1
|
Jayarathna SB, Chawla HS, Mira MM, Duncan RW, Stasolla C. Mapping of quantitative trait loci (QTL) in Brassica napus L. for tolerance to water stress. Genome 2024; 67:482-492. [PMID: 39417409 DOI: 10.1139/gen-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.
Collapse
Affiliation(s)
- Samadhi B Jayarathna
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Harmeet S Chawla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Zhang A, Zhao T, Hu X, Zhou Y, An Y, Pei H, Sun D, Sun G, Li C, Ren X. Identification of QTL underlying the main stem related traits in a doubled haploid barley population. FRONTIERS IN PLANT SCIENCE 2022; 13:1063988. [PMID: 36531346 PMCID: PMC9751491 DOI: 10.3389/fpls.2022.1063988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
Collapse
Affiliation(s)
- Anyong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ting Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Akbari M, Sabouri H, Sajadi SJ, Yarahmadi S, Ahangar L, Abedi A, Katouzi M. Mega Meta-QTLs: A Strategy for the Production of Golden Barley (Hordeum vulgare L.) Tolerant to Abiotic Stresses. Genes (Basel) 2022; 13:genes13112087. [PMID: 36360327 PMCID: PMC9690463 DOI: 10.3390/genes13112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abiotic stresses cause a significant decrease in productivity and growth in agricultural products, especially barley. Breeding has been considered to create resistance against abiotic stresses. Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from previous research and mapped from various populations. A consensus genetic map was made, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore, three MegaMQTL were identified, which explained more than 30% of the phenotypic variation. MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding and breeding programs to develop produce cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
- Mahjoubeh Akbari
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| | - Sayed Javad Sajadi
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Saeed Yarahmadi
- Horticulture-Crops Reseaech Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan 4969186951, Iran
| | - Leila Ahangar
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| |
Collapse
|
4
|
Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome 2021; 65:83-94. [PMID: 34870479 DOI: 10.1139/gen-2021-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As genotyping-by-sequencing (GBS) is widely used in barley genetic studies, the translation of the physical position of GBS-derived SNPs into accurate genetic positions has become relevant. The main aim of this study was to develop a high-resolution consensus linkage map based on GBS-derived SNPs. The construction of this integrated map involved 11 bi-parental populations composed of 3743 segregating progenies. We adopted a uniform set of SNP-calling and filtering conditions to identify 50 875 distinct SNPs segregating in at least one population. These SNPs were grouped into 18 580 non-redundant SNPs (bins). The resulting consensus linkage map spanned 1050.1 cM, providing an average density of 17.7 bins and 48.4 SNPs per cM. The consensus map is characterized by the absence of large intervals devoid of marker coverage (significant gaps), the largest interval between bins was only 3.7 cM and the mean distance between adjacent bins was 0.06 cM. This high-resolution linkage map will contribute to several applications in genomic research, such as providing useful information on the recombination landscape for QTLs/genes identified via GWAS or ensuring a uniform distribution of SNPs when developing low-cost genotyping tools offering a limited number of markers.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Aaron Beattie
- Barley and Oat Breeding Program Crop Development Centre, University of Saskatchewan, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Raja Khanal
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - James Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Sci Rep 2019; 9:18823. [PMID: 31827117 PMCID: PMC6906516 DOI: 10.1038/s41598-019-53620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Grain filling is an important growth process in formation of yield and quality for barley final yield determination. To explore the grain development behavior during grain filling period in barley, a high-density genetic map with 1962 markers deriving from a doubled haploid (DH) population of 122 lines was used to identify dynamic quantitative trait locus (QTL) for grain filling rate (GFR) and five grain size traits: grain area (GA), grain perimeter (GP), grain length (GL), grain width (GW) and grain diameter (GD). Unconditional QTL mapping is to detect the cumulative effect of genetic factors on a phenotype from development to a certain stage. Conditional QTL mapping is to detect a net effect of genetic factors on the phenotype at adjacent time intervals. Using unconditional, conditional and covariate QTL mapping methods, we successfully detected 34 major consensus QTLs. Moreover, certain candidate genes related to grain size, plant height, yield, and starch synthesis were identified in six QTL clusters, and individual gene was specifically expressed in different grain filling stages. These findings provide useful information for understanding the genetic basis of the grain filling dynamic process and will be useful for molecular marker-assisted selection in barley breeding.
