1
|
Yu Z, Gao Z, Zeng Y, Li M, Xu G, Ren M, Zhu Y, Liu D. A delayed and unsynchronized ovary development as revealed by transcriptome of brain and pituitary of Coilia nasus. Front Mol Biosci 2024; 11:1361386. [PMID: 38665935 PMCID: PMC11043543 DOI: 10.3389/fmolb.2024.1361386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Coilia nasus is an anadromous fish that has been successfully domesticated in the last decade due to its high economic value. The fish exhibits a delayed ovary development during the reproductive season, despite breeding and selection for five to six offspring. The molecular mechanism of the delayed ovary development is still unknown, so the obstacles have not been removed in the large-scale breeding program. This study aims to investigate the key genes regulating ovarian development by comparing the transcriptomes of ovarian-stage IV and stage II brain/pituitary of Coilia nasus. Ovarian stages were validated by histological sections. A total of 75,097,641 and 66,735,592 high-quality reads were obtained from brain and pituitary transcriptomes, respectively, and alternatively spliced transcripts associated with gonadal development were detected. Compared to ovarian Ⅱ- brain, 515 differentially expressed genes (DEGs) were upregulated and 535 DEGs were downregulated in ovarian Ⅳ- brain, whereas 470 DEGs were upregulated and 483 DEGs were downregulated in ovarian Ⅳ- pituitary compared to ovarian Ⅱ- pituitary. DEGs involved in hormone synthesis and secretion and in the GnRH signaling pathway were screened. Weighted gene co-expression network analysis identified gene co-expression modules that were positively correlated with ovarian phenotypic traits. The hub genes Smad4 and TRPC4 in the modules were co-expressed with DEGs including Kiss1 receptor and JUNB, suggesting that ovarian development is controlled by a hypothalamic-pituitary-gonadal axis. Our results have provided new insights that advance our understanding of the molecular mechanism of C. nasus reproductive functions and will be useful for future breeding.
Collapse
Affiliation(s)
- Ziyan Yu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Zongshuai Gao
- Department of Transfusion Medicine, Shanghai Sixth People’s Hospital Afffiliated to Shanghai Jiao Tong University School of Medicinel, Shanghai, China
| | - Yun Zeng
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yunxia Zhu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Liu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Tan Y, Tan S, Ren T, Yu L, Li P, Xie G, Chen C, Yuan M, Xu Q, Chen Z. Transcriptomics Reveals the Mechanism of Rosa roxburghii Tratt Ellagitannin in Improving Hepatic Lipid Metabolism Disorder in db/db Mice. Nutrients 2023; 15:4187. [PMID: 37836471 PMCID: PMC10574348 DOI: 10.3390/nu15194187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
A complex metabolic disorder, type 2 diabetes, was investigated to explore the impact of ellagitannin, derived from Rosa roxburghii Tratt (RTT), on liver lipid metabolism disorders in db/db mice. The findings demonstrated that both RTT ellagitannin (C1) and RTT ellagic acid (C4) considerably decelerated body mass gain in db/db mice, significantly decreased fasting blood glucose (FBG) levels, and mitigated the aggregation of hepatic lipid droplets. At LDL-C levels, C1 performed substantially better than the C4 group, exhibiting no significant difference compared to the P (positive control) group. An RNA-seq analysis further disclosed that 1245 differentially expressed genes were identified in the livers of experimental mice following the C1 intervention. The GO and KEGG enrichment analysis revealed that, under ellagitannin intervention, numerous differentially expressed genes were significantly enriched in fatty acid metabolic processes, the PPAR signaling pathway, fatty acid degradation, fatty acid synthesis, and other lipid metabolism-related pathways. The qRT-PCR and Western blot analysis results indicated that RTT ellagitannin notably upregulated the gene and protein expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ). In contrast, it downregulated the gene and protein expression levels of sterol regulatory element-binding protein (SREBP), recombinant fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC). Therefore, RTT ellagitannin can activate the PPAR signaling pathway, inhibit fatty acid uptake and de novo synthesis, and ameliorate hepatic lipid metabolism disorder in db/db mice, thus potentially aiding in maintaining lipid homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Yunyun Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuming Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556018, China
| | - Guofang Xie
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Meng Yuan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qing Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Zhen Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wang L, Gao J, Cao X, Du J, Cao L, Nie Z, Xu G, Dong Z. Integrated Analysis of Transcriptomics and Metabolomics Unveil the Novel Insight of One-Year-Old Precocious Mechanism in the Chinese Mitten Crab, Eriocheir sinensis. Int J Mol Sci 2023; 24:11171. [PMID: 37446357 DOI: 10.3390/ijms241311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Eriocheir sinensis is traditionally a native high-value crab that is widely distributed in eastern Asia, and the precocity is considered the bottleneck problem affecting the development of the industry. The precocious E. sinensis is defined as a crab that reaches complete sexual maturation during the first year of its lifespan rather than as normally in the second year. However, the exact regulatory mechanisms underlying