1
|
Yu Z, Wu Z, Wang Z, Wang Y, Zhou M, Li W, Liu G, Tang Y. Network-Based Methods and Their Applications in Drug Discovery. J Chem Inf Model 2024; 64:57-75. [PMID: 38150548 DOI: 10.1021/acs.jcim.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Drug discovery is time-consuming, expensive, and predominantly follows the "one drug → one target → one disease" paradigm. With the rapid development of systems biology and network pharmacology, a novel drug discovery paradigm, "multidrug → multitarget → multidisease", has emerged. This new holistic paradigm of drug discovery aligns well with the essence of networks, leading to the emergence of network-based methods in the field of drug discovery. In this Perspective, we initially introduce the concept and data sources of networks and highlight classical methodologies employed in network-based methods. Subsequently, we focus on the practical applications of network-based methods across various areas of drug discovery, such as target prediction, virtual screening, prediction of drug therapeutic effects or adverse drug events, and elucidation of molecular mechanisms. In addition, we provide representative web servers for researchers to use network-based methods in specific applications. Finally, we discuss several challenges of network-based methods and the directions for future development. In a word, network-based methods could serve as powerful tools to accelerate drug discovery.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ze Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Wu J, Li J, Chen S, Zhou Z. DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity. Methods Mol Biol 2024; 2809:237-244. [PMID: 38907901 DOI: 10.1007/978-1-0716-3874-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Neoantigens are crucial in distinguishing cancer cells from normal ones and play a significant role in cancer immunotherapy. The field of bioinformatics prediction for tumor neoantigens has rapidly developed, focusing on the prediction of peptide-HLA binding affinity. In this chapter, we introduce a user-friendly tool named DeepHLApan, which utilizes deep learning techniques to predict neoantigens by considering both peptide-HLA binding affinity and immunogenicity. We provide the application of DeepHLApan, along with the source code, docker version, and web-server. These resources are freely available at https://github.com/zjupgx/deephlapan and http://pgx.zju.edu.cn/deephlapan/ .
Collapse
Affiliation(s)
- Jingcheng Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaoyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Federico L, Malone B, Tennøe S, Chaban V, Osen JR, Gainullin M, Smorodina E, Kared H, Akbar R, Greiff V, Stratford R, Clancy T, Munthe LA. Experimental validation of immunogenic SARS-CoV-2 T cell epitopes identified by artificial intelligence. Front Immunol 2023; 14:1265044. [PMID: 38045681 PMCID: PMC10691274 DOI: 10.3389/fimmu.2023.1265044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
During the COVID-19 pandemic we utilized an AI-driven T cell epitope prediction tool, the NEC Immune Profiler (NIP) to scrutinize and predict regions of T cell immunogenicity (hotspots) from the entire SARS-CoV-2 viral proteome. These immunogenic regions offer potential for the development of universally protective T cell vaccine candidates. Here, we validated and characterized T cell responses to a set of minimal epitopes from these AI-identified universal hotspots. Utilizing a flow cytometry-based T cell activation-induced marker (AIM) assay, we identified 59 validated screening hits, of which 56% (33 peptides) have not been previously reported. Notably, we found that most of these novel epitopes were derived from the non-spike regions of SARS-CoV-2 (Orf1ab, Orf3a, and E). In addition, ex vivo stimulation with NIP-predicted peptides from the spike protein elicited CD8+ T cell response in PBMC isolated from most vaccinated donors. Our data confirm the predictive accuracy of AI platforms modelling bona fide immunogenicity and provide a novel framework for the evaluation of vaccine-induced T cell responses.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Julie Røkke Osen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Murat Gainullin
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Smorodina
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Ludvig Andre Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Ji Z, Guo W, Wood EL, Liu J, Sakkiah S, Xu X, Patterson TA, Hong H. Machine Learning Models for Predicting Cytotoxicity of Nanomaterials. Chem Res Toxicol 2022; 35:125-139. [PMID: 35029374 DOI: 10.1021/acs.chemrestox.1c00310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The wide application of nanomaterials in consumer and medical products has raised concerns about their potential adverse effects on human health. Thus, more and more biological assessments regarding the toxicity of nanomaterials have been performed. However, the different ways the evaluations were performed, such as the utilized assays, cell lines, and the differences of the produced nanoparticles, make it difficult for scientists to analyze and effectively compare toxicities of nanomaterials. Fortunately, machine learning has emerged as a powerful tool for the prediction of nanotoxicity based on the available data. Among different types of toxicity assessments, nanomaterial cytotoxicity was the focus here because of the high sensitivity of cytotoxicity assessment to different treatments without the need for complicated and time-consuming procedures. In this review, we summarized recent studies that focused on the development of machine learning models for prediction of cytotoxicity of nanomaterials. The goal was to provide insight into predicting potential nanomaterial toxicity and promoting the development of safe nanomaterials.
