1
|
Azimi M, Yee SW, Riselli A, Silva DB, Giacomini CP, Giacomini KM, Brett CM. Characterization of P-glycoprotein orthologs from human, sheep, pig, dog, and cat. J Vet Pharmacol Ther 2023; 46:401-412. [PMID: 37198956 DOI: 10.1111/jvp.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) limits the oral bioavailability of many drugs. Although P-gp has been well studied in humans and mice, little is known about the substrate specificities of many of its species orthologs. To address this, we performed in vitro analysis of P-gp transporter function using HEK293 cells stably expressing human, ovine, porcine, canine, and feline P-gp. We also employed a human physiologically based pharmacokinetic (PBPK) model to assess variations in digoxin exposure resulting from altered P-gp function. Compared to human P-gp, sheep P-gp had significantly less digoxin efflux (2.3-fold ±0.04 vs. 1.8-fold ±0.03, p < .0001) and all species orthologs had significantly less quinidine efflux compared with human P-gp (p < .05). Human P-gp also had significantly greater efflux of talinolol compared to sheep and dog P-gp (1.9-fold ±0.04 vs. 1.6-fold ±0.06, p = .003 and 1.6-fold ±0.05, p = .0002, respectively). P-gp expression protected all lines against paclitaxel-induced toxicity, with sheep P-gp being significantly less protective. The inhibitor verapamil demonstrated dose-dependent inhibition of all P-gp orthologs. Finally, a PBPK model showed digoxin exposure was sensitive to altered P-gp activity. Overall, our study found that species differences in this major drug transporter exist and that the appropriate species ortholog of P-gp should be evaluated during veterinary drug development.
Collapse
Affiliation(s)
- Mina Azimi
- Apricity Therapeutics, Inc., San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Sook Wah Yee
- Apricity Therapeutics, Inc., San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Claire M Brett
- Apricity Therapeutics, Inc., San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Wang E, Liu J, Zhao C, Gao Y, Cheng Z, Chen CM, Wang L. Isolation, cloning, and tissue distribution and functional analysis of ShP-glycoprotein in the freshwater crab Sinopotamon henanense exposed to Cd and Cd-QDs. Int J Biol Macromol 2023; 247:125745. [PMID: 37423454 DOI: 10.1016/j.ijbiomac.2023.125745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
P-glycoprotein (Pgp), a member of ATP binding cassette (ABC) transporter family, can extrude toxic substances out of cells by mediating multi-xenobiotic resistance (MXR) in aquatic organisms, however, its regulation and association with MXR are still unclear. In this work, the genetic information of Pgp in freshwater crab Sinopotamon henanense (ShPgp) was revealed for the first time. ShPgp with a total of 4488 bp was cloned and analyzed, which includes 4044 bp open reading frame, 353 bp 3' untranslated region, and 91 bp 5' untranslated region. The recombinant ShPGP were expressed in Saccharomyces cerevisiae and taken for SDS-PAGE and western blot analysis. ShPGP was widely expressed in the midgut, hepatopancreas, testis, ovary, gill, hemocytes, accessory gonad and myocardium of the crabs studied. The images of immunohistochemistry indicated that ShPgp was mainly distributed in the cytoplasm and cell membrane. When the crabs were exposed to cadmium or cadmium containing quantum dots (Cd-QDs), not only the relative expression of ShPgp mRNA and the protein produced were enhanced, but also the MXR activity and ATP contents. The relative expression of target genes related to energy metabolism, detoxification and apoptosis was also determined in the carbs exposed to Cd or Cd-QDs. The results showed that bcl-2 was significantly down-regulated, while other genes were up-regulated except PPAR (not affected). However, when the Shpgp in treated crabs was interfering by knockdown technique, their apoptosis and the expression of proteolytic enzyme genes and transcription factors MTF1 and HSF1 were also elevated, while the expression of apoptosis inhibiting and fat metabolism genes were compromised. Based on the observation, we concluded that MTF1 and HSF1 were involved in gene transcription regulation of mt and MXR, respectively, while PPAR had limited regulatory effect on those genes in S. henanense. NF-κB may play a negligible role in the process of apoptosis in testes induced by cadmium or Cd-QDs. However, the detail information regarding Pgp involvement in SOD or MT, and its association with apoptosis during xenobiotics insults remain to be explored.
