1
|
Yang Z, Zhang L, Zhang W, Tian X, Lai W, Lin D, Feng Y, Jiang W, Zhang Z, Zhang Z. Identification of the principal neuropeptide MIP and its action pathway in larval settlement of the echiuran worm Urechis unicinctus. BMC Genomics 2024; 25:337. [PMID: 38641568 PMCID: PMC11027379 DOI: 10.1186/s12864-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Xinhua Tian
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenyuan Lai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Liu Q, Liu Y, Zhang X, Huang W, Shu G, Zhao H, Dai L, Dai L. Comparative transcriptome profile reveals insight into the antibacterial immunity mechanism of the loach (Misgurnus anguillicaudatus) fed with soybean fermented broth during lipopolysaccharide (LPS) exposure. Int J Biol Macromol 2024; 259:129239. [PMID: 38184041 DOI: 10.1016/j.ijbiomac.2024.129239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Loach (Misgurnus anguillicaudatus) is a common freshwater commercial fish species in China. The meat of this fish is a good source of protein and other nutrients that are needed for human health. Aquaculture challenges such as diseases and pest susceptibility, excessive density, and nutritional deficiency result in low production of loach rather than increased demand. Due to a lack of knowledge about the immune system of loaches, we carried out this study to better understand its antibacterial molecular mechanism. Here, we performed RNA sequencing from liver tissue obtained from soya bean-fermented fed loach after subjecting it to the LPS challenge. The results revealed a total of 18,399 differentially expressed genes (DEGs) in the LPS-treated and control groups. There were 7482 DEGs that were upregulated and 10,917 DEGs were downregulated. The enrichment analysis of DEGs revealed that the majority of DEGs were found to be abundant in the pathways of DNA replication, spliceosome, nucleotide exception repair, cell cycle, and Herpes simplex virus 1 infection. Furthermore, qRT-PCR analysis of 21 selected DEGs demonstrated that the transcriptomic data is extremely reliable. Overall, this study provides insight into the molecular features and control mechanisms of genes that affect loach growth. The availability of this information will also contribute to the enhancement of the breeding and protection of loach resources.
Collapse
Affiliation(s)
- Qiuning Liu
- College of Wetland, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wentian Huang
- College of Basic Medicine, Chinese People's Liberation Army Naval Medical University, Shanghai 200433, PR China; Cardiology Department, General Hospital of Eastern Theater Command, Shanghai 201101, PR China
| | - Guixia Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haiyang Zhao
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, PR China.
| | - Lu Dai
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, PR China; The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
3
|
Zhang R, Duan Q, Luo Q, Deng L. PacBio Full-Length Transcriptome of a Tetraploid Sinocyclocheilus multipunctatus Provides Insights into the Evolution of Cavefish. Animals (Basel) 2023; 13:3399. [PMID: 37958154 PMCID: PMC10648740 DOI: 10.3390/ani13213399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Sinocyclocheilus multipunctatus is a second-class nationally protected wild animal in China. As one of the cavefish, S. multipunctatus has strong adaptability to harsh subterranean environments. In this study, we used PacBio SMRT sequencing technology to generate a first representative full-length transcriptome for S. multipunctatus. Sequence clustering analysis obtained 232,126 full-length transcripts. Among all transcripts, 40,487 were annotated in public databases, while 70,300 microsatellites, 2384 transcription factors, and 16,321 long non-coding RNAs were identified. The phylogenetic tree showed that S. multipunctatus shows a closer relationship to Carassius auratus and Cyprinus carpio, phylogenetically diverging from the common ancestor ~14.74 million years ago (Mya). We also found that between 15.6 and 17.5 Mya, S. multipunctatus also experienced an additional whole-genome duplication (WGD) event, which may have promoted the species evolution of S. multipunctatus. Meanwhile, the overall rates of evolutionary of polyploid S. multipunctatus were significantly higher than those of the other cyprinids, and 220 positively selected genes (PSGs) were identified in two sub-genomes of S. multipunctatus. These PSGs are likely to fulfill critical roles in the process of adapting to diverse cave environments. This study has the potential to facilitate future investigations into the genomic characteristics of S. multipunctatus and provide valuable insights into revealing the evolutionary history of polyploid S. multipunctatus.
