1
|
Shin SH, Moazamian D, Tang Q, Jerban S, Ma Y, Du J, Chang EY. Towards assessing and improving the reliability of ultrashort echo time quantitative magnetization transfer (UTE-qMT) MRI of cortical bone: In silico and ex vivo study. MAGMA (NEW YORK, N.Y.) 2024; 37:983-992. [PMID: 39126439 PMCID: PMC11582156 DOI: 10.1007/s10334-024-01190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone. MATERIALS AND METHODS Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans. RESULTS The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR. DISCUSSION The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA.
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Qingbo Tang
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA.
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA.
| |
Collapse
|
2
|
Sugisawa K, Takahashi H, Yamanari M, Okamoto M, Igarashi-Yokoi T, Azuma T, Miki T, Lu H, Wu Y, Xiong J, Ohno-Matsui K. Visualization of the scleral structure changes at various stages of eyes with myopic maculopathy using polarization-sensitive OCT. Asia Pac J Ophthalmol (Phila) 2024; 13:100117. [PMID: 39643118 DOI: 10.1016/j.apjo.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE To observe the detailed structures of the inner and outer sclera at various stages of myopic maculopathy using polarization-sensitive optical coherence tomography (PS-OCT). METHODS A PS-OCT system was developed for imaging the posterior eye using a swept laser. Data from highly myopic patients who underwent PS-OCT examination between May and June 2019 were used to generate birefringence images (showing scleral fiber density), optic axis images (visualizing the orientation of scleral fibers), and streamline images (providing 3D reconstructions to visualize scleral fiber stream). RESULTS A total of 89 eyes of 65 patients with high myopia were examined and analyzed for this study. The mean axial length was 30.4 ± 1.8 mm. In highly myopic eyes with a thin choroid, PS-OCT visualized the detailed structure of the sclera, and the optic axis images differentiated the direction of the inner and outer scleral fibers. In the optic axis and streamline images, the inner layer of the sclera contained radial fibers extending from the optic disc. In contrast, the outer layer of the sclera contained vertical fibers. With the progression of myopia, highly birefringent fibers first disappear in the inner scleral layer, followed by thinning of the inner layer itself. Subsequently, in the outer scleral layer, the number of highly birefringent fibers decreased. As myopic maculopathy worsened, the inner and outer layers of the sclera disintegrated. CONCLUSIONS PS-OCT is useful for observing the structures of the inner and outer sclera in various conditions of myopic maculopathy.
Collapse
Affiliation(s)
- Keigo Sugisawa
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan.
| | | | | | - Tae Igarashi-Yokoi
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan; Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan
| | - Takeshi Azuma
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan
| | - Takayuki Miki
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan; Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Hongshuang Lu
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan
| | - Yijin Wu
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan
| | - Jianping Xiong
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Jan NJ, Lee PY, Wallace J, Iasella M, Gogola A, Wang B, Sigal IA. Stretch-Induced Uncrimping of Equatorial Sclera Collagen Bundles. J Biomech Eng 2023; 145:054503. [PMID: 36459150 PMCID: PMC9791674 DOI: 10.1115/1.4056354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 μm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues.
Collapse
Affiliation(s)
- Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jacob Wallace
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael Iasella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Alexandra Gogola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ian A. Sigal
- Department of Ophthalmology, Laboratory of Ocular Biomechanics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
4
|
Yue S, Peng C, Zhao D, Xia X, Tan C, Wang Q, Gong J. Theabrownin isolated from Pu-erh tea regulates Bacteroidetes to improve metabolic syndrome of rats induced by high-fat, high-sugar and high-salt diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4250-4265. [PMID: 35040129 DOI: 10.1002/jsfa.11777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Theabrownin (TB), a high macromolecular compound and a characteristic component of Pu-erh tea, is able to markedly regulate blood lipid and glucose metabolism. We hypothesized that TB could ameliorate metabolic syndrome induced by high-fat, high-sugar and high-salt diet (HFSSD). RESULTS To test these hypotheses, we fed rats with HFSSD and administered a gavage of TB. HFSSD successfully induced metabolic syndrome in rats. TB significantly improved serum lipid status, prevented obesity and fasting blood glucose (FBG) and glycosylated hemoglobin (GHbAIc) in rats. After TB intervention, Firmicutes/Bacteroides (F/B) ratio was greatly reduced and showed a dose-effect relationship. TB promoted the reproduction of Bacteroidetes such as prevotella_sp._CAG:1031, prevotella_sp._MGM2 and Bacteroides_sartorii, and inhibited the reproduction of Firmicutes such as roseburia_sp._1XD42-69 and roseburia_sp._831b. CONCLUSION In HFSSD mode, prevotella_sp._CAG:1031 was one of the main dominant characteristic bacteria of TB targeting regulation, while roseburia_sp._1XD42-69 mainly inhibitory intestinal bacteria, which help to reduce body weight, TG and blood sugar levels of HFSSD rats. Glycerophospholipid metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis and insulin resistance were the critical pathway. TB has a high application potential in reducing the risk of metabolic diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Suijuan Yue
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Dan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuechao Xia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Hwang HB, Yeon JS, Moon GS, Jung HN, Kim JY, Jeon SH, Yoon JM, Kim HW, Kim YC. 3D Reconstruction of a Unitary Posterior Eye by Converging Optically Corrected Optical Coherence and Magnetic Resonance Tomography Images via 3D CAD. Transl Vis Sci Technol 2022; 11:24. [PMID: 35895054 PMCID: PMC9344223 DOI: 10.1167/tvst.11.7.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose In acquiring images of the posterior eye, magnetic resonance imaging (MRI) provides low spatial resolution of the overall shape of the eye while optical coherence tomography (OCT) offers high spatial resolution of the limited range. Through the merger of the two devices, we attempted to acquire detailed anatomy of the posterior eye. Methods Optical and display distortions in OCT images were corrected using the Listing reduced eye model. The 3.0T orbital MRI images were placed on the three-dimensional coordinate system of the computer-aided design (CAD) program. Employing anterior scleral canal opening, visual axis, and scleral curvature as references, original and corrected OCT images were ported into the CAD application. The radii of curvature of the choroid–scleral interfaces (Rc values) of all original and corrected OCT images were compared to the MRI images. Results Sixty-five eyes of 33 participants (45.58 ± 19.82 years) with a mean Rc of 12.94 ± 1.24 mm on axial MRI and 13.66 ± 2.81 mm on sagittal MRI were included. The uncorrected horizontal OCT (30.51 ± 9.34 mm) and the uncorrected vertical OCT (34.35 ± 18.09 mm) lengths differed significantly from the MRI Rc values (both P < 0.001). However, the mean Rc values of the corrected horizontal (12.50 ± 1.21 mm) and vertical (13.05 ± 1.98 mm) images did not differ significantly from the Rc values of the corresponding MRI planes (P = 0.065 and P = 0.198, respectively). Conclusions Features identifiable only on OCT and features only on MRI were successfully integrated into a unitary posterior eye. Translational Relevance Our CAD-based converging method may establish the collective anatomy of the posterior eye and the neural canal, beyond the range of the OCT.