Collapse
Affiliation(s)
- Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jing Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Chenyun Zhao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yuan Gao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Ziru Cheng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Chien-Min Chen
- Department of Environmental Resources, Chia Nan University of Pharmacy and Science, Taiwan, Republic of China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
3
|
Lin Z, Wan G, Wu J, Liu H, Zhang F, Tang X, Ruan J. Toxicologic effect of short-term enrofloxacin exposure on brain of Carassius auratus var. Pengze. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161730. [PMID: 36681334 DOI: 10.1016/j.scitotenv.2023.161730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
To further explore short-term exposure of enrofloxacin (ENR) induced toxicity in crucian carp brain that has been reported by our previous work, as well as the possible toxicological mechanisms, this study investigated the blood-brain barrier (BBB) permeability to low dosage of ENR through comprehensively assessing expression of BBB constitutive molecules zonula occludens-1 (ZO-1) and permeability glycoprotein (P-gp), as well as ENR residue in brain of crucian carp. Toxicologic effect of ENR on brain tissue was determined through evaluating expression of brain-derived proteins S100B, neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP) in crucian carp brain tissue, as well as contents of the proteins in serum. The toxicological mechanisms were explored through analyzing transcriptome analysis data. Results showed that ENR possessed excellent permeability to crucian carp BBB, which was closely related to deranged BBB structure and declined ENR efflux that were attributed to downregulated expression of ZO-1 and P-gp by ENR exposure. Meanwhile, S100B, NSE and GFAP were upregulated in brain by ENR, and came out into blood across the damaged BBB. These data revealed that ENR induced disruption of BBB and damage of brain tissue in crucian carp. Transcriptome analysis data indicated that ENR induced toxicologic effect might be related to modification of metabolism, organismal systems, and genetic information processing, etc., and that PI3K/Akt, MAPK, HIF-1, and ubiquitin mediated proteolysis involved the mechanisms, most of the mechanisms were attributed to ENR induced oxidative stress in crucian carp brain.
Collapse
Affiliation(s)
- Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gen Wan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiayi Wu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Fan Zhang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaochen Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jiming Ruan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
4
|
Viel A, Nouichi A, Le Van Suu M, Rolland JG, Sanders P, Laurentie M, Manceau J, Henri J. PBPK Model To Predict Marbofloxacin Distribution in Edible Tissues and Intestinal Exposure in Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4358-4370. [PMID: 36877630 DOI: 10.1021/acs.jafc.2c06561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Marbofloxacin (MAR) is a fluoroquinolone antibiotic used in food-producing animals in European Union, especially in pigs. In this study, MAR concentrations in plasma, comestible tissues, and intestinal segments were determined in pigs injected with MAR. Based on these data and the literature, a flow-limited PBPK model was developed to predict the tissue distribution of MAR and estimate the withdrawal period after label-use in Europe. A submodel describing the different segments of the intestinal lumen was also developed to assess the intestinal exposure of MAR for the commensal bacteria. During model calibration, only four parameters were estimated. Then, Monte Carlo simulations were performed to generate a virtual population of pigs. The simulation results were compared with the observations from an independent data set during the validation step. A global sensitivity analysis was also carried out to identify the most influential parameters. Overall, the PBPK model was able to adequately predict the MAR kinetics in plasma and edible tissues, as well as in small intestines. However, the simulated concentrations in the large intestine were mostly underestimated, highlighting the need for improvements in the field of PBPK modeling to assess the intestinal exposure of antimicrobials in food animals.