Collapse
|
6
|
Wang Q, Sun G, Ren X, Du B, Cheng Y, Wang Y, Li C, Sun D. Dissecting the Genetic Basis of Grain Size and Weight in Barley ( Hordeum vulgare L.) by QTL and Comparative Genetic Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:469. [PMID: 31105718 PMCID: PMC6491919 DOI: 10.3389/fpls.2019.00469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/28/2019] [Indexed: 05/23/2023]
Abstract
Grain size and weight are crucial components of barley yield and quality and are the target characteristics of domestication and modern breeding. Despite this, little is known about the genetic and molecular mechanisms of grain size and weight in barley. Here, we evaluated nine traits determining grain size and weight, including thousand grain weight (Tgw), grain length (Gl), grain width (Gw), grain length-width ratio (Lwr), grain area (Ga), grain perimeter (Gp), grain diameter (Gd), grain roundness (Gr), and factor form density (Ffd), in a double haploid (DH) population for three consecutive years. Using five mapping methods, we successfully identified 60 reliable QTLs and 27 hotspot regions that distributed on all chromosomes except 6H which controls the nine traits of grain size and weight. Moreover, we also identified 164 barley orthologs of 112 grain size/weight genes from rice, maize, wheat and 38 barley genes that affect grain yield. A total of 45 barley genes or orthologs were identified as potential candidate genes for barley grain size and weight, including 12, 20, 9, and 4 genes or orthologs for barley, rice, maize, and wheat, respectively. Importantly, 20 of them were located in the 14 QTL hotspot regions on chromosome 1H, 2H, 3H, 5H, and 7H, which controls barley grain size and weight. These results indicated that grain size/weight genes of other cereal species might have the same or similar functions in barley. Our findings provide new insights into the understanding of the genetic basis of grain size and weight in barley, and new information to facilitate high-yield breeding in barley. The function of these potential candidate genes identified in this study are worth exploring and studying in detail.
Collapse
Affiliation(s)
- Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yun Cheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengdao Li
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Du B, Liu L, Wang Q, Sun G, Ren X, Li C, Sun D. Identification of QTL underlying the leaf length and area of different leaves in barley. Sci Rep 2019. [PMID: 30872632 DOI: 10.1038/s41598-019-40703-40706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.
Collapse
Affiliation(s)
- Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA, 6155, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
8
|
Identification of QTL underlying the leaf length and area of different leaves in barley. Sci Rep 2019; 9:4431. [PMID: 30872632 PMCID: PMC6418291 DOI: 10.1038/s41598-019-40703-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.
Collapse
|
9
|
Gilbert JR, Losee JE, Mooney MP, Cray JJ, Gustafson J, Cunningham ML, Cooper GM. Genetic associations and phenotypic heterogeneity in the craniosynostotic rabbit. PLoS One 2018; 13:e0204086. [PMID: 30235265 PMCID: PMC6147457 DOI: 10.1371/journal.pone.0204086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022] Open
Abstract
Craniosynostosis (CS) is a disorder that involves the premature ossification of one or more cranial sutures. Our research team has described a naturally occurring rabbit model of CS with a variable phenotype and unknown etiology. Restriction-site associated DNA (RAD) sequencing is a genomic sampling method for identifying genetic variants in species with little or no existing sequence data. RAD sequencing data was analyzed using a mixed linear model to identify single nucleotide polymorphisms (SNPs) associated with disease occurrence and onset in the rabbit model of CS. SNPs achieving a genome-wide significance of p ≤ 5 x 10-8 were identified on chromosome 2 in association with disease occurrence and on chromosomes 14 and 19 in association with disease onset. Genotyping identified a coding variant in fibroblast growth factor binding protein 1 (FGFBP-1) on chromosome 2 and a non-coding variant upstream of integrin alpha 3 (ITGA3) on chromosome 19 that associated with disease occurrence and onset, respectively. Retrospective analysis of patient data revealed a significant inverse correlation between FGFBP-1 and ITGA3 transcript levels in patients with coronal CS. FGFBP-1 and ITGA3 are genes with roles in early development that warrant functional study to further understand suture biology.