the precocity are still unclear to date. This study is the first to explore the mechanism of precocity with transcriptome-metabolome association analysis between the precocious and normal sexually mature E. sinensis. Our results indicated that the phenylalanine metabolism (map00360) and neuroactive ligand-receptor interaction (map04080) pathways play an important role in the precocity in the ovary of E. sinensis. In map00360, the predicted aromatic-L-amino-acid decarboxylase and 4-hydroxyphenylpyruvate dioxygenase isoform X1 genes and the phenethylamine, phenylethyl alcohol, trans-2-hydroxycinnamate, and L-tyrosine metabolites were all down-regulated in the ovary of the precocious E. sinensis. The map04080 was the common KEGG pathway in the ovary and hepatopancreas between the precocious and normal crab. In the ovary, the predicted growth hormone secretagogue receptor type 1 gene was up-regulated, and the L-glutamate metabolite was down-regulated in the precocious E. sinensis. In the hepatopancreas, the predicted forkhead box protein I2 gene and taurine metabolite were up-regulated and the the L-glutamate metabolite was down-regulated in the precocious crab. There was no common pathway in the testis. Numerous common pathways in the hepatopancreas between male precocious and normal crab were identified. The specific amino acids, fatty acids and flavorful nucleotide (inosine monophosphate (MP), cytidine MP, adenosine MP, uridine MP, and guanosine MP) contents in the hepatopancreas and gonads further confirmed the above omics results. Our results suggest that the phenylalanine metabolism may affect the ovarian development by changing the contents of the neurotransmitter and tyrosine. The neuroactive ligand-receptor interaction pathway may affect the growth by changing the expressions of related genes and affect the umami taste of the gonads and hepatopancreas through the differences of L-glutamate metabolite in the precocious E. sinensis. The results provided valuable and novel insights on the precocious mechanism and may have a significant impact on the development of the E. sinensis aquaculture industry.
Collapse
Affiliation(s)
- Lanmei Wang
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Xi Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Du
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zaijie Dong
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Ma F, Wang Y, Su B, Zhao C, Yin D, Chen C, Yang Y, Wang C, Luo B, Wang H, Deng Y, Xu P, Yin G, Jian J, Liu K. Gap-free genome assembly of anadromous Coilia nasus. Sci Data 2023; 10:360. [PMID: 37280262 DOI: 10.1038/s41597-023-02278-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The Chinese tapertail anchovy, Coilia nasus, is a socioeconomically important anadromous fish that migrates from near ocean waters to freshwater to spawn every spring. The analysis of genomic architecture and information of C. nasus were hindered by the previously released versions of reference genomes with gaps. Here, we report the assembly of a chromosome-level gap-free genome of C. nasus by incorporating high-coverage and accurate long-read sequence data with multiple assembly strategies. All 24 chromosomes were assembled without gaps, representing the highest completeness and assembly quality. We assembled the genome with a size of 851.67 Mb and used BUSCO to estimate the completeness of the assembly as 92.5%. Using a combination of de novo prediction, protein homology and RNA-seq annotation, 21,900 genes were functionally annotated, representing 99.68% of the total predicted protein-coding genes. The availability of gap-free reference genomes for C. nasus will provide the opportunity for understanding genome structure and function, and will also lay a solid foundation for further management and conservation of this important species.
Collapse
Affiliation(s)
- Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yinping Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bixiu Su
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chenxi Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chenhe Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bei Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongqi Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanmin Deng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
van Gelderen TA, Ladisa C, Salazar-Moscoso M, Folgado C, Habibi HR, Ribas L. Metabolomic and transcriptomic profiles after immune stimulation in the zebrafish testes. Genomics 2023; 115:110581. [PMID: 36796654 DOI: 10.1016/j.ygeno.2023.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Fish farms are prone to disease outbreaks and stress due to high-density rearing conditions in tanks and sea cages, adversely affecting growth, reproduction, and metabolism. To understand the molecular mechanisms affected in the gonads of breeder fish after an immune challenge, we investigated the metabolome and the transcriptome profiles in zebrafish testes after inducing an immune response. After 48 h of the immune challenge, ultra-high-performance liquid chromatography (LC-MS) and transcriptomic analysis by RNA-seq (Illumina) resulted in 20 different released metabolites and 80 differentially expressed genes. Among these, glutamine and succinic acid were the most abundant metabolites released and 27,5% of the genes belong to either the immune or reproduction systems. Pathway analysis based on metabolomic and transcriptomic crosstalk identified cad and iars genes that act simultaneously with succinate metabolite. This study deciphers interactions between reproduction and immune systems and provides a basis to improve protocols in generating more resistant broodstock.