Collapse
|
4
|
Sun B, Huang Y, Castro LFC, Yang S, Huang S, Jin W, Zhou H, Ijiri S, Luo Y, Gao J, Cao X. The chromosome-level genome and key genes associated with mud-dwelling behavior and adaptations of hypoxia and noxious environments in loach (Misgurnus anguillicaudatus). BMC Biol 2023; 21:18. [PMID: 36726103 PMCID: PMC9893644 DOI: 10.1186/s12915-023-01517-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The loach (Misgurnus anguillicaudatus), the most widely distributed species of the family Cobitidae, displays a mud-dwelling behavior and intestinal air-breathing, inhabiting the muddy bottom of extensive freshwater habitats. However, lack of high-quality reference genome seriously limits the interpretation of the genetic basis of specialized adaptations of the loach to the adverse environments including but not limited to the extreme water temperature, hypoxic and noxious mud environment. RESULTS This study generated a 1.10-Gb high-quality, chromosome-anchored genome assembly, with a contig N50 of 3.83 Mb. Multiple comparative genomic analyses found that proto-oncogene c-Fos (fos), a regulator of bone development, is positively selected in loach. Knockout of fos (ID: Mis0086400.1) led to severe osteopetrosis and movement difficulties, combined with the comparison results of bone mineral density, supporting the hypothesis that fos is associated with loach mud-dwelling behavior. Based on genomic and transcriptomic analysis, we identified two key elements involved in the intestinal air-breathing of loach: a novel gene (ID: mis0158000.1) and heat shock protein beta-1 (hspb1). The flavin-containing monooxygenase 5 (fmo5) genes, central to xenobiotic metabolism, undergone expansion in loach and were identified as differentially expressed genes in a drug stress trial. A fmo5-/- (ID: Mis0185930.1) loach displayed liver and intestine injury, indicating the importance of this gene to the adaptation of the loach to the noxious mud. CONCLUSIONS Our work provides valuable insights into the genetic basis of biological adaptation to adverse environments.
Collapse
Affiliation(s)
- Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Postal address: No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Postal address: No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208, Matosinhos, Portugal
- Department of Biology, University of Porto, 4450-208, Porto, Portugal
| | - Su Yang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Postal address: No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Wu Jin
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - He Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Shigeho Ijiri
- Division of Marine Life Sciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Yi Luo
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Postal address: No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Postal address: No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Postal address: No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
5
|
Sun B, Gao J, Yang L, Huang S, Cao X. Depletion of LOXL2 improves respiratory capacity: From air-breathing fish to mammal under hypoxia. Int J Biol Macromol 2022; 209:563-575. [PMID: 35413319 DOI: 10.1016/j.ijbiomac.2022.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Air-breathing fish are fascinating because of their ability to survive under hypoxia for a long time by using air-breathing organs (ABOs). Fish ABOs are thought to resemble the mammal lung all along. However, the link between the two has not been studied in depth. Here, we reported a markedly improved respiratory capacity in mice under hypoxia by inhibiting lysyl oxidase-like 2 (LOXL2), inspired from the intestinal air-breathing of loach (Misgurnus anguillicaudatus). Moreover, a posterior intestine (an ABO) transcriptome analysis revealed that the deletion of Loxl2b obviously inhibited PI3K-AKT and TGF-β signaling, meanwhile, induced VEGF signaling, which could cause vasodilation and angiogenesis to improve the air-breathing ability of loach. The same phenomenon was found in LOXL2-inhibition mice under hypoxia, which significantly prolonged their living period relative to wild-type (WT) mice. In addition, compared with WT loach, Loxl2b-/- loach presented enhanced anaerobic metabolism, which could also make itself to better survive in hypoxic environment. This should be the magic of air-breathing fish! Supplied from air-breathing fish, this study provides a novel means of improving respiratory capacity in mammal under hypoxia.