Collapse
Affiliation(s)
- James R. Gilbert
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph E. Losee
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark P. Mooney
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthodontics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J. Cray
- Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Gustafson
- Center for Developmental Biology and Regenerative Medicine and the Craniofacial Center Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Center for Developmental Biology and Regenerative Medicine and the Craniofacial Center Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Gregory M. Cooper
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Abed A, Pérez-Rodríguez P, Crossa J, Belzile F. When less can be better: How can we make genomic selection more cost-effective and accurate in barley? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1873-1890. [PMID: 29858950 DOI: 10.1007/s00122-018-3120-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 05/13/2023]
Abstract
We were able to obtain good prediction accuracy in genomic selection with ~ 2000 GBS-derived SNPs. SNPs in genic regions did not improve prediction accuracy compared to SNPs in intergenic regions. Since genotyping can represent an important cost in genomic selection, it is important to minimize it without compromising the accuracy of predictions. The objectives of the present study were to explore how a decrease in the unit cost of genotyping impacted: (1) the number of single nucleotide polymorphism (SNP) markers; (2) the accuracy of the resulting genotypic data; (3) the extent of coverage on both physical and genetic maps; and (4) the prediction accuracy (PA) for six important traits in barley. Variations on the genotyping by sequencing protocol were used to generate 16 SNP sets ranging from ~ 500 to ~ 35,000 SNPs. The accuracy of SNP genotypes fluctuated between 95 and 99%. Marker distribution on the physical map was highly skewed toward the terminal regions, whereas a fairly uniform coverage of the genetic map was achieved with all but the smallest set of SNPs. We estimated the PA using three statistical models capturing (or not) the epistatic effect; the one modeling both additivity and epistasis was selected as the best model. The PA obtained with the different SNP sets was measured and found to remain stable, except with the smallest set, where a significant decrease was observed. Finally, we examined if the localization of SNP loci (genic vs. intergenic) affected the PA. No gain in PA was observed using SNPs located in genic regions. In summary, we found that there is considerable scope for decreasing the cost of genotyping in barley (to capture ~ 2000 SNPs) without loss of PA.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Paulino Pérez-Rodríguez
- Programa de Estadística y Cómputo, Colegio de Postgraduados, CP 56230, Montecillos, Edo. de México, Mexico
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Ji F, Wei W, Liu Y, Wang G, Zhang Q, Xing Y, Zhang S, Liu Z, Cao Q, Qin L. Construction of a SNP-Based High-Density Genetic Map Using Genotyping by Sequencing (GBS) and QTL Analysis of Nut Traits in Chinese Chestnut ( Castanea mollissima Blume). FRONTIERS IN PLANT SCIENCE 2018; 9:816. [PMID: 29963069 PMCID: PMC6011034 DOI: 10.3389/fpls.2018.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 05/28/2018] [Indexed: 05/09/2023]
Abstract
Chinese chestnut is a wildly distributed nut species with importantly economic value. The nut size and ripening period are mainly desired breeding objectives in Chinese chestnut. However, high-density linkage maps and quantitative trait loci (QTL) analyses related to nut traits are less than satisfactory, which hinders progress in the breeding of Chinese chestnut. Here, a single nucleotide polymorphism (SNP)-based high-density linkage map was constructed through genotyping-by-sequencing (GBS) of an F1 cross between the two widely grown Chinese chestnut cultivars 'Yanshanzaofeng' and 'Guanting No. 10'. The genetic linkage map consists of 2,620 SNP markers with a total length of 1078.06 cM in 12 linkage groups (LGs) and an average marker distance of 0.41 cM. 17 QTLs were identified for five nut traits, specifically single-nut weight (SNW), nut width (NW), nut thickness (NT), nut height (NH), and ripening period (RP), based on phenotypic data from two successive years. Of the 17 QTLs, two major QTLs, i.e., qNT-I-1 and qRP-B-1 related to the NT and RP traits, respectively, were exploited. Moreover, the data revealed one pleiotropic QTL at 23.97 cM on LG I, which might simultaneously control SNW, NT, and NW. This study provides useful benchmark information concerning high-density genetic mapping and QTLs identification related to nut size and ripening period, and will accelerate genetic improvements for nuts in the marker-assisted selection (MAS) breeding of Chinese chestnut.
Collapse
Affiliation(s)
- Feiyang Ji
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wei Wei
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yang Liu
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Guangpeng Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli, China
| | - Qing Zhang
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Shuhang Zhang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli, China
| | - Zhihao Liu
- Novogene Bioinformatics Technology Co., Ltd., Tianjin, China
| | - Qingqin Cao
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Department of Biological Science and Engineering, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing, China
| | - Ling Qin
- Department of Plant Science and Technology, Beijing Key Laboratory of Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
12
|
Xu Y, Wu Y, Wu J. Capturing pair-wise epistatic effects associated with three agronomic traits in barley. Genetica 2018; 146:161-170. [PMID: 29349538 DOI: 10.1007/s10709-018-0008-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/11/2018] [Indexed: 11/25/2022]
Abstract
Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.
