1
|
Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proc Natl Acad Sci U S A 2021; 118:2112703118. [PMID: 34782481 PMCID: PMC8640741 DOI: 10.1073/pnas.2112703118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe threat to public health and the global economy. Its spike protein is responsible for the membrane fusion and is thus a major target for vaccine and drug development. Our study presents the in situ structure of the spike protein in the postfusion state with higher resolution, giving further insights into the design of a viral entry inhibitor. Our observation of the oligomerization states of spikes on the viral membrane implies a possible mechanism of membrane fusion for viral infection. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in β-propiolactone–inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.
Collapse
|
2
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
3
|
Wang Q, Su S, Xue J, Yu F, Pu J, Bi W, Xia S, Meng Y, Wang C, Yang W, Xu W, Zhu Y, Zheng Q, Qin C, Jiang S, Lu L. An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Sci Transl Med 2021; 12:12/546/eaaz2254. [PMID: 32493792 DOI: 10.1126/scitranslmed.aaz2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
HIV-associated morbidity and mortality have markedly declined because of combinational antiretroviral therapy, but HIV readily mutates to develop drug resistance. Developing antivirals against previously undefined targets is essential to treat existing drug-resistant HIV strains. Some peptides derived from HIV-1 envelope glycoprotein (Env, gp120-gp41) have been shown to be effective in inhibiting HIV-1 infection. Therefore, we screened a peptide library from HIV-1 Env and identified a peptide from the cytoplasmic region, designated F9170, able to effectively inactivate HIV-1 virions and induce necrosis of HIV-1-infected cells, and reactivated latently infected cells. F9170 specifically targeted the conserved cytoplasmic tail of HIV-1 Env and effectively disrupted the integrity of the viral membrane. Short-term monoadministration of F9170 controlled viral loads to below the limit of detection in chronically SHIV-infected macaques. F9170 can enter the brain and lymph nodes, anatomic reservoirs for HIV latency. Therefore, F9170 shows promise as a drug candidate for HIV treatment.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenwen Bi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenqian Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinwen Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China. .,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| |
Collapse
|
4
|
Zhang X, Wang C, Chen B, Wang Q, Xu W, Ye S, Jiang S, Zhu Y, Zhang R. Crystal Structure of Refolding Fusion Core of Lassa Virus GP2 and Design of Lassa Virus Fusion Inhibitors. Front Microbiol 2019; 10:1829. [PMID: 31456769 PMCID: PMC6700223 DOI: 10.3389/fmicb.2019.01829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023] Open
Abstract
The envelope glycoproteins GP1 and GP2 of Lassa virus (LASV) bind to the host cell receptors to mediate viral infection. So far, no approved vaccines and specific treatment options against LASV exist. To develop specific fusion inhibitors against LASV, we solved the crystal structure of the post-fusion 6 helix bundle (6-HB) formed by two heptad repeat domains (HR1 and HR2) of GP2. This fusion core contains a parallel trimeric coiled-coil of three HR1 helices, around which three HR2 helices are entwined in an antiparallel manner. Various hydrophobic and charged interactions form between HR1 and HR2 domains to stabilize the overall conformation of GP2 fusion core. Based on the structure, we designed several peptides spanning the HR2 domain and tested their antiviral activities. We found that the longer HR2 peptides were effective in inhibiting LASV GPC protein-mediated cell–cell fusion under low pH condition. These results not only suggest that LASV infects the target cell mainly through endocytosis, including micropinocytosis, and membrane fusion at low pH, but also provide an important basis for rational design of LASV fusion inhibitors.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China
| | - Baohua Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Conserved Residue Asn-145 in the C-Terminal Heptad Repeat Region of HIV-1 gp41 is Critical for Viral Fusion and Regulates the Antiviral Activity of Fusion Inhibitors. Viruses 2019; 11:v11070609. [PMID: 31277353 PMCID: PMC6669600 DOI: 10.3390/v11070609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Entry of HIV-1 into target cells is mediated by its envelope (Env) glycoprotein composed of the receptor binding subunit gp120 and the fusion protein gp41. Refolding of the gp41 N- and C-terminal heptad repeats (NHR and CHR) into a six-helix bundle (6-HB) conformation drives the viral and cellular membranes in close apposition and generates huge amounts of energy to overcome the kinetic barrier leading to membrane fusion. In this study, we focused on characterizing the structural and functional properties of a single Asn-145 residue, which locates at the middle CHR site of gp41 and is extremely conserved among all the HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. By mutational analysis, we found that Asn-145 plays critical roles for Env-mediated cell-cell fusion and HIV-1 entry. As determined by circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC), the substitution of Asn-145 with alanine (N145A) severely impaired the interactions between the NHR and CHR helices. Asn-145 was also verified to be important for the antiviral activity of CHR-derived peptide fusion inhibitors and served as a turn-point for the inhibitory potency. Intriguingly, Asn-145 could regulate the functionality of the M-T hook structure at the N-terminus of the inhibitors and displayed comparable activities with the C-terminal IDL anchor. Crystallographic studies further demonstrated the importance of Asn-145-mediated interhelical and intrahelical interactions in the 6-HB structure. Combined, the present results have provided valuable information for the structure-function relationship of HIV-1 gp41 and the structure-activity relationship of gp41-dependent fusion inhibitors.