Collapse
Affiliation(s)
- Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Yang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Comparative Transcriptomic Analysis of Regenerated Skins Provides Insights into Cutaneous Air-Breathing Formation in Fish. BIOLOGY 2021; 10:biology10121294. [PMID: 34943209 PMCID: PMC8698756 DOI: 10.3390/biology10121294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Cutaneous air-breathing is one of the air-breathing patterns in bimodal respiration fishes, while little is known about its underlying formation mechanisms. Here, we first investigated the skin regeneration of loach (Misgurnus anguillicaudatus, a cutaneous air-breathing fish) and yellow catfish (Pelteobagrus fulvidraco, a water-breathing fish) through morphological and histological observations. Then, the original skins (OS: MOS, POS) and regenerated skins (RS: MRS, PRS) when their capillaries were the most abundant (the structural foundation of air-breathing in fish) during healing, of the two fish species were collected for high-throughput RNA-seq. A total of 56,054 unigenes and 53,731 unigenes were assembled in loach and yellow catfish, respectively. A total of 640 (460 up- and 180 down-regulated) and 4446 (2340 up- and 2106 down-regulated) differentially expressed genes (DEGs) were respectively observed in RS/OS of loach and yellow catfish. Subsequently, the two DEG datasets were clustered in GO, KOG and KEGG databases, and further analyzed by comparison and screening. Consequently, tens of genes and thirteen key pathways were targeted, indicating that these genes and pathways had strong ties to cutaneous skin air-breathing in loach. This study provides new insights into the formation mechanism of cutaneous air-breathing and also offers a substantial contribution to the gene expression profiles of skin regeneration in fish.
Collapse
|
7
|
Huang S, Yang L, Zhang L, Sun B, Gao J, Chen Z, Zhong L, Cao X. Endogenic upregulations of HIF/VEGF signaling pathway genes promote air breathing organ angiogenesis in bimodal respiration fish. Funct Integr Genomics 2021; 22:65-76. [PMID: 34839401 DOI: 10.1007/s10142-021-00822-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
Air-breathing has evolved independently serval times with a variety of air-breathing organs (ABOs) in fish. The physiology of the air-breathing in bimodal respiration fish has been well understood, while studies on molecular mechanisms of the character are very limited. In the present study, we first determined the gill indexes of 110 fish species including 25 and 85 kinds of bimodal respiration fishes and non-air-breathing fishes, respectively. Then combined with histological observations of gills and ABOs/non-ABOs in three bimodal respiration fishes and two non-air breathing fishes, we found that the bimodal respiration fish was always of a degeneration gill and a well-vascularized ABO. Meanwhile, a comparative transcriptome analysis of posterior intestines, namely a well vascularized ABO in Misgurnus anguillicaudatus and a non-ABO in Leptobotia elongata, was performed to expound molecular variations of the air-breathing character. A total of 5,003 orthologous genes were identified. Among them, 1,189 orthologous genes were differentially expressed, which were enriched in 14 KEGG pathways. More specially, the expressions of hemoglobin genes and various HIF/VEGF signaling pathway genes were obviously upregulated in the ABO of M. anguillicaudatus. Moreover, we found that HIF-1α, VEGFAa, and MAP2K1 were co-expressed dramatically higher in ABOs of bimodal respiration fishes than those of non-ABOs of non-air-breathing fishes. These results indicated that the HIF/VEGF pathway played an important role in ABO angiogenesis/formation to promote fish to do aerial respiration. This study will contribute to our understanding of molecular mechanisms of air-breathing in fish.