Collapse
Affiliation(s)
- Zuowei Ji
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Wenjing Guo
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Erin L Wood
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jie Liu
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Sugunadevi Sakkiah
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Xiaoming Xu
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Tucker A Patterson
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Huixiao Hong
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
5
|
Jiang L, Yu H, Li J, Tang J, Guo Y, Guo F. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution. Brief Bioinform 2021; 22:6299205. [PMID: 34131696 DOI: 10.1093/bib/bbab216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
Major histocompatibility complex (MHC) possesses important research value in the treatment of complex human diseases. A plethora of computational tools has been developed to predict MHC class I binders. Here, we comprehensively reviewed 27 up-to-date MHC I binding prediction tools developed over the last decade, thoroughly evaluating feature representation methods, prediction algorithms and model training strategies on a benchmark dataset from Immune Epitope Database. A common limitation was identified during the review that all existing tools can only handle a fixed peptide sequence length. To overcome this limitation, we developed a bilateral and variable long short-term memory (BVLSTM)-based approach, named BVLSTM-MHC. It is the first variable-length MHC class I binding predictor. In comparison to the 10 mainstream prediction tools on an independent validation dataset, BVLSTM-MHC achieved the best performance in six out of eight evaluated metrics. A web server based on the BVLSTM-MHC model was developed to enable accurate and efficient MHC class I binder prediction in human, mouse, macaque and chimpanzee.
Collapse
Affiliation(s)
- Limin Jiang
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Hui Yu
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Jiawei Li
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jijun Tang
- Department of Computer Science, University of South Carolina, SC, USA.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Guo
- Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
6
|
Wu J, Wang W, Zhang J, Zhou B, Zhao W, Su Z, Gu X, Wu J, Zhou Z, Chen S. DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity. Front Immunol 2019; 10:2559. [PMID: 31736974 PMCID: PMC6838785 DOI: 10.3389/fimmu.2019.02559] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Neoantigens play important roles in cancer immunotherapy. Current methods used for neoantigen prediction focus on the binding between human leukocyte antigens (HLAs) and peptides, which is insufficient for high-confidence neoantigen prediction. In this study, we apply deep learning techniques to predict neoantigens considering both the possibility of HLA-peptide binding (binding model) and the potential immunogenicity (immunogenicity model) of the peptide-HLA complex (pHLA). The binding model achieves comparable performance with other well-acknowledged tools on the latest Immune Epitope Database (IEDB) benchmark datasets and an independent mass spectrometry (MS) dataset. The immunogenicity model could significantly improve the prediction precision of neoantigens. The further application of our method to the mutations with pre-existing T-cell responses indicating its feasibility in clinical application. DeepHLApan is freely available at https://github.com/jiujiezz/deephlapan and http://biopharm.zju.edu.cn/deephlapan.