Collapse
Affiliation(s)
- T A van Gelderen
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - M Salazar-Moscoso
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Folgado
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - H R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - L Ribas
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Zhou J, Yue S, Du J, Xue B, Wang L, Peng Q, Zou H, Hu R, Jiang Y, Wang Z, Xue B. Integration of transcriptomic and metabolomic analysis of the mechanism of dietary N-carbamoylglutamate in promoting follicle development in yaks. Front Vet Sci 2022; 9:946893. [PMID: 36105003 PMCID: PMC9464987 DOI: 10.3389/fvets.2022.946893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Yak is the main livestock in the highlands of China. The low reproductive rate of yaks is a serious constraint on their production and utility. N-carbamylglutamate (NCG) can increase arginine synthesis in mammals and has been shown to improve reproductive performance. Twelve multiparous and simutaneous anoestrous female yaks were randomly divided into two groups, one of which was fed the basal diet (Control, n = 6), and the other was fed the basal diet supplemented with NCG at 6 g/day/yak (NCG, n = 6). All yaks were slaughtered on the 32nd day (the time predicted for the selection of the last wave of dominant follicles), and their ovarian tissues were collected and follicles were classified. NCG supplementation increased the number of large ovarian follicles (diameter > 10 mm), as well as caused significant changes in the transcriptional and metabolic levels in yak ovaries which due to the differential expression of 889 genes and 94 metabolites. Integrated analysis of the transcriptomics and metabolomics data revealed that the differentially expressed genes and differential metabolites were primarily involved in the process of energy metabolism, amino acid metabolic pathways, carbohydrate metabolic pathways, and lipid metabolic pathways. The highlighted changes were associated with amino acid synthesis and metabolism, ovarian steroid hormone synthesis, the pentose phosphate pathway, and the tricarboxylic acid cycle, suggesting that NCG supplementation may promote estrogen synthesis and help regulate follicular development by altering the pathways associated with glucose catabolism. The results present important clues for understanding the mechanisms by which NCG supplementation promotes follicular development in yaks. The findings of this study provide a basis for the development and application of NCG in optimizing animal reproduction, including yak reproductive performance, which may help optimize livestock management and uplift the pastoral economy.
Collapse
Affiliation(s)
- Jia Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy College, Chengdu, China
| | - Jingjing Du
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Benchu Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yahui Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Bai Xue
| |
Collapse
|
7
|
Ying C, Fang X, Wang H, Yang Y, Xu P, Liu K, Yin G. Anisakidae parasitism activated immune response and induced liver fibrosis in wild anadromous Coilia nasus. JOURNAL OF FISH BIOLOGY 2022; 100:958-969. [PMID: 35229303 DOI: 10.1111/jfb.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Anisakidae nematode larvae is one of the most common parasites in wild anadromous Coilia nasus. This study aims to explore the mechanism of the C. nasus immune response to the parasitism of Anisakid nematode larvae. Results found that Anisakid nematode larvae parasitism caused liver injury as evidenced by histomorphology results as well as high levels of aminotransferase and aspertate aminotransferase. Furthermore, Anisakid nematode larvae parasitism induced an immune response in the host, which was characterized by the elevated populations of macrophages and neutrophils in the liver and head-kidney in the Anisakidae-infected group compared to the noninfected group. The expression of immunoglobulin IgM and IgD in the liver and head-kidney was also increased in the Anisakidae-infected group. The Anisakidae-infected group showed higher activity of antioxidant enzymes catalase and superoxide dismutase, which indicates severe oxidative stress, and increased production of pro-inflammatory cytokines, TNF-α, IL-6 as well as MCP-1 in the liver compared with the noninfected group. As a result of inflammation, livers of hosts in the Anisakidae-infected group showed fibrosis, and elevated expression of associated proteins including α-smooth muscle actin, fibronectin, collagen type I and type III compared with the noninfected group. We demonstrated that Anisakid nematode larvae parasitism results in injury and fibrosis in the liver, and triggers immune cell infiltration and inflammation in the liver and head-kidney of C. nasus. Altogether, the results provide a foundation for building an interaction between parasite and host, and will contribute to C. nasus population and fishery resource protection.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xin Fang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Honglan Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yanping Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Pao Xu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi, China
| |
Collapse
|
8
|