Collapse
|
7
|
Baker MAB. ABA/ASB biophysics and medicine session 2018. Biophys Rev 2019; 11:273-274. [PMID: 31055759 DOI: 10.1007/s12551-019-00529-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Matthew A B Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Australia.
| |
Collapse
|
8
|
Hua C, Zhu Y, Xu W, Ye S, Zhang R, Lu L, Jiang S. Characterization by high-resolution crystal structure analysis of a triple-helix region of human collagen type III with potent cell adhesion activity. Biochem Biophys Res Commun 2018; 508:1018-1023. [PMID: 30545625 PMCID: PMC7092849 DOI: 10.1016/j.bbrc.2018.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Collagen is one of the most abundant and important proteins in the human body. Human collagen type III (hCOL3A1) belongs to the fibril-forming collagens and is widely distributed in extensible connective tissue like skin, internal organs, or the vascular system. It plays key roles in wound healing, collagen fibrillogenesis, and normal cardiovascular development in human. The charged residues are considered to be an important characteristic of hCOL3A1, especially for collagen binding and recognition. Here we found that a triple helix fragment of hCOL3A1, Gly489-Gly510, contained multiple charged residues, as well as representative Glu-Lys-Gly and Glu-Arg-Gly charged triplets. We solved the crystal structure of this new fragment to a high-resolution of 1.50 Å and identified some important conformations of this new triple-helix region, including strong hydrogen bonds in interchain and interhelical interactions in addition to obvious flexible bending for the triple helix. We also found that the synthetic collagen peptides around this region exhibited potent activities through integrin-mediated peptide-membrane interaction. We then developed a method to produce a recombinant protein consisting of 16 tandem repeats of the triple-helix fragment of hCOL3A1 with strong activity without cytotoxicity. These results provide a strong base for further functional studies of human collagen type III and the method developed in this study can be applied to produce hCOL3A1-derived proteins or other tandem-repeat proteins with membrane adhesion activity.
Collapse
Affiliation(s)
- Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China.
| |
Collapse
|
9
|
Xia S, Xu W, Wang Q, Wang C, Hua C, Li W, Lu L, Jiang S. Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains. Int J Mol Sci 2018; 19:ijms19020487. [PMID: 29415501 PMCID: PMC5855709 DOI: 10.3390/ijms19020487] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Human coronavirus 229E (HCoV-229E) infection in infants, elderly people, and immunocompromised patients can cause severe disease, thus calling for the development of effective and safe therapeutics to treat it. Here we reported the design, synthesis and characterization of two peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains, 229E-HR1P and 229E-HR2P, respectively. We found that 229E-HR1P and 229E-HR2P could interact to form a stable six-helix bundle and inhibit HCoV-229E spike protein-mediated cell-cell fusion with IC50 of 5.7 and 0.3 µM, respectively. 229E-HR2P effectively inhibited pseudotyped and live HCoV-229E infection with IC50 of 0.5 and 1.7 µM, respectively. In a mouse model, 229E-HR2P administered intranasally could widely distribute in the upper and lower respiratory tracts and maintain its fusion-inhibitory activity. Therefore, 229E-HR2P is a promising candidate for further development as an antiviral agent for the treatment and prevention of HCoV-229E infection.
Collapse
Affiliation(s)
- Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
10
|
Su S, Ma Z, Hua C, Li W, Lu L, Jiang S. Adding an Artificial Tail-Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile. Molecules 2017; 22:molecules22111996. [PMID: 29156603 PMCID: PMC6150406 DOI: 10.3390/molecules22111996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) of human immunodeficiency virus type 1 (HIV-1) envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide), can bind to the N-terminal heptad repeat (NHR) of gp41 and block six-helix bundle (6-HB) formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6) and adding IDL (Ile-Asp-Leu) to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor-tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide's antiviral efficacy and its genetic barrier to resistance.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Zhenxuan Ma
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity. AIDS 2017; 31:885-894. [PMID: 28121713 DOI: 10.1097/qad.0000000000001415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES During HIV-1 fusion process, the N-terminal heptad repeat (NHR) of the HIV-1 glycoprotein 41 (gp41) interacts with the C-terminal heptad repeat (CHR) to form the fusion active six-helix bundle, thus being an effective target for the design of CHR peptide-based HIV-1 fusion inhibitors. To overcome the limitations of the simplified helix wheel model of six-helix bundle, we herein developed a novel HIV-1 gp41 NHR-CHR-NHR tripartite model for the rational design of HIV-1 fusion inhibitors with improved antiviral activities. DESIGN Based on the crystal structure of six-helix bundle, we evaluated the NHR-binding properties of each residue in CHR. In this new tripartite model, CHR residues were divided into three groups: major binding, nonbinding, and assistant binding sites. METHODS Eight CHR peptides were designed and synthesized to confirm the validity of the tripartite model. Their affinities to NHR and inhibitory activities were analyzed. RESULTS In this tripartite model, replacements in assistant binding sites either increased or decreased the inhibition of HIV-1 infection. We identified three peptides with mutations of the residues in CHR at the assistant binding sites in our tripartite model but nonbinding sites in the helical wheel model. These mutant peptides had anti-HIV-1 activity up to 26-fold more potent than that of C34, a CHR peptide designed on the basis of the helix wheel model. CONCLUSION These data verified the superiority and validity of our new tripartite model for the rational design of HIV-1 fusion inhibitors. This approach can be adapted for designing viral fusion inhibitors against other enveloped viruses with class I membrane fusion protein.
Collapse
|