Collapse
Affiliation(s)
- Alexis Viel
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Anis Nouichi
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Mélanie Le Van Suu
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jean-Guy Rolland
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Pascal Sanders
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Michel Laurentie
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jacqueline Manceau
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jérôme Henri
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| |
Collapse
|
5
|
Kojima M, Degawa M. Sex, Organ, and Breed Differences in the mRNA Expression of Drug Transporters in the Liver and Kidney of Pigs. Biol Pharm Bull 2022; 45:508-516. [DOI: 10.1248/bpb.b21-01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Misaki Kojima
- Meat Animal Biosystem Group, Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO)
| | - Masakuni Degawa
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
6
|
Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2022; 51:754-787. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ciprofloxacin (CIP) (human use) and enrofloxacin (ENR) (veterinary use) are synthetic anti-infectious medications that belong to the second generation of fluoroquinolones. They have a wide antimicrobial spectrum and strong bactericidal effects at very low concentrations via enzymatic inhibition of DNA gyrase and topoisomerase IV, which are required for DNA replication. They also have high bioavailability, rapid absorption with favorable pharmacokinetics and excellent tissue penetration, including cerebral spinal fluid. These features have made them the most applied antibiotics in both human and veterinary medicine. ENR is marketed exclusively for animal medicine and has been widely used as a therapeutic veterinary antibiotic, resulting in its residue in edible tissues and aquatic environments, as well as the development of resistance and toxicity. Estimation of the risks to humans due to antimicrobial resistance produced by CIP and ENR is important and of great interest. Moreover, in rare cases due to their overdose and/or prolonged administration, the development of CIP and ENR toxicity may occur. The toxicity of these fluoroquinolones antimicrobials is mainly related to reactive oxygen species (ROS) and oxidative stress (OS) generation, besides metabolism-related toxicity. Therefore, CIP is restricted in pregnant and lactating women, pediatrics and elderly similarly ENR do in the veterinary field. This review manuscript aims to identify the toxicity induced by ROS and OS as a common sequel of CIP and ENR. Furthermore, their metabolism and the role of metabolizing enzymes were reported.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - YaQin Yang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Aránzazu Martinez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
7
|
Clostridium butyricum Protects IPEC-J2 Cells from ETEC K88-Induced Oxidative Damage by Activating the Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4464002. [PMID: 34336091 PMCID: PMC8321755 DOI: 10.1155/2021/4464002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Clostridium butyricum (CB) is a naturally occurring probiotic compound that can alleviate the oxidative damage induced by enterotoxigenic Escherichia coli K88 (ETEC K88) in porcine intestinal epithelial (IPEC-J2) cells. In this study, we investigate the molecular mechanism underlying this effect. Based on cell viability, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) assessments, the optimal concentration of ETEC K88 was determined to be 1 × 103 cfu/mL. Viable bacteria counts in cells pretreated with CB and then infected with ETEC K88 show that CB can adhere to IPEC-J2 cells and that optimal adhesion is achieved at the multiple infection index (MOI) of 50 at 3 h of pretreatment. The results of qPCR indicate that although ETEC significantly decreases the expression levels of antioxidant enzymes regulated by NF-E2-related factor 2 (Nrf2) compared to the control group, CB reverses this effect. To confirm that Nrf2 is directly involved in the mechanism by which CB alleviates oxidative stress, siRNA was used to silence the expression of Nrf2 gene in IPEC-J2 cells. Compared to the NC+ETEC and siRNA+ETEC groups, the expressions of SOD1, SOD2, GPX1, and GPX2 in the NC+CB+ETEC and siRNA+CB+ETEC groups are significantly increased at 12 h and 24 h. This shows that CB can reduce ETEC K88-induced oxidative damage in IPEC-J2 cells by activating the expression of antioxidant enzymes implicated in the Kelch-like ECH-associated protein-1- (Keap1-) Nrf2/antioxidant response element (ARE) signaling pathway.