Gao J, Xu G, Xu P. Gills full-length transcriptomic analysis of osmoregulatory adaptive responses to salinity stress in Coilia nasus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112848. [PMID: 34619476 DOI: 10.1016/j.ecoenv.2021.112848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Salinity changes will threaten the survival of aquatic animals. However, osmoregulatory mechanism of Coilia nasus has not been explored. Oxford Nanopore Technologies (ONT) sequencing was performed in C. nasus gills during hypotonic and hyperosmotic stress. 23.8 G clean reads and 27,659 full-length non-redundant sequences were generated via ONT sequencing. Alternative splicing, alternative polyadenylation, transcript factors, and long noncoding RNA were identified. During hypotonic stress, 58 up-regulated differentially expressed genes (DEGs) and 36 down-regulated DEGs were identified. During hypertonic stress, 429 up-regulated DEGs and 480 down-regulated DEGs were identified. These DEGs were associated with metabolism, cell cycle, and transport. The analysis of these DEGs indicated that carbohydrate and fatty acid metabolism were activated to provide energy for cell cycle and transport during hypotonic and hypertonic stress. Cell cycle was also promoted during hypotonic and hypertonic stress. To resist hypotonic stress, polyamines metabolism, ion absorption and water transport from extra-cellular to intra-cellular were promoted, while ion secretion was inhibited. During hypotonic stress, glutamine, alanine, proline, and inositol metabolism were activated. Ion absorption and water transport from intra-cellular to extra-cellular were inhibited. Moreover, different transcript isoforms generated from the same gene performed different expression patterns during hypotonic and hypertonic stress. These findings will be beneficial to understand osmoregulatory mechanism of Coilia nasus.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
9
|
Gao J, Xu G, Xu P. Full-length transcriptomic analysis reveals osmoregulatory mechanisms in Coilia nasus eyes reared under hypotonic and hyperosmotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149333. [PMID: 34352462 DOI: 10.1016/j.scitotenv.2021.149333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sea-level rise, caused by global warming, will trigger salinity changes. This will threaten the survival of aquatic animals. Till now, the osmoregulatory mechanism of Coilia nasus eyes has not been yet explored. Oxford Nanopore Technologies (ONT) sequencing was performed in C. nasus eyes during hypotonic and hyperosmotic stress for the first time. 22.5G clean reads and 26,884 full-length non-redundant sequences were generated via ONT sequencing. AS events, APA, TF, and LncRNA were identified. During hypotonic stress, 46 up-regulated DEGs and 28 down-regulated DEGs were identified. During hypertonic stress, 190 up-regulated DEGs and 182 down-regulated DEGs were identified. These DEGs were associated with immune, metabolism, and transport responses. The expression of these DEGs indicated that apoptosis and inflammation were triggered during hypotonic and hyperosmotic stress. To resist hypotonic stress, polyamines metabolism and transport of Na+ and Cl- from inter-cellular to extra-cellular were activated. During hyperosmotic stress, amino acids metabolism and transport of myo-inositol and Na+ from extra-cellular to inter-cellular were activated, while Cl- transport was inhibited. Moreover, different transcript isoforms generated from the same gene performed different expression patterns during hypotonic and hypertonic stress. These findings will be beneficial to understand osmoregulatory mechanism of C. nasus eyes, and can also improve our insights on the adaptation of aquatic animals to environmental changes.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
10
|
Zhou J, Wang W, Li Z, Zhang C, Wan Z, Sun S, Zeng B, Li M, Sun G. Metabolome and Transcriptome Analysis of Liver and Oocytes of Schizothorax o'connori Raised in Captivity. Front Genet 2021; 12:677066. [PMID: 34691140 PMCID: PMC8531413 DOI: 10.3389/fgene.2021.677066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Schizothorax o’connori (S. o’connori) is a representative tetraploid species in the subfamily Schizothoracinae and an important endemic fish in the Qinghai-Tibet Plateau. However, the domestication of S. o’connori remains challenging due to the lack of basic research. Here, we investigated the effects of artificial feeding on the oocytes and liver of S. o’connori by comparing the histological, metabolomic, and transcriptomic data. Histological results showed that the oocytes and liver of captive-reared S. o’connori had abnormal cell morphology. After comparison with the self-built database, a total of 233 metabolites were annotated. In oocytes, a total of 37 differentially accumulated metabolites (DAMs) were detected and two pathways were significantly enriched. There were obvious differences in the metabolites related to ovarian development, including pregnenolone and arachidonic acid. In liver, a total of 70 DAMs were detected and five pathways were significantly enriched. Based on the transcriptomic data, a total of 159 differentially expressed genes (DEGs) were significantly related with cell growth and death pathway in oocytes, while a total of 2841 DEGs were significantly related with 102 pathways in liver. Comparing the metabolomic and transcriptomic data showed that there were three common significant enrichment pathways in liver, including biosynthesis of unsaturated fatty acids, starch and sucrose metabolism, and fatty acid biosynthesis. These results showed that special attention should be given to the composition and intake of fatty acids during the artificial breeding of S. o’connori. In addition, many of metabolite-gene pairs were related to adenosine 5′-diphosphate, adenosine monophosphate, and pregnenolone. In summary, these data provide an overview of global metabolic and transcriptomic resources and broaden our understanding of captive-reared S. o’connori.