Collapse
Affiliation(s)
- Songqian Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.,Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Lijuan Yang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Li Zhang
- College of Marxism, Shanghai University of Finance and Economics, Shanghai, 200433, China
| | - Bing Sun
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Zijian Chen
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.,National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Zhong
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, NO.173 Baishazhou Avenue, Hongshan District, Wuhan, 430207, Hubei Province, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
8
|
Wang M, Xu W, Zou J, Li S, Song Z, Zheng F, Ji W, Xu Z, Wang Q. The Programming of Antioxidant Capacity, Immunity, and Lipid Metabolism in Dojo Loach ( Misgurnus anguillicaudatus) Larvae Linked to Sodium Chloride and Hydrogen Peroxide Pre-treatment During Egg Hatching. Front Physiol 2021; 12:768907. [PMID: 34777025 PMCID: PMC8581469 DOI: 10.3389/fphys.2021.768907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Non-nutritional stress during early life period has been reported to promote the metabolic programming in fish induced by nutritional stimulus. Sodium chloride (NaCl) and hydrogen peroxide (H2O2) have been widely applied during fish egg hatching, but the influences on health and metabolism of fish in their later life remain unknown. In the present study, H2O2 treatment at 400mg/L but not 200mg/L significantly increased the loach hatchability and decreased the egg mortality, while NaCl treatment at 1,000 and 3,000mg/L showed no significant influences on the loach hatchability nor egg mortality. Further studies indicated that 400mg/L H2O2 pre-treatment significantly enhanced the antioxidant capacity and the mRNA expression of genes involved in immune response of loach larvae, accompanied by the increased expression of genes involved in fish early development. However, the expression of most genes involved in lipid metabolism, including catabolism and anabolism of loach larvae, was significantly upregulated after 200mg/L H2O2 pre-treatment. NaCl pre-treatment also increased the expression of antioxidant enzymes; however, only the expression of C1q within the detected immune-related genes was upregulated in loach larvae. One thousand milligram per liter NaCl pre-treatment significantly increased the expression of LPL and genes involved in fish early development. Thus, our results suggested the programming roles of 400mg/L H2O2 pre-treatment during egg hatching in enhancing antioxidant capacity and immune response of fish larvae via promoting fish early development.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenyu Xu
- Ocean University of China, Qingdao, China
| | - Jiahong Zou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Shuaitong Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zixi Song
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei Ji
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Fibronectin 1B Gene Plays an Important Role in Loach Barbel Air-Breathing. Int J Mol Sci 2021; 22:ijms222111928. [PMID: 34769365 PMCID: PMC8584523 DOI: 10.3390/ijms222111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Loach (Misgurnus anguillicaudatus) is well known to perform air-breathing through the posterior intestine and skin. However, we find here for the first time a unique central vascular structure in the loach barbel, with a blood–gas diffusion distance as short as that of the posterior intestine. Under acute hypoxia, the distance of loach barbels became significantly shorter. Moreover, barbel removal significantly decreased air-breathing frequency of the loach. These findings imply that the barbel is another air-breathing organ of the loach. For further investigation of loach barbel air-breathing, a transcriptome analysis of barbels with air exposure treatment was performed. A total of 2546 differentially expressed genes (DEGs) between the T-XU (air exposure) and C-XU (control) group were identified, and 13 key DEGs related to barbel air-breathing were screened out. On this foundation, sequence, expression, and location analysis results indicated an important positive role of fibronectin 1b (fn1b) in loach barbel air-breathing. We further generated an fn1b-depletion loach (MT for short) using the CRISPR/Cas9 technique. It was indicated that depletion of fn1b could weaker barbel air-breathing ability. In conclusion, due to nonlethal and regenerative characteristics, the loach barbel, a newly discovered and fn1b-related fish air-breathing organ, can be a good model for fish air-breathing research.