Collapse
Affiliation(s)
- Hyung Bin Hwang
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | - Seung Hee Jeon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Myoung Yoon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo Won Kim
- Gangnam St. Mary's One Eye Clinic, Seoul, Republic of Korea
| | - Yong Chan Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Abdi E, Latifi-Navid S. LncRNA polymorphisms and urologic cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:190-203. [PMID: 35178782 DOI: 10.1002/em.22472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Urologic cancers involve nearly one-quarter of all cancers and include the prostate, bladder, and kidney cancers. Long non-coding RNAs (LncRNAs) are expressed in a tissue-specific manner and affect cell proliferation, apoptosis, and differentiation. LncRNAs expression is misregulated in urologic cancers, as their aberrant expression may make them capable of being utilized in the diagnosis, prognosis, and treatment of cancers. LncRNAs polymorphisms can affect their structure, expression, and function by interfering with the associated target mRNAs. As a result, lncRNA polymorphisms may be linked to the mechanism driving cancer susceptibility. Therefore, SNPs in lncRNAs may be a beneficial biomarker for early diagnosis and prognosis of cancers, as they affect lncRNA role in tumorigenesis and cancer progression. Moreover, the genetic heredity of lncRNA SNPs affects the personal therapeutic response to drugs. In this study, the lncRNAs polymorphism is summarized in relation to urologic cancers. It is proposed that lncRNA-related polymorphisms, as an individual or combined genotypes, can predict urologic cancer risk, even clinical and prognostic outcomes. However, large-scale population-based prospective studies and comprehensive meta-analyses should be conducted to validate and use these lncRNAs SNPs as the indicators of urologic cancers. Future research should examine the function of these SNPs to explain their associations with urologic cancers.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
7
|
Mendoza M, Shotbolt M, Faiq MA, Parra C, Chan KC. Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans. BIOLOGY 2022; 11:454. [PMID: 35336827 PMCID: PMC8945790 DOI: 10.3390/biology11030454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.
Collapse
Affiliation(s)
- Monica Mendoza
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Max Shotbolt
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Kevin C. Chan
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
- Department of Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
| |
Collapse
|
8
|
Karimi A, Rahmati SM, Razaghi R, Girkin CA, Crawford Downs J. Finite element modeling of the complex anisotropic mechanical behavior of the human sclera and pia mater. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106618. [PMID: 35026624 PMCID: PMC8847341 DOI: 10.1016/j.cmpb.2022.106618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Accurate finite element (FE) simulation of the optic nerve head (ONH) depends on accurate mechanical properties of the load-bearing tissues. The peripapillary sclera in the ONH exhibits a depth-dependent, anisotropic, heterogeneous collagen fiber distribution. This study proposes a novel cable-in-solid modeling approach that mimics heterogeneous anisotropic collagen fiber distribution, validates the approach against published experimental biaxial tensile tests of scleral patches, and demonstrates its effectiveness in a complex model of the posterior human eye and ONH. METHODS A computational pipeline was developed that defines control points in the sclera and pia mater, distributes the depth-dependent circumferential, radial, and isotropic cable elements in the sclera and pia in a pattern that mimics collagen fiber orientation, and couples the cable elements and solid matrix using a mesh-free penalty-based cable-in-solid algorithm. A parameter study was performed on a model of a human scleral patch subjected to biaxial deformation, and computational results were matched to published experimental data. The new approach was incorporated into a previously published eye-specific model to test the method; results were then interpreted in relation to the collagen fibers' (cable elements) role in the resultant ONH deformations, stresses, and strains. RESULTS Results show that the cable-in-solid approach can mimic the full range of scleral mechanical behavior measured experimentally. Disregarding the collagen fibers/cable elements in the posterior eye model resulted in ∼20-60% greater tensile and shear stresses and strains, and ∼30% larger posterior deformations in the lamina cribrosa and peripapillary sclera. CONCLUSIONS The cable-in-solid approach can easily be implemented into commercial FE packages to simulate the heterogeneous and anisotropic mechanical properties of collagenous biological tissues.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Reza Razaghi
- Research Department, Heel of Scene Ltd., Tokyo, Japan
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Kang L, Wan C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review. Quant Imaging Med Surg 2022; 12:2106-2128. [PMID: 35284278 PMCID: PMC8899967 DOI: 10.21037/qims-21-790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/26/2021] [Indexed: 04/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by progressive degeneration of the optic nerve head and retinal ganglion cells and corresponding visual field defects. In recent years, mounting evidence has shown that glaucoma-related damage may not be limited to the degeneration of retinal ganglion cells or the optic nerve head. The entire structure of the visual pathway may be degraded, and the degradation may even extend to some non-visual brain regions. We know that advanced morphological, functional, and metabolic magnetic resonance technologies provide a means to observe quantitatively and in real time the state of brain function. Advanced magnetic resonance imaging (MRI) techniques provide additional diagnostic markers for glaucoma, which are related to known potential histopathological changes. Many researchers in China and globally have conducted clinical and imaging studies on glaucoma. However, they are scattered, and we still need to systematically sort out the advanced MRI related to glaucoma. We reviewed literature published in any language and included all studies that were able to be translated into English from 1 January 1980 to 31 July 2021. Our literature search focused on emerging magnetic resonance neuroimaging techniques for the study of glaucoma. We then identified each functional area of the brain of glaucoma patients through the integration of anatomy, image, and function. The aim was to provide more information about the occurrence and development of glaucoma diseases. From the perspective of neuroimaging, our study provides a research basis to explain the possible mechanism of the occurrence and development of glaucoma. This knowledge gained from these techniques enables us to more clearly observe the damage glaucoma causes to the whole visual pathway. Our study provides new insights into glaucoma-induced changes to the brain. Our findings may enable the progress of these changes to be analyzed and inspire new neuroprotective therapeutic strategies for patients with glaucoma in the future.