Collapse
|
8
|
Sun Z, Li H, Li Y, Qiao J. Lactobacillus salivarius, a Potential Probiotic to Improve the Health of LPS-Challenged Piglet Intestine by Alleviating Inflammation as Well as Oxidative Stress in a Dose-Dependent Manner During Weaning Transition. Front Vet Sci 2020; 7:547425. [PMID: 33392276 PMCID: PMC7772421 DOI: 10.3389/fvets.2020.547425] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Intestinal health is a critical issue for piglets during their weaning transition period. Previous reports have emphasized the promise of distinct probiotics in improving the enteric health. Here in this research, a newly isolated Lactobacillus salivarius strain was pretreated to Lipopolysaccharide (LPS)-challenged piglets and its association with integrity of the intestinal barrier coupled with effective dosage were expected to be signified. In the present study, 72 piglets (Landrace × Yorkshiere × Duroc) were randomly allotted to four groups, each group with six replicates. The subjects in the control group were provided with basal diet while those in other tested groups with extra 0.05, 0.1, and 0.2% L. salivarius, respectively. Fourteen days later, LPS was intraperitoneally injected and sodium pentobarbital was then delivered to euthanize those LPS-challenged piglets. An increase of average daily gain and body weight along with an apparent decline of diarrhea rate were observed in L. salivarius-treated groups. Both 0.1 and 0.2% L. salivarius supplement in total diet had the capability to markedly elevate levels of CAT, GSH-Px, SOD, anti-inflammatory cytokine from the serum as well as tight junction proteins (Claudin-1, Occludin, and ZO-1) extracted from intestine in LPS-challenged piglets. These changes were accompanied by the obvious downregulation of D-lactic acid, DAO, MDA and pro-inflammatory mediators in the serum, including IL-1β, IL-6, IFN-γ, and TNF-α. Meanwhile, the expression levels of TLR2 and TLR4 in spleen and mesenteric lymph nodes were significantly lower whereas the oxidation-related gene, ho-1 was up-regulated with L. salivarius administration. Our findings suggested that relatively high dose L. salivarius (0.1–0.2%) could regulate the progression of inflammatory response and oxidative stress when individuals were exposed to LPS, thus probably offering valuable assistance in restoring barrier function and improving overall performance.
Collapse
Affiliation(s)
- Zeyang Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Haihua Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yupeng Li
- College of Life Sciences, Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin, China
| | - Jiayun Qiao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
9
|
Arnold YE, Kalia YN. Using Ex Vivo Porcine Jejunum to Identify Membrane Transporter Substrates: A Screening Tool for Early-Stage Drug Development. Biomedicines 2020; 8:biomedicines8090340. [PMID: 32927779 PMCID: PMC7555276 DOI: 10.3390/biomedicines8090340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Robust, predictive ex vivo/in vitro models to study intestinal drug absorption by passive and active transport mechanisms are scarce. Membrane transporters can significantly impact drug uptake and transporter-mediated drug–drug interactions can play a pivotal role in determining the drug safety profile. Here, the presence and activity of seven clinically relevant apical/basolateral drug transporters found in human jejunum were tested using ex vivo porcine intestine in a Ussing chamber system. Experiments using known substrates of peptide transporter 1 (PEPT1), organic anion transporting polypeptide (OATP2B1), organic cation transporter 1 (OCT1), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multi drug resistance-associated protein 2 and 3 (MRP2 and MRP3), in the absence and presence of potent inhibitors, showed that there was a statistically significant change in apparent intestinal permeability Papp,pig (cm/s) in the presence of the corresponding inhibitor. For MRP2, a transporter reportedly present at relatively low concentration, although Papp,pig did not significantly change in the presence of the inhibitor, substrate deposition (QDEP) in the intestinal tissue was significantly increased. The activity of the seven transport proteins was successfully demonstrated and the results provided insight into their apical/basolateral localization. In conclusion, the results suggest that studies using the porcine intestine/Ussing chamber system, which could easily be integrated into the drug development process, might enable the early-stage identification of new molecular entities that are substrates of membrane transporters.