Collapse
|
10
|
Mammalian enteral ventilation ameliorates respiratory failure. MED 2021; 2:773-783.e5. [DOI: 10.1016/j.medj.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023]
|
11
|
Ma X, Su B, Bangs M, Alston V, Backenstose NJC, Simora RM, Wang W, Xing D, Li S, Ye Z, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Genomic and Transcriptomic Analyses Revealed Twenty-Six Candidate Genes Involved in the Air-Breathing Development and Function of the Bighead Catfish Clarias macrocephalus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:90-105. [PMID: 33113010 DOI: 10.1007/s10126-020-10005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, 5023, Iloilo, Philippines
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, 94000, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Ma X, Shang M, Su B, Wiley A, Bangs M, Alston V, Simora RM, Nguyen MT, Backenstose NJC, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Transcriptome Analysis During the Seven Developmental Stages of Channel Catfish ( Ictalurus punctatus) and Tra Catfish ( Pangasianodon hypophthalmus) Provides Novel Insights for Terrestrial Adaptation. Front Genet 2021; 11:608325. [PMID: 33552125 PMCID: PMC7859520 DOI: 10.3389/fgene.2020.608325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
Abstract
Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Anne Wiley
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Mai Thi Nguyen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| |
Collapse
|
13
|
Molecular assessment and transcriptome profiling of wild fish populations of Oryzias mekongensis and O. songkhramensis (Adrianichthyidae: Beloniformes) from Thailand. PLoS One 2020; 15:e0242382. [PMID: 33211755 PMCID: PMC7676673 DOI: 10.1371/journal.pone.0242382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022] Open
Abstract
Among the fish of the genus Oryzias, two species are frequently used as model animals in biological research. In Thailand, Oryzias mekongensis is usually found in natural freshwater near the Mekong Basin in the northeast region, while O. songkhramensis inhabits the Songkhram Basin. For differential morphological identification, the coloured bands on the dorsal and ventral margins of the caudal fin are used to distinguish O. mekongensis from O. songkhramensis. However, these characteristics are insufficient to justify species differentiation, and little molecular evidence is available to supplement them. This study aimed to investigate the molecular population and transcriptome profiles of adult O. mekongensis and O. songkhramensis. In the molecular tree based on cytochrome b sequences, O. mekongensis exhibited four clades that were clearly distinguished from O. songkhramensis. Clade 1 of the O. mekongensis population was close to the Mekong River and lived in the eastern portion of the upper northeast region. Clade 2 was far from the Mekong River and inhabited the middle region of the Songkhram River. Clade 3 was positioned to the west of the Songkhram River, and clade 4 was to the south of the Songkhram River Basin. After RNA sequencing using an Illumina HiSeq 2500 platform, the gene category annotations hardly differentiated the species and were discussed in the text. Based on the present findings, population dispersal of these Oryzias species might be associated with geographic variations of the upper northeast region. Molecular genetics and transcriptome profiling might advance our understanding of the evolution of teleost fish.
Collapse
|
14
|
Transcriptome Analysis of Maternal Gene Transcripts in Unfertilized Eggs of Misgurnus anguillicaudatus and Identification of Immune-Related Maternal Genes. Int J Mol Sci 2020; 21:ijms21113872. [PMID: 32485896 PMCID: PMC7312655 DOI: 10.3390/ijms21113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal genes are important in directing early development and determining egg quality in fish. We here report the de novo transcriptome from four tissue libraries of the cyprinid loach, Misgurnus anguillicaudatus, and for the first time identified maternal gene transcripts in unfertilized eggs and suggest their immune system involvement. Expression profiles and functional enrichment revealed a total 24,116 transcripts were expressed as maternal transcripts in unfertilized eggs, which were involved in a wide range of biological functions and pathways. Comparison expression profiles and analysis of tissue specificity revealed that the large numbers of maternal transcripts were stored in unfertilized eggs near the late phase of ovarian maturation and before ovulation. Functional classification showed a total of 279 maternal immune-related transcripts classified with immune system process GO term and immune system KEGG pathway. qPCR analysis showed that transcript levels of identified maternal immune-related candidate genes were dynamically modulated during development and early ontogeny of M. anguillicaudatus. Taken together, this study could not only provide knowledge on the protective roles of maternal immune-related genes during early life stage of M. anguillicaudatus but could also be a valuable transcriptomic/genomic resource for further analysis of maternally provisioned genes in M. anguillicaudatus and other related teleost fishes.
Collapse
|
15
|
Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 2019; 28:341-356. [PMID: 31183663 DOI: 10.1007/s11248-019-00125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.
