1
|
Yang F, Chen W, Yang Y, Meng Y, Chen Y, Ding X, Zhang Y, He J, Gao N. Copy Number Variation and Selection Signal: Exploring the Domestication History and Phenotype Differences Between Duroc and the Chinese Native Ningxiang Pigs. Int J Mol Sci 2024; 25:11716. [PMID: 39519268 PMCID: PMC11546390 DOI: 10.3390/ijms252111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The Ningxiang pig, one of the well-known Chinese native pig breeds, has the advantages of tender meat, high intramuscular fat (IMF) content, and roughage tolerance, compared to the commercial lean pig breeds. The genetic basis for complex traits in Ningxiang pigs has been previously studied through other genetic markers, such as Single Nucleotide Polymorphism (SNP), while the characteristics of copy number variation (CNV) and the selection signal have not been investigated yet. In this study, GGP 50 k genotyping data of 2242 Ningxiang pigs (NX) and 1137 Duroc pigs (Duroc) were involved in CNV atlas construction and selection signals identification. Annotations of genes and quantitative trait locus (QTLs) were performed on the target candidate regions, as follows: (1) 162 CNVs were detected in Ningxiang pigs, while 326 CNVs were detected in Duroc pigs, and there are 21 copy number variation regions (CNVRs) shared between them; (2) The CNVRs of Duroc are more abundant, with 192 CNVRs, accounting for 1.61% of the entire genome, while those of Ningxiang pigs only have 98 CNVRs, accounting for 0.49%; (3) The QTLs annotated on CNVs and selected regions of Ningxiang pigs were mainly associated with meat quality and fertility. In contrast, the Duroc QTLs' notes relate primarily to the carcass and immunity, and explain why they have a higher slaughter rate and immunity; (4) There is a presence of high-frequency acquired CNVs, specifically in Ningxiang pigs, with 24 genes significantly enriched in the sensory receptor-related pathway in this region; (5) Based on the CNVs atlas, candidate genes such as 3 inositol 1,4,5-triphosphate receptor, type 3 (ITPR3), forkhead box protein K2 (FOXK2), G-protein coupled estrogen receptor 1 (GPER1), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triosephosphate isomerase 1 (TPI1), and other candidate genes related to fat deposition and differentiation were screened. In general, this study improved our knowledge about copy number variation and selection signal information of Ningxiang pigs, which can not only further explain the genetic differences between Chinese native and Western commercial pig breeds, but also provide new materials for the analysis of the genetic basis of complex traits.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenwu Chen
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yanda Yang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yang Meng
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yantong Chen
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Yuebo Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jun He
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ning Gao
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Quantitative Proteomic Analysis of Tibetan Pig Livers at Different Altitudes. Molecules 2023; 28:molecules28041694. [PMID: 36838681 PMCID: PMC9960092 DOI: 10.3390/molecules28041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, the differences in protein profiles between the livers of Shannan Tibetan pigs (SNT), Linzhi Tibetan pigs (LZT) and Jiuzhaigou Tibetan pigs (JZT) were comparatively analyzed by tandem mass spectrometry-labeling quantitative proteomics. A total of 6804 proteins were identified: 6471 were quantified and 1095 were screened as differentially expressed proteins (DEPs). Bioinformatics analysis results show that, compared with JZT livers, up-regulated DEPs in SNT and LZT livers mainly promoted hepatic detoxification through steroid hormone biosynthesis and participated in lipid metabolism to maintain body energy homeostasis, immune response and immune regulation, while down-regulated DEPs were mainly involved in lipid metabolism and immune regulation. Three proteases closely related to hepatic fatty acid oxidation were down-regulated in enzymatic activity, indicating higher levels of lipid oxidation in SNT and LZT livers than in JZT livers. Down-regulation of the expression of ten immunoglobulins suggests that JZT are more susceptible to autoimmune diseases. It is highly likely that these differences in lipid metabolism and immune-related proteins are in response to the ecological environment at different altitudes, and the findings contribute to the understanding of the potential molecular link between Tibetan pig livers and the environment.
Collapse
|
3
|
Seven Fatty Acid Metabolism-Related Genes as Potential Biomarkers for Predicting the Prognosis and Immunotherapy Responses in Patients with Esophageal Cancer. Vaccines (Basel) 2022; 10:vaccines10101721. [PMID: 36298586 PMCID: PMC9610070 DOI: 10.3390/vaccines10101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Esophageal cancer (ESCA) is a major cause of cancer-related mortality worldwide. Altered fatty acid metabolism is a hallmark of cancer. However, studies on the roles of fatty acid metabolism-related genes (FRGs) in ESCA remain limited. Method: We identified differentially expressed FRGs (DE-FRGs). Then, the DE-FRGs prognostic model was constructed and validated using a comprehensive analysis. Moreover, the correlation between the risk model and clinical characteristics was investigated. A nomogram for predicting survival was established and evaluated. Subsequently, the difference in tumor microenvironment (TME) was compared between two risk groups. The sensitivity of key DE-FRGs to chemotherapeutic interventions and their correlation with immune cells were investigated. Finally, DEGs between two risk groups were measured and the prognostic value of key DE-FRGs in ESCA was confirmed in other databases. Results: A prognostic model was constructed based on seven selected DEG-FRGs. TNM staging and CD8+ T cells were significantly correlated with high-risk groups. Low-risk groups exhibited more infiltrated M0 macrophages, an activation of type II interferon (IFN-γ) responses, and were found to be more suitable for immunotherapy. Seven key DE-FRGs with prognostic value were found to be considerably influenced by different chemotherapy drugs. Conclusion: A prognostic model based on seven DE-FRGs may efficiently predict patient prognosis and immunotherapy response, helping to develop individualized treatment strategies in ESCA.