Collapse
Affiliation(s)
- Longdan Kang
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
10
|
Lee PY, Yang B, Hua Y, Waxman S, Zhu Z, Ji F, Sigal IA. Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy. Exp Eye Res 2022; 217:108967. [PMID: 35114213 PMCID: PMC8957577 DOI: 10.1016/j.exer.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023]
Abstract
Current tools lack the temporal or spatial resolution necessary to image many important aspects of the architecture and dynamics of the optic nerve head (ONH). We evaluated the potential of instant polarized light microscopy (IPOL) to overcome these limitations by leveraging the ability to capture collagen fiber orientation and density in a single image. Coronal sections through the ONH of fresh normal sheep eyes were imaged using IPOL while they were stretched using custom uniaxial or biaxial micro-stretch devices. IPOL allows identifying ONH collagen architectural details, such as fiber interweaving and crimp, and has high temporal resolution, limited only by the frame rate of the camera. Local collagen fiber orientations and deformations were quantified using color analysis and image tracking techniques. We quantified stretch-induced collagen uncrimping of lamina cribrosa (LC) and peripapillary sclera (PPS), and changes in LC pore size (area) and shape (convexity and aspect ratio). The simultaneous high spatial and temporal resolutions of IPOL revealed complex ONH biomechanics: i) stretch-induced local deformation of the PPS was nonlinear and nonaffine. ii) under load the crimped collagen fibers in the PPS and LC straightened, without torsion and with only small rotations. iii) stretch-induced LC pore deformation was anisotropic and heterogeneous among pores. Overall, with stretch the pores were became larger, more convex, and more circular. We have demonstrated that IPOL reveals details of collagen morphology and mechanics under dynamic loading previously out of reach. IPOL can detect stretch-induced collagen uncrimping and other elements of the tissue nonlinear mechanical behavior. IPOL showed changes in pore morphology and collagen architecture that will help improve understanding of how LC tissue responds to load.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Yang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyi Zhu
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Lee S, Lee C, Kim E, Ko SA, Kim SN, Choy YB, Im CH. In-vivo estimation of tissue electrical conductivities of a rabbit eye for precise simulation of electric field distributions during ocular iontophoresis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3540. [PMID: 34672120 DOI: 10.1002/cnm.3540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Precise estimation of electrical conductivity of the eyes is important for the accurate analysis of electric field distributions in the eyes during ocular iontophoresis. In this study, we estimated the tissue electrical conductivities of a rabbit eye, which has been widely employed for neuro-ophthalmological experiments, through an in vivo experiment for the first time. Electrical potentials were measured at multiple locations on the skin, while weak currents were transmitted into the skin via two surface electrodes attached to the skin around the eye. A finite element model was constructed to calculate the electric potentials at the measurement locations. The conductivity values of different tissues were then estimated using an optimization procedure to minimize the difference between the measured and calculated electric potentials. The accuracy of the estimated tissue conductivity values of the rabbit eye was validated by comparing the measured and calculated electric potential values for different electrode montages. Further multi-physical analyses of iontophoretic drug delivery to the rabbit eye showed a significant influence of the conductivity profile on the resultant particle distribution. Overall, our results provide an important reference for the tissue electrical conductivity values of the rabbit eye, which could be further utilized for designing new medical devices for delivering electric fields to the eyes, such as transorbital and transscleral electrical stimulations.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chany Lee
- Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Euijin Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Song Ah Ko
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Sims JR, Chen AM, Sun Z, Deng W, Colwell NA, Colbert MK, Zhu J, Sainulabdeen A, Faiq MA, Bang JW, Chan KC. Role of Structural, Metabolic, and Functional MRI in Monitoring Visual System Impairment and Recovery. J Magn Reson Imaging 2021; 54:1706-1729. [PMID: 33009710 PMCID: PMC8099039 DOI: 10.1002/jmri.27367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The visual system, consisting of the eyes and the visual pathways of the brain, receives and interprets light from the environment so that we can perceive the world around us. A wide variety of disorders can affect human vision, ranging from ocular to neurologic to systemic in nature. While other noninvasive imaging techniques such as optical coherence tomography and ultrasound can image particular sections of the visual system, magnetic resonance imaging (MRI) offers high resolution without depth limitations. MRI also gives superior soft-tissue contrast throughout the entire pathway compared to computed tomography. By leveraging different imaging sequences, MRI is uniquely capable of unveiling the intricate processes of ocular anatomy, tissue physiology, and neurological function in the human visual system from the microscopic to macroscopic levels. In this review we discuss how structural, metabolic, and functional MRI can be used in the clinical assessment of normal and pathologic states in the anatomic structures of the visual system, including the eyes, optic nerves, optic chiasm, optic tracts, visual brain nuclei, optic radiations, and visual cortical areas. We detail a selection of recent clinical applications of MRI at each position along the visual pathways, including the evaluation of pathology, plasticity, and the potential for restoration, as well as its limitations and key areas of ongoing exploration. Our discussion of the current and future developments in MR ocular and neuroimaging highlights its potential impact on our ability to understand visual function in new detail and to improve our protection and treatment of anatomic structures that are integral to this fundamental sensory system. LEVEL OF EVIDENCE 3: TECHNICAL EFFICACY STAGE 3: .