Collapse
Affiliation(s)
- Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(0)22-379-3355
| |
Collapse
|
10
|
Identification of Functional Transcriptional Binding Sites within Chicken Abcg2 Gene Promoter and Screening Its Regulators. Genes (Basel) 2020; 11:genes11020186. [PMID: 32050731 PMCID: PMC7073639 DOI: 10.3390/genes11020186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer resistance protein (BCRP), an ATP-binding cassette (ABC) half transporter encoded by the Abcg2 gene, is reported to influence the pharmacokinetics of substrate drugs during clinical therapy. The aim of this study was to clarify the mechanisms that regulate the transcription of the chicken Abcg2 gene through cloning and characterization of its promoter region. Results showed that the Abcg2 gene is transcribed by a TATA-less promoter with several putative Sp1 sites upstream from two putative CpG islands. A luciferase reporter assay conducted both in chicken leghorn male hepatoma (LMH) cells and chicken primary hepatocytes mapped a basal promoter to nucleotides -110 to +30, which is responsible for the constitutive expression of Abcg2. The 5'-region upstream of the basal promoter was characterized by both positive and negative regulatory domains. Further, using the cell-based reporter gene assay combined with RT-PCR and drug accumulation analysis, we found that four xenobiotics, daidzein, clotrimazole, ivermectin, and lipopolysaccharide (LPS), influence the expression and function of BCRP through significant regulation of the Abcg2 gene promoter. Interaction sites with the Abcg2 gene promoter of these four selected regulators were clarified by progressive deletions and mutation assays. This study shed some light on the regulatory mechanisms involved in chicken Abcg2 gene expression and the results may have far-reaching significance regarding the usage and development of veterinary drugs.
Collapse
|
11
|
Virkel G, Ballent M, Lanusse C, Lifschitz A. Role of ABC Transporters in Veterinary Medicine: Pharmaco- Toxicological Implications. Curr Med Chem 2019; 26:1251-1269. [DOI: 10.2174/0929867325666180201094730] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Unlike physicians, veterinary practitioners must deal with a number of animal species with crucial differences in anatomy, physiology and metabolism. Accordingly, the pharmacokinetic behaviour, the clinical efficacy and the adverse or toxic effects of drugs may differ across domestic animals. Moreover, the use of drugs in food-producing species may impose a risk for humans due to the generation of chemical residues in edible products, a major concern for public health and consumer's safety. As is clearly known in human beings, the ATP binding cassette (ABC) of transport proteins may influence the bioavailability and elimination of numerous drugs and other xenobiotics in domestic animals as well. A number of drugs, currently available in the veterinary market, are substrates of one or more transporters. Therefore, significant drug-drug interactions among ABC substrates may have unpredictable pharmacotoxicological consequences in different species of veterinary interest. In this context, different investigations revealed the major relevance of P-gp and other transport proteins, like breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), in both companion and livestock animals. Undoubtedly, the discovery of the ABC transporters and the deep understanding of their physiological role in the different species introduced a new paradigm into the veterinary pharmacology. This review focuses on the expression and function of the major transport proteins expressed in species of veterinary interest, and their impact on drug disposition, efficacy and toxicity.
Collapse
Affiliation(s)
- Guillermo Virkel
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Mariana Ballent
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Adrián Lifschitz
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| |
Collapse
|
12
|
Wen J, Shen Y, Zhang M, Wang C, Xiang Y, Cai H, Fang P, Li H. Dexamethasone changes the pharmacokinetics of amitriptyline and reduces its accumulation in rat brain: The roles of P-gp and cyp3a2. J Pharmacol Sci 2019; 140:54-61. [PMID: 31105024 DOI: 10.1016/j.jphs.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022] Open
Abstract
The wide spread use of central nervous system (CNS) drugs has caused thousands of deaths in clinical practice while there are few antidotes or effective treatments to decrease their accumulation in CNS. In this study, we used amitriptyline (AMI) and dexamethasone (DEX) as the corresponding poisoning and pre-protecting drugs, respectively, to study whether DEX has the potential to reduce AMI accumulation in brain. By measuring the pharmacokinetic data of AMI and its main metabolite nortriptyline (NOR), we found that DEX possibly accelerated the metabolism and elimination of AMI with minimal effects on the concentrations of NOR in blood. Nevertheless, the results indicated that DEX reduced the brain/plasma concentration ratio of AMI and NOR, even if the plasma concentration of NOR had an upward trend. Western blot results showed the overexpression of cyp3a2 and P-gp in rat liver and brain capillaries tissues. We propose that cyp3a2 and P-gp could be upregulated in the liver and blood-brain barrier (BBB) when using DEX. Further experiments suggest that DEX may serve as the ligand of PXR to induce P-gp expression.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Yuan Shen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Min Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Chao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Yalan Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China.
