) also limited infarct size by - 21.61% (95% CI - 24.17, - 19.05). This cardioprotection was also robust and consistent following sensitivity analyses where none of the pre-defined experimental variables had a significant effect on the observed infarct limitation. H2S shows a significant infarct limitation across in vivo pre-clinical studies of MIRI which include data from 825 animals. This infarct-sparing effect is robust and consistent when H2S is applied before ischemia or at reperfusion, independently on animal size or sulfide source. Validating this infarct limitation using large animals from standard medical therapy background and with co-morbidities should be the way forward.
Collapse
Affiliation(s)
- Qutuba G Karwi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
- Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq.
| | - Justin S Bice
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Gary F Baxter
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
24
|
Tang L, Mo Y, Li Y, Zhong Y, He S, Zhang Y, Tang Y, Fu S, Wang X, Chen A. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochem Biophys Res Commun 2017; 486:774-780. [PMID: 28343995 DOI: 10.1016/j.bbrc.2017.03.119] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 01/30/2023]
Abstract
Ischemia/reperfusion (I/R) induces additional damage to the restoration of blood flow to ischemic myocardium. This study examined the effects of urolithin A (UA) on myocardial injury of ischemia/reperfusion in vivo and vitro and explored its underlying mechanisms. Mice were subjected to myocardial ischemia followed by reperfusion. Cells were subjected to hypoxia followed by reoxygenation. UA alleviated hypoxia/reoxygenation (H/R) injury in myocardial cells, reduced myocardial infarct size and cell death in mice after ischemia/reperfusion. Meanwhile, UA enhanced antioxidant capacity in cardiomyocytes following hypoxia/reoxygenation. UA reduced myocardial apoptosis following ischemia/reperfusion. The protection of UA was abolished by LY294002, a PI3K/Akt-inhibitor. These results demonstrated that UA alleviates myocardial ischemia/reperfusion injury probably through PI3K/Akt pathway.
Collapse
Affiliation(s)
- Lu Tang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China; Department of Cardiology, Yiyang Central Hospital, Kangfu Road 118, Yiyang, Hunan 413000, China
| | - Yingli Mo
- Department of Internal Medicine, Yiyang Medical College, Yingbin Road 516, Yiyang, Hunan 413000, China; Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunpeng Li
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Yongkang Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Shangfei He
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Ya Zhang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Ying Tang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Shanshan Fu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253, Gongye Road, Guangzhou 510280, China.
| |
Collapse
|
25
|
Raso A, Dirkx E. Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology. Noncoding RNA Res 2017; 2:27-37. [PMID: 30159418 PMCID: PMC6096413 DOI: 10.1016/j.ncrna.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need to develop new therapeutic strategies to stimulate cardiac repair after damage, such as myocardial infarction. Already for more than a century scientist are intrigued by studying the regenerative capacity of the heart. While moving away from the old classification of the heart as a post-mitotic organ, and being inspired by the stem cell research in other scientific fields, mainly three different strategies arose in order to develop regenerative medicine, namely; the use of cardiac stem cells, reprogramming of fibroblasts into cardiomyocytes or direct stimulation of endogenous cardiomyocyte proliferation. MicroRNAs, known to play a role in orchestrating cell fate processes such as proliferation, differentiation and reprogramming, gained a lot of attention in this context the latest years. Indeed, several research groups have independently demonstrated that microRNA-based therapy shows promising results to induce heart tissue regeneration and improve cardiac pump function after myocardial injury. Nowadays, a whole new biotechnology field has been unveiled to investigate the possibilities for efficient, safe and specific delivery of microRNAs towards the heart.
Collapse
Affiliation(s)
| | - Ellen Dirkx
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|