Collapse
Affiliation(s)
- Jeffrey R. Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Anna M. Chen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Zhe Sun
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Nicole A. Colwell
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Max K. Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Jingyuan Zhu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anoop Sainulabdeen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, New York, USA
| |
Collapse
|
13
|
Chukwu CA, Rao A, Kalra PA, Middleton R. Managing recurrent urinary tract infections in kidney transplant recipients using smartphone assisted urinalysis test. J Ren Care 2021; 48:119-127. [PMID: 34791800 DOI: 10.1111/jorc.12405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Urinary tract infection is the most frequent infectious complication in allograft recipients with poor outcomes. The study aimed to assess the effect of self-testing urine dipsticks at home, with the assistance of smartphone technology, on the occurrence of urinary tract infection (UTI)-associated complications and frequency and length of hospital admissions. METHOD We performed a retrospective cohort study of kidney transplant recipients with a history of recurrent UTI who used a newly introduced smartphone-assisted dipsticks urinalysis test for self-monitoring. Participants self-administered the home urinalysis test with symptom onset. Antibiotics were prescribed if an infection was suspected, and home urinalysis was positive. The incidence of urinary infections, hospitalisations, and complications was evaluated before and during the home urinalysis period. Remote and face-to-face interactions with healthcare personnel were also assessed (cases acted as their controls). RESULTS Nineteen participants were included in the study. A total of 89.5% were females. Ninety home urinalysis tests were conducted over a mean period of 7 months. Sixty-one of these were pre-antibiotic. A total of 42.2% of all tests and 47.5% of the pre-antibiotic tests were positive. UTI-related hospitalisations were lower by 75% during the home urinalysis period; mean 1.26 (0.8-1.6) versus 0.32 (-0.01-0.6). The incidence of infection-related complications was also 65% lower; mean 1.52 (0.8-2.2) versus 0.52 (-0.2-1.2) during the same period. The number of face-to-face interactions was slightly lower; mean 1.9 (1.1-2.2) versus 1.7 (0.6-2.8), with more remote interactions; mean 6.0 (3.7-8.5) versus 10.4 (6.5-14.3), during smartphone urinalysis. Fifty per cent of antibiotic-treated UTI episodes had antibiotics within 24 h, rising to 82% within 48 h of a test. CONCLUSION Smartphone-assisted home urinalysis enabled remote management of UTI in a high-risk population. Outcomes point to a reduction in UTI complications and hospitalisations.
Collapse
Affiliation(s)
- Chukwuma A Chukwu
- Department of Nephrology, Salford Royal Hospital NHS Trust, Salford, UK
| | - Anirudh Rao
- Department of Nephrology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Phillip A Kalra
- Department of Nephrology, Salford Royal Hospital NHS Trust, Salford, UK
| | - Rachel Middleton
- Department of Nephrology, Salford Royal Hospital NHS Trust, Salford, UK
| |
Collapse
|
14
|
In vivo MRI evaluation of early postnatal development in normal and impaired rat eyes. Sci Rep 2021; 11:15513. [PMID: 34330952 PMCID: PMC8324881 DOI: 10.1038/s41598-021-93991-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
This study employed in vivo 7-T magnetic resonance imaging (MRI) to evaluate the postnatal ocular growth patterns under normal development or neonatal impairments in Sprague-Dawley rats. Using T2-weighted imaging on healthy rats from postnatal day (P) 1 (newborn) to P60 (adult), the volumes of the anterior chamber and posterior chamber (ACPC), lens, and vitreous humor increased logistically with ACPC expanding by 33-fold and the others by fivefold. Intravitreal potassium dichromate injection at P1, P7, and P14 led to T1-weighted signal enhancement in the developing retina by 188-289%. Upon unilateral hypoxic-ischemic encephalopathy at P7, monocular deprivation at P15, and monocular enucleation at P1, T2-weighted imaging of the adult rats showed decreased ocular volumes to different extents. In summary, in vivo high-field MRI allows for non-invasive evaluation of early postnatal development in the normal and impaired rat eyes. Chromium-enhanced MRI appeared effective in examining the developing retina before natural eyelid opening at P14 with relevance to lipid metabolism. The reduced ocular volumes upon neonatal visual impairments provided evidence to the emerging problems of why some impaired visual outcomes cannot be solely predicted by neurological assessments and suggested the need to look into both the eye and the brain under such conditions.
Collapse
|
15
|
Stahnke T, Lindner T, Guthoff R, Stachs O, Wree A, Langner S, Niendorf T, Grabow N, Glass Ä, Beller E, Polei S. Ultrahigh field MRI determination of water diffusion rates in ex vivo human lenses of different age. Quant Imaging Med Surg 2021; 11:3029-3041. [PMID: 34249632 PMCID: PMC8250020 DOI: 10.21037/qims-20-1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The development of presbyopia is correlated with increased lens stiffness. To reveal structural changes with age, ultrahigh field magnetic resonance imaging (UHF-MRI) was used to analyze water diffusion in differently aged human lenses ex vivo. METHODS After enucleation lens extractions were performed. Lenses were photographed, weighed, and embedded in 0.5% agarose dissolved in culture medium. UHF-MRI was conducted to analyze anatomical characteristics of the lens using T2-weighted Turbo-RARE imaging and to obtain apparent diffusion coefficients (ADC) measurements. A Gaussian fit routine was used to examine the ADC histograms. RESULTS An age-dependent increase in lens wet weight, lens thickness, and lens diameter was found (P<0.001). T2-weighted images revealed a hyperintense lens cortex and a gradually negative gradient in signal intensity towards the nucleus. ADC histograms of the lens showed bimodal distributions (lower ADC values mainly located in the nucleus and higher ADC values mainly located in the cortex), which did not change significantly with age [βPeak1=1.96E-7 (-20E-7, 10E-7), P=0.804 or βPeak2=15.4E-7 (-10E-7, 40E-7), P=0.276; respectively]. CONCLUSIONS Clinically relevant age dependent lens hardening is probably not correlated with ADC changes within the nucleus, which could be confirmed by further measurements.