| | - Huande Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| |
Collapse
|
13
|
Inhibitory Effect of Berberine on Broiler P-glycoprotein Expression and Function: In Situ and In Vitro Studies. Int J Mol Sci 2019; 20:ijms20081966. [PMID: 31013627 PMCID: PMC6515058 DOI: 10.3390/ijms20081966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Overcoming P-glycoprotein (P-gp) efflux is a strategy to improve the absorption and pharmacokinetics of its substrate drugs. Berberine inhibits P-gp and thereby increases the bioavailability of the P-gp substrate digoxin in rodents. However, the effects of berberine on P-gp in chickens are still unclear. Here, we studied the role of berberine in modulating broilers P-gp expression and function through both in situ and in vitro models. In addition, molecular docking was applied to analyze the interactions of berberine with P-gp as well as with chicken xenobiotic receptor (CXR). The results showed that the mRNA expression levels of chicken P-gp and CXR decreased in the ileum following exposure to berberine. The absorption rate constant of rhodamine 123 increased after berberine treatment, as detected using an in situ single-pass intestinal perfusion model. Efflux ratios of P-gp substrates (tilmicosin, ciprofloxacin, clindamycin, ampicillin, and enrofloxacin) decreased and the apparent permeability coefficients increased after co-incubation with berberine in MDCK-chAbcb1 cell models. Bidirectional assay results showed that berberine could be transported by chicken P-gp with a transport ratio of 4.20, and this was attenuated by verapamil (an inhibitor of P-gp), which resulted in a ratio of 1.13. Molecular docking revealed that berberine could form favorable interactions with the binding pockets of both CXR and P-gp, with docking scores of −7.8 and −9.5 kcal/mol, respectively. These results indicate that berberine is a substrate of chicken P-gp and down-regulates P-gp expression in chicken tissues, thereby increasing the absorption of P-gp substrates. Our findings suggest that berberine increases the bioavailability of other drugs and that drug-drug interactions should be considered when it is co-administered with other P-gp substrates with narrow therapeutic windows.
Collapse
|
14
|
Li HH, Li YP, Zhu Q, Qiao JY, Wang WJ. Dietary supplementation with Clostridium butyricum helps to improve the intestinal barrier function of weaned piglets challenged with enterotoxigenic Escherichia coli K88. J Appl Microbiol 2018; 125:964-975. [PMID: 29851202 DOI: 10.1111/jam.13936] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 04/11/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was twofold: (i) to examine the effect of Clostridium butyricum on intestinal barrier function and (ii) to elucidate the mechanisms involved in enhanced intestinal barrier function. METHODS AND RESULTS Forty-eight weaned piglets were assigned randomly to either a basal diet or a C. butyricum-supplemented diet. On day 15, all pigs were orally challenged with enterotoxigenic Escherichia coli (ETEC) K88 or saline. Clostridium butyricum decreased serum diamine oxidase activity and d-lactic acid concentration, as well as increased intestinal tight junction proteins (ZO-1, claudin-3 and occludin) expression in ETEC K88-infected pigs. Moreover, C. butyricum decreased IL-1β and IL-18 levels in serum and gut, whereas it increased IL-10 levels. Furthermore, C. butyricum downregulated NLRP3 and caspase-1 expression in ETEC K88-challenged pig gut, but did not affect apoptosis-associated speck-like protein expression. CONCLUSIONS Clostridium butyricum enhanced intestinal barrier function and inhibited apoptosis-associated speck-like protein-independent NLRP3 inflammasome signalling pathway in weaned piglets after ETEC K88 challenge. SIGNIFICANCE AND IMPACT OF THE STUDY The novelty of this study lies in the beneficial effects of C. butyricum on intestinal health, likely by improving intestinal barrier function and alleviating inflammatory reactions.