Collapse
Affiliation(s)
- Jianshe Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Wanliang Wang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhiyi Wan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaijie Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Lulijwa R, Alfaro AC, Venter L, Young T, Decker P, Merien F, Meyer J. Haematological and metabolic profiles associated with age and sex in giant kokopu (Galaxias argenteus) (Gmelin 1789) broodstock. JOURNAL OF FISH BIOLOGY 2021; 99:384-395. [PMID: 33715165 DOI: 10.1111/jfb.14726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
This study characterized selected peripheral blood (PB) haematological parameters, liver, serum and muscle metabolic features in 3- and 5-year-old male and female giant kokopu (Galaxias argenteus) broodstock reared indoor at 16°C. Sex and age did not affect PB total cell count and haematocrit values. Nonetheless, higher erythrocytes in 5-year-old fish, elevated thrombocyte and lymphocyte counts in 3-year-old fish indicate age-specific cellular regulation. Higher thrombocyte counts in female fish suggest sex-specific regulation. At a metabolic level, liver abundance for long chain saturated fatty acids (FAs) was higher in males, whereas females had elevated levels of polyunsaturated FAs. Essential and non-essential amino acids (AAs) in liver and serum were also elevated in females compared to males. These findings suggest differential allocation of FAs and AAs to reflect requirements for gonadal, development and provisioning. Similarly, age significantly resulted in higher liver and serum abundances of some non-essential AAs in 3-year-olds compared to 5-year-old fish, suggesting higher metabolism in younger fish. Overall, results enhance our understanding of sex- and age-based differences in fish haematology, muscle, liver, and serum metabolite profiles in healthy G. argenteus. Future studies should carefully consider potential age- and sex-specific differences in metabolic responses.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Paul Decker
- Mahurangi Technical Institute (MTI), Manāki Premium Marine Technology Facility, Warkworth, New Zealand
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jill Meyer
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Feng QM, Liu MM, Cheng YX, Wu XG. Comparative proteomics elucidates the dynamics of ovarian development in the Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100878. [PMID: 34333232 DOI: 10.1016/j.cbd.2021.100878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Ovarian development is a complex physiological process for crustacean reproduction that is divided into the oogonium proliferation stage, endogenous vitellogenic stage, exogenous vitellogenic stage, and oocyte maturation stage. Proteomics analysis offers a feasible approach to reveal the proteins involved in the complex physiological processes of any organism. Therefore, this study performed a comparative proteomics analysis of the ovary and hepatopancreas at three key ovarian stages, including stages I (oogonium proliferation), II (endogenous vitellogenesis) and IV (exogenous vitellogenesis), of the Chinese mitten crab Eriocheir sinensis using a label-free quantitative approach. The results showed that a total of 2,224 proteins were identified, and some key proteins related to ovarian development and nutrition metabolism were differentially expressed. The 26 key proteins were mainly involved in the ubiquitin/proteasome pathway (UPP), cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway during oogenesis. Fifteen differentially abundant proteins (DAPs) were found to participate in vitellogenesis and oocyte development, such as vitelline membrane outer layer protein 1 homolog, vitellogenin, vitellogenin receptor, heat shock 70 kDa protein cognate 3 and farnesyl pyrophosphate synthase. Forty-seven DAPs related to nutrition metabolism were identified, including the protein digestion, fatty acid metabolism, prostaglandin metabolism, lipid digestion and transportation, i.e. short-chain specific acyl-CoA dehydrogenase, acyl-CoA desaturase, fatty acid-binding protein, long-chain fatty acid CoA ligase 4, and hematopoietic prostaglandin D synthase. These results not only indicate proteins involved in ovarian development and nutrient deposition but also enhance the understanding of the regulatory pathways and physiological processes of crustacean ovarian development.
Collapse
Affiliation(s)
- Qiang-Mei Feng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Mei-Mei Liu
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yong-Xu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xu-Gan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Zhang Y, Jiang S, Qiao H, Xiong Y, Fu H, Zhang W, Gong Y, Jin S, Wu Y. Transcriptome analysis of five ovarian stages reveals gonad maturation in female Macrobrachium nipponense. BMC Genomics 2021; 22:510. [PMID: 34229608 PMCID: PMC8262026 DOI: 10.1186/s12864-021-07737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Macrobrachium nipponense is an economically important species of freshwater shrimp in China. Unlike other marine shrimps, the ovaries in adult female M. nipponense can mature rapidly and periodically during the reproductive period, but the resulting high stocking densities and environmental deterioration can negatively impact the harvest yield and economic benefits. To better understand ovary development in female M. nipponense, we performed systematic transcriptome sequencing of five different stages of ovarian maturation. Results We obtained 255,966 Gb of high quality transcriptome data from 15 samples. Of the 105,082 unigenes that were selected, 30,878 were successfully annotated. From these unigenes, we identified 17 differentially expressed genes and identified three distinct gene expression patterns related to different biological processes. We found that cathepins, legumains, and cystatin were enriched in the lysosome pathway, and they are related to vitellogenin hydrolysis. Additionally, we found that myosin heavy chain 67 participated in oocyte excretion. Conclusions We provide the first detailed transcriptome data relating to the ovarian maturation cycle in M. nipponense. Our results provide important reference information about the genomics, molecular biology, physiology, and population genetics of M. nipponense and other crustaceans. It is conducive to further solve the problem of M. nipponense rapid ovarian maturation from the aspects of energy supply and cell division. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07737-5.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| |