Collapse
|
16
|
Hou X, Wei M, Li Q, Zhang T, Zhou D, Kong D, Xie Y, Qin Z, Zhang Z. Transcriptome Analysis of Larval Segment Formation and Secondary Loss in the Echiuran Worm Urechis unicinctus. Int J Mol Sci 2019; 20:E1806. [PMID: 31013695 PMCID: PMC6514800 DOI: 10.3390/ijms20081806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/23/2019] [Accepted: 04/10/2019] [Indexed: 01/06/2023] Open
Abstract
The larval segment formation and secondary loss in echiurans is a special phenomenon, which is considered to be one of the important characteristics in the evolutionary relationship between the Echiura and Annelida. To better understand the molecular mechanism of this phenomenon, we revealed the larval transcriptome profile of the echiuran worm Urechis unicinctus using RNA-Seq technology. Twelve cDNA libraries of U. unicinctus larvae, late-trochophore (LT), early-segmentation larva (ES), segmentation larva (SL), and worm-shaped larva (WL) were constructed. Totally 243,381 unigenes were assembled with an average length of 1125 bp and N50 of 1836 bp, and 149,488 unigenes (61.42%) were annotated. We obtained 70,517 differentially expressed genes (DEGs) by pairwise comparison of the larval transcriptome data at different developmental stages and clustered them into 20 gene expression profiles using STEM software. Based on the typical profiles during the larval segment formation and secondary loss, eight signaling pathways were enriched, and five of which, mTOR, PI3K-AKT, TGF-β, MAPK, and Dorso-ventral axis formation signaling pathway, were proposed for the first time to be involved in the segment formation. Furthermore, we identified 119 unigenes related to the segment formation of annelids, arthropods, and chordates, in which 101 genes were identified in Drosophila and annelids. The function of most segment polarity gene homologs (hedgehog, wingless, engrailed, etc.) was conserved in echiurans, annelids, and arthropods based on their expression profiles, while the gap and pair-rule gene homologs were not. Finally, we verified that strong positive signals of Hedgehog were indeed located on the boundary of larval segments using immunofluorescence. Data in this study provide molecular evidence for the understanding of larval segment development in echiurans and may serve as a blueprint for segmented ancestors in future research.
Collapse
Affiliation(s)
- Xitan Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Maokai Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tingting Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Di Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Dexu Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yueyang Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Li N, Bao L, Zhou T, Yuan Z, Liu S, Dunham R, Li Y, Wang K, Xu X, Jin Y, Zeng Q, Gao S, Fu Q, Liu Y, Yang Y, Li Q, Meyer A, Gao D, Liu Z. Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation. BMC Genomics 2018; 19:952. [PMID: 30572844 PMCID: PMC6302426 DOI: 10.1186/s12864-018-5355-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/09/2018] [Indexed: 11/22/2022] Open
Abstract
Background Walking catfish (Clarias batrachus) is a freshwater fish capable of air-breathing and locomotion on land. It usually inhabits various low-oxygen habitats, burrows inside the mudflat, and sometimes “walks” to search for suitable environments during summer. It has evolved accessory air-breathing organs for respiring air and corresponding mechanisms to survive in such challenging environments. Thereby, it serves as a great model for understanding adaptations to terrestrial life. Results Comparative genomics with channel catfish (Ictalurus punctatus) revealed specific adaptations of C. batrachus in DNA repair, enzyme activator activity, and small GTPase regulator activity. Comparative analysis with 11 non-air-breathing fish species suggested adaptive evolution in gene expression and nitrogenous waste metabolic processes. Further, myoglobin, olfactory receptor related to class A G protein-coupled receptor 1, and sulfotransferase 6b1 genes were found to be expanded in the air-breathing walking catfish genome, with 15, 15, and 12 copies, respectively, compared to non-air-breathing fishes that possess only 1–2 copies of these genes. Additionally, we sequenced and compared the transcriptomes of the gill and the air-breathing organ to characterize the mechanism of aerial respiration involved in elastic fiber formation, oxygen binding and transport, angiogenesis, ion homeostasis and acid-base balance. The hemoglobin genes were expressed dramatically higher in the air-breathing organ than in the gill of walking catfish. Conclusions This study provides an important genomic resource for understanding the adaptive mechanisms of walking catfish to terrestrial environments. It is possible that the coupling of enhanced abilities for oxygen storage and oxygen transport through genomic expansion of myoglobin genes and transcriptomic up-regulation of hemoglobin and angiogenesis-related genes are important components of the molecular basis for adaptation of this aquatic species to terrestrial life. Electronic supplementary material The online version of this article (10.1186/s12864-018-5355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Li