Collapse
Affiliation(s)
- Jingcheng Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wenzhe Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jiucheng Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Binbin Zhou
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wenyi Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhixi Su
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Jian Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Liu Z, Cui Y, Xiong Z, Nasiri A, Zhang A, Hu J. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction. Sci Rep 2019; 9:794. [PMID: 30692623 PMCID: PMC6349913 DOI: 10.1038/s41598-018-37214-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Interactions between human leukocyte antigens (HLAs) and peptides play a critical role in the human immune system. Accurate computational prediction of HLA-binding peptides can be used for peptide drug discovery. Currently, the best prediction algorithms are neural network-based pan-specific models, which take advantage of the large amount of data across HLA alleles. However, current pan-specific models are all based on the pseudo sequence encoding for modeling the binding context, which is based on 34 positions identified from the HLA protein-peptide bound structures in early works. In this work, we proposed a novel deep convolutional neural network model (DCNN) for HLA-peptide binding prediction, in which the encoding of the HLA sequence and the binding context are both learned by the network itself without requiring the HLA-peptide bound structure information. Our DCNN model is also characterized by its binding context extraction layer and dual outputs with both binding affinity output and binding probability outputs. Evaluation on public benchmark datasets shows that our DeepSeqPan model without HLA structural information in training achieves state-of-the-art performance on a large number of HLA alleles with good generalization capability. Since our model only needs raw sequences from the HLA-peptide binding pairs, it can be applied to binding predictions of HLAs without structure information and can also be applied to other protein binding problems such as protein-DNA and protein-RNA bindings. The implementation code and trained models are freely available at https://github.com/pcpLiu/DeepSeqPan .
Collapse
Affiliation(s)
- Zhonghao Liu
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, United States
| | - Yuxin Cui
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, United States
| | - Zheng Xiong
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, United States
| | - Alierza Nasiri
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, United States
| | - Ansi Zhang
- School of Mechanical Engineering, Guizhou University, 50033, Guiyang, Guizhou, China
| | - Jianjun Hu
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, United States.
- School of Mechanical Engineering, Guizhou University, 50033, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Xiao Z, Zhang Y, Yu R, Chen Y, Jiang X, Wang Z, Li S. In silico design of MHC class I high binding affinity peptides through motifs activation map. BMC Bioinformatics 2018; 19:516. [PMID: 30598069 PMCID: PMC6311935 DOI: 10.1186/s12859-018-2517-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Finding peptides with high binding affinity to Class I major histocompatibility complex (MHC-I) attracts intensive research, and it serves a crucial part of developing a better vaccine for precision medicine. Traditional methods cost highly for designing such peptides. The advancement of computational approaches reduces the cost of new drug discovery dramatically. Compared with flourishing computational drug discovery area, the immunology area lacks tools focused on in silico design for the peptides with high binding affinity. Attributed to the ever-expanding amount of MHC-peptides binding data, it enables the tremendous influx of deep learning techniques for modeling MHC-peptides binding. To leverage the availability of these data, it is of great significance to find MHC-peptides binding specificities. The binding motifs are one of the key components to decide the MHC-peptides combination, which generally refer to a combination of some certain amino acids at certain sites which highly contribute to the binding affinity. Result In this work, we propose the Motif Activation Mapping (MAM) network for MHC-I and peptides binding to extract motifs from peptides. Then, we substitute amino acid randomly according to the motifs for generating peptides with high affinity. We demonstrated the MAM network could extract motifs which are the features of peptides of highly binding affinities, as well as generate peptides with high-affinities; that is, 0.859 for HLA-A*0201, 0.75 for HLA-A*0206, 0.92 for HLA-B*2702, 0.9 for HLA-A*6802 and 0.839 for Mamu-A1*001:01. Besides, its binding prediction result reaches the state of the art. The experiment also reveals the network is appropriate for most MHC-I with transfer learning. Conclusions We design the MAM network to extract the motifs from MHC-peptides binding through prediction, which are proved to generate the peptides with high binding affinity successfully. The new peptides preserve the motifs but vary in sequences.