Collapse
|
14
|
Li Y, Niu D, Wu Y, Dong Z, Li J. Integrated analysis of transcriptomic and metabolomic data to evaluate responses to hypersalinity stress in the gill of the razor clam (Sinonovacula constricta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100793. [PMID: 33513539 DOI: 10.1016/j.cbd.2021.100793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023]
Abstract
Salinity is an important ecological factor that affects physiological metabolism, survival, and distribution of marine organisms. Despite changes in the osmolarity and composition of the cytosol during salinity shifts, marine mollusks are able to maintain their metabolic function. The razor clam (Sinonovacula constricta) survives the wide range of salinity in the intertidal zone via changes in behavior and physiology. To explore the stress responses and mechanisms of salinity tolerance in razor clams, we collected transcriptomic and metabolomic data from a control group (salinity 20‰, S20) and a salinity-stress group (salinity 35‰, S35). The transcriptome data showed that genes related to the immune system, cytoskeleton remodeling, and signal transduction pathways dominated in the S35 group to counteract hypersalinity stress in the gill. The metabolomic analysis showed that 142 metabolites were significantly different between the S35 and S20 groups and that amino acid and carbohydrate metabolism were affected by hypersalinity stress. Levels of amino acids and energy substances, such as l-proline, isoleucine, and fructose, were higher in the gill of the S35 group. The combination of transcriptomic and metabolomic data indicated that metabolism of amino acids, carbohydrates, and lipids was enhanced in the gill during adaptation to high salinity. These results clarified the complex physiological processes involved in the response to hyperosmotic stress and maintenance of metabolism in the gill of razor clams. These findings provide a reference for further study of the biological responses of euryhaline shellfish to hyperosmotic stress and a molecular basis for the search for populations with high salinity tolerance.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Yinghan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
15
|
Variations and Potential Factors of Gut Prokaryotic Microbiome During Spawning Migration in Coilia nasus. Curr Microbiol 2020; 77:2802-2812. [PMID: 32583157 DOI: 10.1007/s00284-020-02088-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/12/2020] [Indexed: 02/01/2023]
Abstract
Coilia nasus is influenced by various external pressures during spawning migration and these anadromous transitions can lead to specific gut microbiome characteristics that affecting the host biological process. Therefore, the purpose of this study was to determine the variations of components and functions in the gut prokaryotic microbiome during spawning migration as well as the key factors that triggered the changes. The gut microbiome in C. nasus was mainly consisted of Proteobacteria, Bacteroidetes, Firmicutes, Deinococcus-Thermus and Fusobacteria via 16S rRNA Gene Amplicon Sequencing. The relative abundance of Acinetobacter and Clostridium increased, while Corynebacterium, Actinomyces, Bacillus, Klebsiella and Ochrobactrum decreased after entering freshwater, indicated the preference of C. nasus gut microbial members transferred from seawater to freshwater. Additionally, the proportion of Firmicutes significantly decreased and then increased, as well as the arise of some soil bacteria in gut, corresponding to the phenomenon that C. nasus are fasting during the upstream process and refeeding after entering the spawning grounds. The function prediction of gut microbiome was also consistent with the above results. The present study generally demonstrated the gut microbiome dynamics and the significant correlation between the gut microbiome and salinity and feeding behavior in the spawning migration of C. nasus.
Collapse
|
16
|
Xu G, Bian C, Nie Z, Li J, Wang Y, Xu D, You X, Liu H, Gao J, Li H, Liu K, Yang J, Li Q, Shao N, Zhuang Y, Fang D, Jiang T, Lv Y, Huang Y, Gu R, Xu J, Ge W, Shi Q, Xu P. Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation. Gigascience 2020; 9:giz157. [PMID: 31895412 PMCID: PMC6939831 DOI: 10.1093/gigascience/giz157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/28/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Seasonal migration is one of the most spectacular events in nature; however, the molecular mechanisms related to this phenomenon have not been investigated in detail. The Chinese tapertail, or Japanese grenadier anchovy, Coilia nasus, is a valuable migratory fish of high economic importance and special migratory dimorphism (with certain individuals as non-migratory residents). RESULTS In this study, an 870.0-Mb high-quality genome was assembled by the combination of Illumina and Pacific Biosciences sequencing. Approximately 812.1 Mb of scaffolds were linked to 24 chromosomes using a high-density genetic map from a family of 104 full siblings and their parents. In addition, population sequencing of 96 representative individuals from diverse areas along the putative migration path identified 150 candidate genes, which are mainly enriched in 3 Ca2+-related pathways. Based on integrative genomic and transcriptomic analyses, we determined that the 3 Ca2+-related pathways are critical for promotion of migratory adaption. A large number of molecular markers were also identified, which distinguished migratory individuals and non-migratory freshwater residents. CONCLUSIONS We assembled a chromosome-level genome for the Chinese tapertail anchovy. The genome provided a valuable genetic resource for understanding of migratory adaption and population genetics and will benefit the aquaculture and management of this economically important fish.