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyan Xu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sen Gao
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qiang Fu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Dongya Gao
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
18
|
Full-length transcriptome of Misgurnus anguillicaudatus provides insights into evolution of genus Misgurnus. Sci Rep 2018; 8:11699. [PMID: 30076392 PMCID: PMC6076316 DOI: 10.1038/s41598-018-29991-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Reconstruction and annotation of transcripts, particularly for a species without reference genome, plays a critical role in gene discovery, investigation of genomic signatures, and genome annotation in the pre-genomic era. This study generated 33,330 full-length transcripts of diploid M. anguillicaudatus using PacBio SMRT Sequencing. A total of 6,918 gene families were identified with two or more isoforms, and 26,683 complete ORFs with an average length of 1,497 bp were detected. Totally, 1,208 high-confidence lncRNAs were identified, and most of these appeared to be precursor transcripts of miRNAs or snoRNAs. Phylogenetic tree of the Misgurnus species was inferred based on the 1,905 single copy orthologous genes. The tetraploid and diploid M. anguillicaudatus grouped into a clade, and M. bipartitus showed a closer relationship with the M. anguillicaudatus. The overall evolutionary rates of tetraploid M. anguillicaudatus were significantly higher than those of other Misgurnus species. Meanwhile, 28 positively selected genes were identified in M. anguillicaudatus clade. These positively selected genes may play critical roles in the adaptation to various habitat environments for M. anguillicaudatus. This study could facilitate further exploration of the genomic signatures of M. anguillicaudatus and provide potential insights into unveiling the evolutionary history of tetraploid loach.
Collapse
|
19
|
Pang M, Luo W, Fu B, Yu X, Zhou Y, Tong J. Transcriptomic Profiles of Brain Provide Insights into Molecular Mechanism of Feed Conversion Efficiency in Crucian Carp (Carassius auratus). Int J Mol Sci 2018. [PMID: 29538345 PMCID: PMC5877719 DOI: 10.3390/ijms19030858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1,Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp.
Collapse
Affiliation(s)
- Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
20
|
Yan G, Zhang G, Huang J, Lan Y, Sun J, Zeng C, Wang Y, Qian PY, He L. Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano. Int J Mol Sci 2017; 18:E2253. [PMID: 29077039 PMCID: PMC5713223 DOI: 10.3390/ijms18112253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Megabalanus barnacle is one of the model organisms for marine biofouling research. However, further elucidation of molecular mechanisms underlying larval settlement has been hindered due to the lack of genomic information thus far. In the present study, cDNA libraries were constructed for cyprids, the key stage for larval settlement, and adults of Megabalanus volcano. After high-throughput sequencing and de novo assembly, 42,620 unigenes were obtained with a N50 value of 1532 bp. These unigenes were annotated by blasting against the NCBI non-redundant (nr), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, 19,522, 15,691, 14,459, and 10,914 unigenes were identified correspondingly. There were 22,158 differentially expressed genes (DEGs) identified between two stages. Compared with the cyprid stage, 8241 unigenes were down-regulated and 13,917 unigenes were up-regulated at the adult stage. The neuroactive ligand-receptor interaction pathway (ko04080) was significantly enriched by KEGG enrichment analysis of the DEGs, suggesting that it possibly involved in larval settlement. Potential functions of three conserved allatostatin neuropeptide-receptor pairs and two light-sensitive opsin proteins were further characterized, indicating that they might regulate attachment and metamorphosis at cyprid stage. These results provided a deeper insight into the molecular mechanisms underlying larval settlement of barnacles.
Collapse
Affiliation(s)
- Guoyong Yan
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100864, China.
| | - Gen Zhang
- The Shenzhen Nobel Science and Technology Service Co., Ltd., Nanshan District, Shenzhen 440305, China.
| | - Jiaomei Huang
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yi Lan
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Jin Sun
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Cong Zeng
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yong Wang
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Lisheng He
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|