Collapse
Affiliation(s)
- Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Rudolf Guthoff
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Niels Grabow
- Institute of Biomedical Engineering, Rostock University Medical Center, Friedrich- Rostock, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Stefan Polei
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
16
|
Brazile BL, Yang B, Waxman S, Lam P, Voorhees AP, Hua Y, Loewen RT, Loewen NA, Rizzo JF, Jakobs T, Sigal IA. Lamina Cribrosa Capillaries Straighten as Intraocular Pressure Increases. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 33001158 PMCID: PMC7545063 DOI: 10.1167/iovs.61.12.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose The purpose of this study was to visualize the lamina cribrosa (LC) capillaries and collagenous beams, measure capillary tortuosity (path length over straight end-to-end length), and determine if capillary tortuosity changes when intraocular pressure (IOP) increases. Methods Within 8 hours of sacrifice, 3 pig heads were cannulated via the external ophthalmic artery, perfused with PBS to remove blood, and then perfused with a fluorescent dye to label the capillaries. The posterior pole of each eye was mounted in a custom-made inflation chamber for control of IOP with simultaneous imaging. Capillaries and collagen beams were visualized with structured light illumination enhanced imaging at IOPs from 5 to 50 mm Hg at each 5 mm Hg increment. Capillary tortuosity was measured from the images and paired two-sample t-tests were used to assess for significant changes in relation to changes in IOP. Results Capillaries were highly tortuous at 15 mm Hg (up to 1.45). In all but one eye, tortuosity decreased significantly as IOP increased from 15 to 25 mm Hg (P < 0.01), and tortuosity decreased significantly in every eye as IOP increased from 15 to 40 mm Hg (P < 0.01). In only 16% of capillaries, tortuosity increased with elevated IOP. Capillaries had a surprisingly different topology from the collagen beams. Conclusions Although high capillary tortuosity is sometimes regarded as potentially problematic because it can reduce blood flow, LC capillary tortuosity may provide slack that mitigates against reduced flow and structural damage caused by excessive stretch under elevated IOP. We speculate that low capillary tortuosity could be a risk factor for damage under high IOP.
Collapse
Affiliation(s)
- Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Bin Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States.,Department of Engineering, Duquesne University, Pittsburgh Pennsylvania, United States
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Po Lam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Ralitsa T Loewen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Nils A Loewen
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Joseph F Rizzo
- Neuro-Ophthalmology Service, Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, United States
| | - Tatjana Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston Massachusetts, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| |
Collapse
|
17
|
Chen P, Chen X, Hepfer RG, Damon BJ, Shi C, Yao JJ, Coombs MC, Kern MJ, Ye T, Yao H. A noninvasive fluorescence imaging-based platform measures 3D anisotropic extracellular diffusion. Nat Commun 2021; 12:1913. [PMID: 33772014 PMCID: PMC7997923 DOI: 10.1038/s41467-021-22221-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Diffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm2 s-1, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.
Collapse
Affiliation(s)
- Peng Chen
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Xun Chen
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - R Glenn Hepfer
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brooke J Damon
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Changcheng Shi
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
- Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Jenny J Yao
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Matthew C Coombs
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Tong Ye
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Hai Yao
- Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
18
|
Willemse J, Gräfe MGO, Verbraak FD, de Boer JF. In Vivo 3D Determination of Peripapillary Scleral and Retinal Layer Architecture Using Polarization-Sensitive Optical Coherence Tomography. Transl Vis Sci Technol 2020; 9:21. [PMID: 33150047 PMCID: PMC7585391 DOI: 10.1167/tvst.9.11.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The purpose of this paper was to determine the architecture of the collagen fibers of the peripapillary sclera, the retinal nerve fiber layer (RNFL), and Henle's fiber layer in vivo in 3D using polarization-sensitive optical coherence tomography (PS-OCT). Methods Seven healthy volunteers were imaged with our in-house built PS-OCT system. PS-OCT imaging included intensity, local phase retardation, relative optic axis, and optic axis uniformity (OAxU). Differential Mueller matrix calculus was used for the first time in ocular tissues to visualize local orientations that varied with depth, incorporating a correction method for the fiber orientation in preceding layers. Results Scleral collagen fiber orientation images clearly showed an inner layer with an orientation parallel to the RNFL orientation, and a deeper layer where the collagen was circularly oriented. RNFL orientation images visualized the nerve fibers leaving the optic nerve head (ONH) in a radial pattern. The phase retardation and orientation of Henle's fiber layer were visualized locally for the first time. Conclusions PS-OCT successfully showed the orientation of the retinal nerve fibers, sclera, and Henle's fiber layer, and is to the extent of our knowledge the only technique able to do so in 3D in vivo. Translational Relevance In vivo 3D imaging of scleral collagen architecture and the retinal neural fibrous structures can improve our understanding of retinal biomechanics and structural alterations in different disease stages of myopia and glaucoma.
Collapse
Affiliation(s)
- Joy Willemse
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands
| | - Maximilian G O Gräfe
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands.,Current address: Imedos Systems GmbH, Am Nasstal 4, Jena, Germany
| | - Frank D Verbraak
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Ophthalmology Department, de Boelelaan, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands.,Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Ophthalmology Department, de Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Biometric Measurement of Anterior Segment: A Review. SENSORS 2020; 20:s20154285. [PMID: 32752014 PMCID: PMC7435894 DOI: 10.3390/s20154285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Biometric measurement of the anterior segment is of great importance for the ophthalmology, human eye modeling, contact lens fitting, intraocular lens design, etc. This paper serves as a comprehensive review on the historical development and basic principles of the technologies for measuring the geometric profiles of the anterior segment. Both the advantages and drawbacks of the current technologies are illustrated. For in vivo measurement of the anterior segment, there are two main challenges that need to be addressed to achieve high speed, fine resolution, and large range imaging. One is the motion artefacts caused by the inevitable and random human eye movement. The other is the serious multiple scattering effects in intraocular turbid media. The future research perspectives are also outlined in this paper.