Collapse
Affiliation(s)
- H-H Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - Y-P Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - Q Zhu
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - J-Y Qiao
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - W-J Wang
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| |
Collapse
|
15
|
Guo T, Huang J, Huan C, He F, Zhang Y, Bhutto ZA, Wang L. Cloning and Transcriptional Activity Analysis of the Porcine Abcb1 Gene Promoter: Transcription Factor Sp1 Regulates the Expression of Porcine Abcb1. Front Pharmacol 2018; 9:373. [PMID: 29780320 PMCID: PMC5945876 DOI: 10.3389/fphar.2018.00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
P-Glycoprotein (P-gp, Abcb1) plays a crucial role in drug disposition and functions by hydrolyzing ATP. However, little is known about the regulatory elements governing the transcription of the porcine Abcb1 gene. In this study, the transcription start site of the pig Abcb1 gene was identified by 5'-RACE. A 1.9-kb fragment of the 5'-flanking region of the Abcb1 gene was cloned from pig genomic DNA and sequenced. The region critical for its promoter activity was investigated via progressive deletions. Further, using mutation assays, two proximal Sp1 binding sites within the 5'-flanking region of Abcb1 were proven to be important cis-regulatory elements involved in regulating the constitutive expression of porcine Abcb1. RNA interference experiments showed that Sp1 regulated the expression of the porcine P-gp at both mRNA and protein levels. Hence, the current work provides valuable information on the regulatory mechanisms of pig Abcb1.
Collapse
Affiliation(s)
- Tingting Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Medical College, Yangzhou University, Yangzhou, China
| | - Jinhu Huang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fang He
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zohaib A Bhutto
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Zhang Y, Huang J, Liu Y, Guo T, Wang L. Using the lentiviral vector system to stably express chicken P-gp and BCRP in MDCK cells for screening the substrates and studying the interplay of both transporters. Arch Toxicol 2018; 92:2027-2042. [PMID: 29725709 DOI: 10.1007/s00204-018-2209-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are known to influence the pharmacokinetics and toxicity of substrate drugs. However, no detailed information is as yet available about functional activity and substrate spectra of chicken P-gp and BCRP. In this study, BCRP single and BCRP/P-gp double-transfected MDCK cell lines (named MDCK-chAbcg2 and MDCK-chAbcg2/Abcb1, respectively) were generated using lentiviral vector system to develop reliable systems for screening the substrates for these two transporters and study the interplay between them. The constructed cell lines significantly expressed functional exogenous proteins and expression persisted for at least 50 generations with no decrease. Enrofloxacin, ciprofloxacin, tilmicosin, sulfadiazine, ampicillin and clindamycin were classified as the substrates of chicken P-gp according to the rules suggested by FDA, as their net efflux ratios were greater than two. Similarly, enrofloxacin, ciprofloxacin, tilmicosin, florfenicol, ampicillin and clindamycin were classified as the substrates of BCRP. Among these drugs, enrofloxacin, ciprofloxacin, tilmicosin, ampicillin, and clindamycin were the cosubstrates of P-gp and BCRP, however, chicken BCRP and P-gp exhibit different affinities to the shared substrates at different concentrations by blocking either one or both transport with specific inhibitors in the coexpression system. It was also found that ceftiofur, amoxicillin and doxycycline were not substrates of either chicken BCRP or the substrates of chicken P-gp. These constructed cell models provide useful systems for high-throughput screening of the potential substrates of chicken BCRP and P-gp as well as the drug-drug interaction mediated via chicken BCRP and P-gp.
Collapse
Affiliation(s)
- Yujuan Zhang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, People's Republic of China
| | - Jinhu Huang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, People's Republic of China
| | - Yang Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, People's Republic of China
| | - Tingting Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, People's Republic of China
| | - Liping Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
Use of quercetin in animal feed: effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken. Sci Rep 2018. [PMID: 29535328 PMCID: PMC5849680 DOI: 10.1038/s41598-018-22354-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.
Collapse
|
18
|
Molecular cloning and tissue distribution of a novel marmoset ABC transporter. Biopharm Drug Dispos 2017; 39:59-63. [DOI: 10.1002/bdd.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/07/2022]
|
19
|
Reproducible Molecularly Imprinted QCM Sensor for Accurate, Stable, and Sensitive Detection of Enrofloxacin Residue in Animal-Derived Foods. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1020-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|