Collapse
Affiliation(s)
- Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Binhu District, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
| | - Yuyu Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Hongbo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jian Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Nailin Shao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Yanbing Zhuang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Dian Fang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Tao Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ruobo Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Binhu District, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| |
Collapse
|
17
|
Tang L, Chen J, Ye Z, Zhao M, Meng Z, Lin H, Li S, Zhang Y. Transcriptomic Analysis Revealed the Regulatory Mechanisms of Oocyte Maturation and Hydration in Orange-Spotted Grouper (Epinephelus coioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:537-549. [PMID: 31129797 DOI: 10.1007/s10126-019-09902-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Oocyte maturation and hydration are regulated by a complex interplay of various hormones and local factors. We have investigated the morphological changes of follicles and serum steroid levels during the HCG (human choionic gonadotophin)-induced oocyte maturation in the orange-spotted grouper. For the first time, a large-scale transcriptomic analysis of follicles during the maturation has been conducted in a fish species which produce pelagic oocytes. Eight cDNA libraries of follicle samples, from full-grown immature follicles to mature follicles, were constructed. A total of 402,530,284 high-quality clean reads were obtained after filtering, 79.66% of which perfectly mapped to the orange-spotted grouper genome. Real-time PCR results of 12 representative genes related to oocyte maturation and hydration verified the reliability of the RNA-seq data. A large number of genes related to oocyte maturation and hydration were identified in the transcriptome dataset. And the transcriptomic analysis revealed the dynamic changes of the steroid synthesis pathway and the pathway of hydration during oocyte maturation. The present study will facilitate future study on the oocyte maturation and hydration in the orange-spotted grouper and other marine pelagic egg spawner.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Liu K, Yin D, Shu Y, Dai P, Yang Y, Wu H. Transcriptome and metabolome analyses of Coilia nasus in response to Anisakidae parasite infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:235-242. [PMID: 30611778 DOI: 10.1016/j.fsi.2018.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Parasites from the family Anisakidae are capable of infecting a range of marine fish species worldwide. Coilia nasus, which usually feeds and overwinters in coastal waters and spawns in freshwater, is highly susceptible to infection by Anisakidae. In this study, we used scanning electron microscopes to show that C. nasus infected by Anisakidae exhibited damage and fibrosis of the liver tissue. To better understand host immune reaction and metabolic changes to Anisakidae infection, we used a combination of transcriptomic and metabolomic method to characterize the key genes and metabolites, and the signaling pathway regulation of C. nasus infected by Anisakidae. We generated 62,604 unigenes from liver tissue and identified 391 compounds from serum. Of these, Anisakidae infection resulted in significant up-regulation of 545 genes and 28 metabolites, and significant down-regulation of 416 genes and 37 metabolites. Seventy-four of the 961 differentially expressed genes were linked to immune response, and 1, 2-Diacylglycerol, an important immune-related metabolite, was significantly up-regulated after infection. Our results show activation of antigen processing and presentation, initiation of the T cell receptor signaling pathway, disruption of the TCA cycle, and changes to the amino acid and Glycerolipid metabolisms, which indicate perturbations to the host immune system and metabolism following infection. This is the first study describing the immune responses and metabolic changes in C. nasus to Anisakidae infection, and thus improves our understanding of the interaction mechanisms between C. nasus and Anisakidae. Our findings will be useful for future research on the population ecology of C. nasus.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Denghua Yin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yilin Shu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Pei Dai
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yanping Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Hailong Wu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
19
|
Carnevali O, Santangeli S, Forner-Piquer I, Basili D, Maradonna F. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes? FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1561-1576. [PMID: 29948447 DOI: 10.1007/s10695-018-0507-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| | - Stefania Santangeli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Danilo Basili
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| |
Collapse
|
20
|