Collapse
|
20
|
Muir ER, Pan X, Donaldson PJ, Vaghefi E, Jiang Z, Sellitto C, White TW. Multi-parametric MRI of the physiology and optics of the in-vivo mouse lens. Magn Reson Imaging 2020; 70:145-154. [PMID: 32380160 DOI: 10.1016/j.mri.2020.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
The optics of the ocular lens are determined by its geometry (shape and volume) and its inherent gradient of refractive index (water to protein ratio), which are in turn maintained by unique cellular physiology known as the lens internal microcirculation system. Previously, magnetic resonance imaging (MRI) has been used on ex vivo organ cultured bovine lenses to show that pharmacological perturbations to this microcirculation system disrupt ionic and fluid homeostasis and overall lens optics. In this study, we have optimised in vivo MRI protocols for use on wild-type and transgenic mouse models so that the effects of genetically perturbing the lens microcirculation system on lens properties can be studied. In vivo MRI protocols and post-analysis methods for studying the mouse lens were optimised and used to measure the lens geometry, diffusion, T1 and T2, as well as the refractive index (n) calculated from T2, in wild-type mice and the genetically modified Cx50KI46 mouse. In this animal line, gap junctional coupling in the lens is increased by knocking in the gap junction protein Cx46 into the Cx50 locus. Relative to wild-type mice, Cx50KI46 mice showed significantly reduced lens size and radius of curvature, increased T1 and T2 values, and decreased n in the lens nucleus, which was consistent with the developmental and functional changes characterised previously in this lens model. These proof of principle experiments show that in vivo MRI can be applied to transgenic mouse models to gain mechanistic insights into the relationship between lens physiology and optics, and in the future suggest that longitudinal studies can be performed to determine how this relationship is altered by age in mouse models of cataract.
Collapse
Affiliation(s)
- Eric R Muir
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xingzheng Pan
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Paul J Donaldson
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, New Zealand; Department of Physiology, School of Medical Sciences, University of Auckland, New Zealand
| | - Ehsan Vaghefi
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Zhao Jiang
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Caterina Sellitto
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Thomas W White
- Department of Physiology & Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
21
|
Grytz R, Krishnan K, Whitley R, Libertiaux V, Sigal IA, Girkin CA, Downs JC. A Mesh-Free Approach to Incorporate Complex Anisotropic and Heterogeneous Material Properties into Eye-Specific Finite Element Models. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 358:https://doi.org/10.1016/j.cma.2019.112654. [PMID: 32051652 PMCID: PMC7015153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Commercial finite element modeling packages do not have the tools necessary to effectively incorporate the complex anisotropic and heterogeneous material properties typical of the biological tissues of the eye. We propose a mesh-free approach to incorporate realistic material properties into finite element models of individual human eyes. The method is based on the idea that material parameters can be estimated or measured at so called control points, which are arbitrary and independent of the finite element mesh. The mesh-free approach approximates the heterogeneous material parameters at the Gauss points of each finite element while the boundary value problem is solved using the standard finite element method. The proposed method was applied to an eye-specific model a human posterior pole and optic nerve head. We demonstrate that the method can be used to effectively incorporate experimental measurements of the lamina cribrosa micro-structure into the eye-specific model. It was convenient to define characteristic material orientations at the anterior and posterior scleral surface based on the eye-specific geometry of each sclera. The mesh-free approach was effective in approximating these characteristic material directions with smooth transitions across the sclera. For the first time, the method enabled the incorporation of the complex collagen architecture of the peripapillary sclera into an eye-specific model including the recently discovered meridional fibers at the anterior surface and the depth dependent width of circumferential fibers around the scleral canal. The model results suggest that disregarding the meridional fiber region may lead to an underestimation of local strain concentrations in the retina. The proposed approach should simplify future studies that aim to investigate collagen remodeling in the sclera and optic nerve head or in other biological tissues with similar challenges.
Collapse
Affiliation(s)
- Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kapil Krishnan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ryan Whitley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vincent Libertiaux
- Equine Clinic, Department of Companion Animals and Equids, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- FARAH, Research Center of the Faculty of Veterinary Medicine of Liège, Belgium
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
22
|
B A, Rao S, Pandya HJ. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin Biomech (Bristol, Avon) 2019; 69:127-140. [PMID: 31344655 DOI: 10.1016/j.clinbiomech.2019.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
From cancer diagnosis to detailed characterization of arterial wall biomechanics, the elastic property of tissues is widely studied as an early sign of disease onset. The fibrous structural features of tissues are a direct measure of its health and functionality. Alterations in the structural features of tissues are often manifested as local stiffening and are early signs for diagnosing a disease. These elastic properties are measured ex vivo in conventional mechanical testing regimes, however, the heterogeneous microstructure of tissues can be accurately resolved over relatively smaller length scales with enhanced spatial resolution using techniques such as micro-indentation, microelectromechanical (MEMS) based cantilever sensors and optical catheters which also facilitate in vivo assessment of mechanical properties. In this review, we describe several probing strategies (qualitative and quantitative) based on the spatial scale of mechanical assessment and also discuss the potential use of machine learning techniques to compute the mechanical properties of soft tissues. This work details state of the art advancement in probing strategies, associated challenges toward quantitative characterization of tissue biomechanics both from an engineering and clinical standpoint.