Collapse
Affiliation(s)
- Yi Xu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box 2140C, Brookings, SD, 57007, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Jixiang Wu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box 2140C, Brookings, SD, 57007, USA.
| |
Collapse
|
13
|
Hu X, Zuo J, Wang J, Liu L, Sun G, Li C, Ren X, Sun D. Multi-Locus Genome-Wide Association Studies for 14 Main Agronomic Traits in Barley. FRONTIERS IN PLANT SCIENCE 2018; 9:1683. [PMID: 30524459 PMCID: PMC6257129 DOI: 10.3389/fpls.2018.01683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/29/2018] [Indexed: 05/02/2023]
Abstract
The agronomic traits, including morphological and yield component traits, are important in barley breeding programs. In order to reveal the genetic foundation of agronomic traits of interest, in this study 122 doubled haploid lines from a cross between cultivars "Huaai 11" (six-rowed and dwarf) and "Huadamai 6" (two-rowed) were genotyped by 9680 SNPs and phenotyped 14 agronomic traits in 3 years, and the two datasets were used to conduct multi-locus genome-wide association studies. As a result, 913 quantitative trait nucleotides (QTNs) were identified by five multi-locus GWAS methods to be associated with the above 14 traits and their best linear unbiased predictions. Among these QTNs and their adjacent genes, 39 QTNs (or QTN clusters) were repeatedly detected in various environments and methods, and 10 candidate genes were identified from gene annotation. Nineteen QTNs and two genes (sdw1/denso and Vrs1) were previously reported, and eight candidate genes need to be further validated. The Vrs1 gene, controlling the number of rows in the spike, was found to be associated with spikelet number of main spike, spikelet number per plant, grain number per plant, grain number per spike, and 1,000 grain weight in multiple environments and by multi-locus GWAS methods. Therefore, the above results evidenced the feasibility and reliability of genome-wide association studies in doubled haploid population, and the QTNs and their candidate genes detected in this study are useful for marker-assisted selection breeding, gene cloning, and functional identification in barley.
Collapse
Affiliation(s)
- Xin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Jianfang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jibin Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, Canada
| | - Chengdao Li
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Xifeng Ren
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, China
- *Correspondence: Dongfa Sun
| |
Collapse
|
14
|
Wang Q, Sun G, Ren X, Wang J, Du B, Li C, Sun D. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genet 2017; 18:94. [PMID: 29115942 PMCID: PMC5678765 DOI: 10.1186/s12863-017-0562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. RESULTS A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. CONCLUSIONS Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were selectively expressed at different developmental stages. The genetic effects of 9 consecutive expression regions displayed different developmental influences at different developmental stages. These findings enhanced our understanding of a genetic basis underlying seedling characteristics in barley. Some QTLs detected here could be used for marker-assisted selection (MAS) in barley breeding.
Collapse
Affiliation(s)
- Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3 Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jibin Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA 6155 Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei 434025 China
| |
Collapse
|
15
|
N’Diaye A, Haile JK, Fowler DB, Ammar K, Pozniak CJ. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms. FRONTIERS IN PLANT SCIENCE 2017; 8:1434. [PMID: 28878789 PMCID: PMC5572363 DOI: 10.3389/fpls.2017.01434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 05/28/2023]
Abstract
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| | - D. Brian Fowler
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
| | - Curtis J. Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
16
|
Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.). Sci Rep 2017; 7:7870. [PMID: 28801593 PMCID: PMC5554244 DOI: 10.1038/s41598-017-08393-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
Delta-1-pyrroline-5-carboxylate synthase gene1 (P5CS1) is the key gene involved in the biosynthesis of proline and is significantly induced by drought stress. The exploration of genetic variation in HvP5CS1 may facilitate a better understanding of the mechanism of drought adaptation in barley. In the current study, 41 polymorphisms including 16 single nucleotide polymorphisms (SNPs) and 25 insertions/deletions (indels) were detected in HvP5CS1 among 287 barley (Hordeum vulgare L.) accessions collected worldwide, with 13 distinct haplotypes identified in the barley collection. Five polymorphisms in HvP5CS1 were significantly (P < 0.001) associated with drought tolerance related traits in barley. The phenotypic variation of a given trait explained by each associated polymorphism ranged from 4.43% to 9.81%. Two sequence variations that were significantly (P < 0.0001) associated with grain yield had marginally significant positive Tajima’s D values in the sliding window, so they might have been selected for environmental adaptation. Meanwhile, two haplotypes HvP5CS1_H1 and HvP5CS1_H4, which contained desired alleles of the two variations mentioned above, were significantly (P < 0.001) associated with drought tolerance related traits, and explained 5.00~11.89% of the phenotypic variations. These variations associated with drought tolerance related traits can be used as potential markers for improving drought tolerance in barley.
Collapse
|