Sun S, Guo Z, Fu H, Zhu J, Ge X. Integrated metabolomic and transcriptomic analysis of brain energy metabolism in the male Oriental river prawn (Macrobrachium nipponense) in response to hypoxia and reoxygenation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1154-1165. [PMID: 30261455 DOI: 10.1016/j.envpol.2018.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia is as an endocrine disruptor, and, in crustaceans, the energy metabolic consequences of hypoxia in the brain tissue are still poorly understood. We combined gas chromatography-mass spectrometry (GC-MS)-based metabolomic analysis and high-throughput RNA sequencing to evaluate the metabolic effects and subjacent regulatory pathways in the brain tissue of the male Oriental river prawn (Macrobrachium nipponense) in response to hypoxia and reoxygenation. We recorded LC50 and heartbeats per minute of male M. nipponense juveniles. Hypoxia resulted in the generation of reactive oxygen species in the brain cells and alterations in gene expression and metabolite concentrations in the prawn brain tissue in a time-dependent manner. The transcriptomic analyses revealed specific changes in the expression of genes associated with metabolism pathways, which was consistent with the changes in energy metabolism indicated by the GC-MS metabolomic analysis. Quantitative real-time polymerase chain reaction and western blot confirmed the transcriptional induction of these genes because of hypoxia. The lactate levels increased significantly during hypoxia and decreased to normal after reoxygenation; this is consistent with a shift towards anaerobic metabolism, which may cause metabolic abnormalities in the brain tissue of M. nipponense. Overall, these results are consistent with metabolic disruption in the brain of M. nipponense exposed to hypoxia and will help in understanding how crustacean brain tissue adapts and responds to hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning City, Guangxi Province 530021, PR China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| |
Collapse
|
21
|
Yang C, Hao R, Du X, Deng Y, Sun R, Wang Q. Metabolomics Responses of Pearl Oysters ( Pinctada fucata martensii) Fed a Formulated Diet Indoors and Cultured With Natural Diet Outdoors. Front Physiol 2018; 9:944. [PMID: 30072917 PMCID: PMC6060569 DOI: 10.3389/fphys.2018.00944] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Natural disasters and environmental pollution are the main problems in traditional offshore cultivation. While culturing pearl oysters through industrial farming can avoid these problems, food availability in this case is limited. This study compares the metabolomics responses of pearl oysters, Pinctada fucata martensii, fed a formulated diet indoors with those of oysters cultured with natural diet outdoors by using a gas chromatography time-of-flight mass spectrometry (GC-TOF/MS)-based metabolomics approach. The animals were divided into two groups as follows: the experimental group (EG) was fed a formulated diet indoors and the control group (CG) was cultured with natural diet outdoors. After 45 days of feeding, the survival rate of EG was significantly higher than that of CG. The absolute growth rate (AGR) of the total weight of EG did not significantly differ from that of CG, but the AGRs of the shell length, shell height, and shell width of CG were significantly higher than those of EG. EG showed significantly higher amylase activities than CG, and the hexokinase and glucose-6-phosphate isomerase concentrations of the former were significantly lower than those of the latter. Metabolomics revealed 125 metabolites via mass spectrum matching with a spectral similarity value > 700 in the hepatopancreas, and 48 metabolites were considered to be significantly different between groups (VIP > 1 and P < 0.05). Pathway analysis results indicated that these significantly different metabolites were involved in 34 pathways. Further integrated key metabolic pathway analysis showed that, compared with CG, EG had lower capabilities for cysteine and methionine metabolism, sulfur metabolism, and starch and sucrose metabolism. This study demonstrated that the formulated diet could be an excellent substitute for natural diet; however, its nutrients were insufficient. Effective strategies should be developed to enhance the utilization of formulated diets.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Ruijiao Sun
- Zhejiang Hengxing Food Co., Ltd., Jiaxing, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| |
Collapse
|
22
|
Li B, Song K, Meng J, Li L, Zhang G. Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas. BMC Genomics 2017; 18:713. [PMID: 28893177 PMCID: PMC5594505 DOI: 10.1186/s12864-017-4069-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacific oyster Crassostrea gigas is an important marine fishery resource, which contains high levels of glycogen that contributes to the flavor and the quality of the oyster. However, little is known about the molecular and chemical mechanisms underlying glycogen content differences in Pacific oysters. Using a homogeneous cultured Pacific oyster family, we explored these regulatory networks at the level of the metabolome and the transcriptome. RESULTS Oysters with the highest and lowest natural glycogen content were selected for differential transcriptome and metabolome analysis. We identified 1888 differentially-expressed genes, seventy-five differentially-abundant metabolites, which are part of twenty-seven signaling pathways that were enriched using an integrated analysis of the interaction between the differentially-expressed genes and the differentially-abundant metabolites. Based on these results, we found that a high expression of carnitine O-palmitoyltransferase 2 (CPT2), indicative of increased fatty acid degradation, is associated with a lower glycogen content. Together, a high level of expression of phosphoenolpyruvate carboxykinase (PEPCK), and high levels of glucogenic amino acids likely underlie the increased glycogen production in high-glycogen oysters. In addition, the higher levels of the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), as well as of the TCA cycle enzymes malate dehydrogenase (MDH) and pyruvate carboxylase (PYC), imply that there is a concomitant up-regulation of energy metabolism in high-glycogen oysters. High-glycogen oysters also appeared to have an increased ability to cope with stress, since the levels of the antioxidant glutathione peroxidase enzyme 5 (GPX5) gene were also increased. CONCLUSION Our results suggest that amino acids and free fatty acids are closely related to glycogen content in oysters. In addition, oysters with a high glycogen content have a greater energy production capacity and a greater ability to cope with stress. These findings will not only provide insights into the molecular mechanisms underlying oyster quality, but also promote research into the molecular breeding of oysters.
Collapse
Affiliation(s)
- Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|