Collapse
Affiliation(s)
- Alekya B
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India
| | - Sanjay Rao
- Department of Pediatric Surgery, Mazumdar Shaw Multispecialty Hospital, Narayana Health, Bangalore 99, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India.
| |
Collapse
|
23
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
24
|
Ying H, Zhou J, Wang M, Su D, Ma Q, Lv G, Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:487-498. [DOI: 10.1016/j.msec.2019.03.093] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
|
25
|
Ultrahigh-Field Quantitative MR Microscopy of the Chicken Eye In Vivo Throughout the In Ovo Period. Mol Imaging Biol 2019; 21:78-85. [PMID: 29796725 DOI: 10.1007/s11307-018-1208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Ultrahigh-field MRI (UHF-MRI) with an in-plane spatial resolution of less than 100 μm is known as MR microscopy (MRM). MRM provides highly resolved anatomical images and allows quantitative assessment of different tissue types using diffusion-weighted imaging (DWI). The aim of the present study was to evaluate the feasibility of combined in vivo anatomical and quantitative assessment of the developing chicken eye in ovo. PROCEDURES Thirty-eight fertilized chicken eggs were examined at 7.1 T (ClinScan, Bruker Biospin, Germany) acquiring a dataset comprising T2-weighted anatomical images, DWI, and diffusion tensor imaging. To reduce motion artifacts, the eggs were moderately cooled before and during MR imaging. Two eggs were imaged daily for the entire developmental period, and 36 eggs were examined pairwise at only one time point of the embryonic period. Development of the eye was anatomically and quantitatively assessed. RESULTS From the D5 embryonic stage (116-124 h), MRM allowed differentiation between lens and vitreous body. The lens core and periphery were first identified at D9. DWI allowed quantification of lens maturation based on a significant decrease in apparent diffusion coefficient values and course of fractional anisotropy. Repeated moderate cooling had no influence on the development of the chicken embryo. CONCLUSIONS MRM allows in vivo assessment of embryonic development of the chicken eye in ovo without affecting normal development. The method provides anatomical information supplemented by quantitative evaluation of lens development using DWI. With increasing availability of ultrahigh-field MR systems, this technique may provide a noninvasive complementary tool in the field of experimental ophthalmology.
Collapse
|
26
|
Gogola A, Jan NJ, Lathrop KL, Sigal IA. Radial and Circumferential Collagen Fibers Are a Feature of the Peripapillary Sclera of Human, Monkey, Pig, Cow, Goat, and Sheep. Invest Ophthalmol Vis Sci 2019; 59:4763-4774. [PMID: 30304458 PMCID: PMC6166897 DOI: 10.1167/iovs.18-25025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To test the hypothesis that human, monkey, pig, sheep, cow, and goat eyes exhibit circumferential, radial, and interweaving collagen architecture in the posterior sclera. Methods We analyzed 1,327 cryosections from the posterior poles of 4 human, 4 monkey, 5 pig, 8 sheep, 1 goat, and 2 cow eyes. Images were acquired using polarized light microscopy and processed to obtain polar fiber orientations relative to the center of the canal. Circumferential, radial, and interweaving regions were identified and analyzed for mean fiber orientation and anisotropy and region width and thickness. Results Every eye exhibited circumferential, radial, and interweaving fibers in consistent locations. Radial fibers extended out from near the canal into the peripapillary and peripheral sclera in the innermost sclera. Circumferential fibers were directly adjacent to the canal and most prevalent in the outermost, posterior sclera. Interweaving fibers were found throughout the sclera thickness. Across all species, median anisotropy in the radial, circumferential, and interweaving regions were 0.95, 0.96, and 0.28, respectively. Conclusions Regions of radial, circumferential, and interweaving fibers occur in the posterior pole sclera of human, monkey, pig, sheep, cow, and goat eyes. The consistency across species in scleral architecture suggests that they are primary organizational components whose functions should be better understood.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
27
|
Magnetic Resonance Conditional Microinjector. J Imaging 2018; 5:jimaging5010004. [PMID: 34470181 PMCID: PMC8320858 DOI: 10.3390/jimaging5010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022] Open
Abstract
Glaucoma, one of the leading causes of blindness, has been linked to increases in intraocular pressure. In order to observe and study this effect, proposed is a specialized microinjector and driver that can be used to inject small amounts of liquid into a target volume. Magnetic resonance imaging (MRI) guided remotely activated devices require specialized equipment that is compatible with the MR environment. This paper presents an MR Conditional microinjector system with a pressure sensor for investigating the effects of intraocular pressure (IOP) in near-real-time. The system uses pressurized air and a linear actuation device to push a syringe in a controlled, stepwise manner. The feasibility and utility of the proposed investigative medical research tool were tested and validated by measuring the pressure inside an intact animal donor eyeball while precise, small volumes of water were injected into the specimen. Observable increases in the volume of the specimen at measured, specific target pressure increases show that the system is technically feasible for studying IOP effects, while the changes in shape were depicted in MRI scan images themselves. In addition, it was verified that the presence and operation of the system did not interfere with the MRI machine, confirming its conditional compatibility with the 3T MRI.
Collapse
|
28
|
Age-related Changes in Eye, Brain and Visuomotor Behavior in the DBA/2J Mouse Model of Chronic Glaucoma. Sci Rep 2018; 8:4643. [PMID: 29545576 PMCID: PMC5854610 DOI: 10.1038/s41598-018-22850-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice. Vitreous body elongation and visuomotor function deterioration were observed until 9 months old, whereas axial diffusivity only decreased at 12 months old in diffusion tensor MRI. Under the same experimental settings, C57BL/6J mice only showed modest age-related changes. Taken together, these results indicate that the anterior and posterior visual pathways of the DBA/2J mice exhibit differential susceptibility to glaucomatous neurodegeneration observable by in vivo multi-modal examinations.
Collapse
|
29
|
Sengupta S, Smith DS, Smith AK, Welch EB, Smith SA. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI. Invest Ophthalmol Vis Sci 2017; 58:4390–4398. [PMID: 28813574 PMCID: PMC5559179 DOI: 10.1167/iovs.17-21861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left-right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease.