Collapse
Affiliation(s)
- Zhoujian Xiao
- South China Normal University, HEMC (Guangzhou Higher Education Mega Center) campus, GuangZhou, China
| | - Yuwei Zhang
- City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China
| | - Runsheng Yu
- South China Normal University, HEMC (Guangzhou Higher Education Mega Center) campus, GuangZhou, China
| | - Yin Chen
- Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, China
| | - Xiaosen Jiang
- Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, China
| | - Ziwei Wang
- Hunan Agricultural University, Nongda Road, ChangSha, China
| | - Shuaicheng Li
- City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
9
|
Wu J, Zhao W, Zhou B, Su Z, Gu X, Zhou Z, Chen S. TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:276-282. [PMID: 30223042 PMCID: PMC6203688 DOI: 10.1016/j.gpb.2018.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/18/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Tumor-specific neoantigens have attracted much attention since they can be used as biomarkers to predict therapeutic effects of immune checkpoint blockade therapy and as potential targets for cancer immunotherapy. In this study, we developed a comprehensive tumor-specific neoantigen database (TSNAdb v1.0), based on pan-cancer immunogenomic analyses of somatic mutation data and human leukocyte antigen (HLA) allele information for 16 tumor types with 7748 tumor samples from The Cancer Genome Atlas (TCGA) and The Cancer Immunome Atlas (TCIA). We predicted binding affinities between mutant/wild-type peptides and HLA class I molecules by NetMHCpan v2.8/v4.0, and presented detailed information of 3,707,562/1,146,961 potential neoantigens generated by somatic mutations of all tumor samples. Moreover, we employed recurrent mutations in combination with highly frequent HLA alleles to predict potential shared neoantigens across tumor patients, which would facilitate the discovery of putative targets for neoantigen-based cancer immunotherapy. TSNAdb is freely available at http://biopharm.zju.edu.cn/tsnadb.
Collapse
Affiliation(s)
- Jingcheng Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyi Zhao
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binbin Zhou
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310013, China
| | - Zhixi Su
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Thurston BA, Ferguson AL. Machine learning and molecular design of self-assembling -conjugated oligopeptides. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1469754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Bryce A. Thurston
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
11
|
Liu G, Li D, Li Z, Qiu S, Li W, Chao CC, Yang N, Li H, Cheng Z, Song X, Cheng L, Zhang X, Wang J, Yang H, Ma K, Hou Y, Li B. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Gigascience 2018; 6:1-11. [PMID: 28327987 PMCID: PMC5467046 DOI: 10.1093/gigascience/gix017] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/09/2017] [Indexed: 12/04/2022] Open
Abstract
Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a broad coverage of HLA class I alleles.
Collapse
Affiliation(s)
- Geng Liu
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China
| | - Dongli Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China
| | - Zhang Li
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Si Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Wenhui Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Cheng-Chi Chao
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Naibo Yang
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Handong Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Montag Hall, 355 Galvez Street, Stanford, CA 94305, USA
| | - Xin Song
- The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunzhou Road, Xishan District, Kunming 650100, Yunnan Province, China
| | - Le Cheng
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,BGI-Yunnan, Haiyuan North Road, Kunming Hi-tech Development Zone, Kunming 650000, Yunnan Province, China
| | - Xiuqing Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jian Wang
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Yuhang Tong Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Huanming Yang
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Yuhang Tong Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Kun Ma
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,Department of Biology, University of Copenhagen, Nørregade 10, PO Box 2177, 1017 Copenhagen K, Denmark
| | - Bo Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,BGI-Forensics, Main Building, Beishan Industrial, Zone Yantian District, Shenzhen 518083, China
| |
Collapse
|
12
|
Selvaraj C, Sakkiah S, Tong W, Hong H. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food Chem Toxicol 2017; 112:495-506. [PMID: 28843597 DOI: 10.1016/j.fct.2017.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sugunadevi Sakkiah
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
13
|
Vang YS, Xie X. HLA class I binding prediction via convolutional neural networks. Bioinformatics 2017; 33:2658-2665. [DOI: 10.1093/bioinformatics/btx264] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yeeleng S Vang
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA
| |
Collapse
|