Collapse
Affiliation(s)
- Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David S Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alex K Smith
- The Centre for Functional MRI of the Brain, The University of Oxford, Oxford, United Kingdom
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
30
|
Jan NJ, Lathrop K, Sigal IA. Collagen Architecture of the Posterior Pole: High-Resolution Wide Field of View Visualization and Analysis Using Polarized Light Microscopy. Invest Ophthalmol Vis Sci 2017; 58:735-744. [PMID: 28146238 PMCID: PMC5295768 DOI: 10.1167/iovs.16-20772] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to leverage polarized light microscopy (PLM) to visualize the collagen fiber architecture of posterior pole and optic nerve head with micrometer-scale resolution and to identify and quantify major organizational components. Methods Eight sheep posterior poles were cryosectioned and imaged using PLM. Collagen fiber orientation was determined by using custom scripts, and the resulting orientation maps were inspected and quantified to identify major structural elements and tested for differences in mean fiber orientation and anisotropy, using linear mixed effect models. Results Images revealed an intricate organization of collagen fibers in the posterior pole. In the lamina cribrosa, interweaving fibers formed large knots and wrapped around nerve fiber pores, with beam insertions into the scleral canal wall that were either narrow and straight or wide. In the peripapillary sclera, three significantly different (P < 0.0001) components were identified: fibers oriented circumferentially proximal to the canal, radially in the innermost sclera, and unaligned with interweaving fibers. The radial fibers were between 60 and 180 μm thick, extending at least 3 mm from the canal. Conclusions PLM revealed structural aspects of the lamina cribrosa and sclera that may have important biomechanical roles but that were previously unreported or not characterized quantitatively. In the lamina cribrosa, these roles included wide and narrow beam insertions and details of collagen fibers interweaving and wrapping around the pores. In the sclera, we described regions of circumferential, radial, and unaligned “random” fibers. Although there is consensus that circumferential fibers protect neural tissues by resisting canal expansion, the role of the radial fibers remains unclear.
Collapse
Affiliation(s)
- Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kira Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
31
|
Voorhees AP, Ho LC, Jan NJ, Tran H, van der Merwe Y, Chan K, Sigal IA. Whole-globe biomechanics using high-field MRI. Exp Eye Res 2017; 160:85-95. [PMID: 28527594 DOI: 10.1016/j.exer.2017.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022]
Abstract
The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high-field MRI to measure IOP induced ocular displacements and deformations over the whole globe. Seven sheep eyes were obtained from a local abattoir and imaged within 48 h using MRI at multiple levels of IOP. IOP was controlled with a gravity perfusion system and a cannula inserted into the anterior chamber. T2-weighted imaging was performed to the eyes serially at 0 mmHg, 10 mmHg, 20 mmHg and 40 mmHg of IOP using a 9.4 T MRI scanner. Manual morphometry was conducted using 3D visualization software to quantify IOP-induced effects at the globe scale (e.g. axial length and equatorial diameters) or optic nerve head scale (e.g. canal diameter, peripapillary sclera bowing). Measurement sensitivity analysis was conducted to determine measurement precision. High-field MRI revealed an outward bowing of the posterior sclera and anterior bulging of the cornea due to IOP elevation. Increments in IOP from 10 to 40 mmHg caused measurable increases in axial length in 6 of 7 eyes of 7.9 ± 5.7% (mean ± SD). Changes in equatorial diameter were minimal, 0.4 ± 1.2% between 10 and 40 mmHg, and in all cases less than the measurement sensitivity. The effects were nonlinear, with larger deformations at normal IOPs (10-20 mmHg) than at elevated IOPs (20-40 mmHg). IOP also caused measurable increases in the nasal-temporal scleral canal diameter of 13.4 ± 9.7% between 0 and 20 mmHg, but not in the superior-inferior diameter. This study demonstrates that high-field MRI can be used to visualize and measure simultaneously the effects of IOP over the whole globe, including the effects on axial length and equatorial diameter, posterior sclera displacement and bowing, and even changes in scleral canal diameter. The fact that the equatorial diameter did not change with IOP, in agreement with previous studies, indicates that a fixed boundary condition is a reasonable assumption for half globe inflation tests and computational models. Our results demonstrate the potential of high-field MRI to contribute to understanding ocular biomechanics, and specifically of the effects of IOP in large animal models.
Collapse
Affiliation(s)
- Andrew P Voorhees
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leon C Ho
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Ning-Jiun Jan
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huong Tran
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yolandi van der Merwe
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Chan
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA; New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, NY, United States.
| | - Ian A Sigal
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Fialová S, Augustin M, Fischak C, Schmetterer L, Handschuh S, Glösmann M, Pircher M, Hitzenberger CK, Baumann B. Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:298-314. [PMID: 28101419 PMCID: PMC5231300 DOI: 10.1364/boe.8.000298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 05/05/2023]
Abstract
Polarization sensitive optical coherence tomography (PS-OCT) operating at 840 nm with axial resolution of 3.8 µm in tissue was used for investigating the posterior rat eye during an acute intraocular pressure (IOP) increase experiment. IOP was elevated in the eyes of anesthetized Sprague Dawley rats by cannulation of the anterior chamber. Three dimensional PS-OCT data sets were acquired at IOP levels between 14 mmHg and 105 mmHg. Maps of scleral birefringence, retinal nerve fiber layer (RNFL) retardation and relative RNFL/retina reflectivity were generated in the peripapillary area and quantitatively analyzed. All investigated parameters showed a substantial correlation with IOP. In the low IOP range of 14-45 mmHg only scleral birefringence showed statistically significant correlation. The polarization changes observed in the PS-OCT imaging study presented in this work suggest that birefringence of the sclera may be a promising IOP-related parameter to investigate.
Collapse
Affiliation(s)
- Stanislava Fialová
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marco Augustin
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Corinna Fischak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Clinical Pharmacology, General Hospital and Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Clinical Pharmacology, General Hospital and Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, 308232 Singapore, Republic of Singapore
| | - Stephan Handschuh
- VetCore Facility for Research and Technology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Martin Glösmann
- VetCore Facility for Research and Technology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
33
|
Kancherla S, Kohler WJ, van der Merwe Y, Chan KC. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI. PLoS One 2016; 11:e0165169. [PMID: 27768755 PMCID: PMC5074510 DOI: 10.1371/journal.pone.0165169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.
Collapse
Affiliation(s)
- Swarupa Kancherla
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William J. Kohler
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kevin C. Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|