Collapse
|
4
|
Li B, Yang J, Gong Y, Xiao Y, Chen W, Zeng Q, Xu K, Duan Y, Ma H. Effects of age on subcutaneous adipose tissue proteins in Chinese indigenous Ningxiang pig by TMT-labeled quantitative proteomics. J Proteomics 2022; 265:104650. [PMID: 35690344 DOI: 10.1016/j.jprot.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Adipose tissue not only affects meat quality and animal productivity, but also participates in inflammation and immunity. Ningxiang pig is famous for their excellent meat quality, disease resistance and tolerance of roughage. It is not yet well known how proteins in adipose tissue is dynamically regulated during the growth of Ningxiang pig. This report studies the proteomic changes in subcutaneous adipose tissue in Ningxiang pigs to gain a better understanding of the molecular mechanism of fat development during the growth period. By TMT-labeled quantitative proteomic analysis of subcutaneous adipose tissue of 9 purebred Ningxiang pigs of different ages, we identified 2533 unique proteins and 716 differentially abundant proteins (DAPs), of which more than half of the DAPs were concentrated in the 90d-210d period. Retrograde endocannabinoid signaling was only significantly enriched in DAPs of N90d vs N30d, Alcoholism and Graft-versus-host disease were only significantly enriched in DAPs of N210d vs N90d. Proteins related to dilated cardiomyopathy was found to be an important pathway in fat development and lipid metabolism. A variety of novel DAPs involved in maintaining mitochondrial function and cell viability, such as NDUFS6, SDHB, COX5A, ATP5D and TNNT1, which play a role in controlling the prediction networks, may indirectly regulate the development and functional maintenance of adipocytes. SIGNIFICANCE: These age-dependent DAPs discovered in this study may help expand the understanding of the molecular mechanisms of the development, function maintenance and transformation of adipose tissue in Ningxiang pig for developing new strategies for improving meat quality and pig breeding in the future.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610000, Sichuan, China; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| | - Yan Gong
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yu Xiao
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wenwu Chen
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Qinghua Zeng
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
5
|
Wu Y, Tang J, Wen Z, Zhang B, Cao J, Zhao L, Guo Z, Xie M, Zhou Z, Hou S. Dietary methionine deficiency stunts growth and increases fat deposition via suppression of fatty acids transportation and hepatic catabolism in Pekin ducks. J Anim Sci Biotechnol 2022; 13:61. [PMID: 35581591 PMCID: PMC9115956 DOI: 10.1186/s40104-022-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although methionine (Met), the first-limiting dietary amino acid, has crucial roles in growth and regulation of lipid metabolism in ducks, mechanisms underlying are not well understood. Therefore, the objective was to use dietary Met deficiency to investigate the involvement of Met in lipid metabolism and fat accumulation of Pekin ducks. Methods A total of 150 male Pekin ducks (15-d-old, 558.5 ± 4.4 g) were allocated into 5 groups (6 replicates with 5 birds each) and fed corn and soybean meal-based diets containing 0.28%, 0.35%, 0.43%, 0.50%, and 0.58% Met, respectively, for 4 weeks. Met-deficient (Met-D, 0.28% Met) and Met-adequate (Met-A, 0.43% Met) groups were selected for subsequent molecular studies. Serum, liver, and abdominal fat samples were collected to assess the genes and proteins involved in lipid metabolism of Pekin ducks and hepatocytes were cultured in vivo for verification. Results Dietary Met deficiency caused growth depression and excess fat deposition that were ameliorated by feeding diets with adequate Met. Serum triglyceride and non-esterified fatty acid concentrations increased (P < 0.05), whereas serum concentrations of total cholesterol, low density lipoprotein cholesterol, total protein, and albumin decreased (P < 0.05) in Met-D ducks compared to those in Met-A ducks. Based on hepatic proteomics analyses, dietary Met deficiency suppressed expression of key proteins related to fatty acid transport, fatty acid oxidation, tricarboxylic acid cycle, glycolysis/gluconeogenesis, ketogenesis, and electron transport chain; selected key proteins had similar expression patterns verified by qRT-PCR and Western blotting, which indicated these processes were likely impaired. In vitro verification with hepatocyte models confirmed albumin expression was diminished by Met deficiency. Additionally, in abdominal fat, dietary Met deficiency increased adipocyte diameter and area (P < 0.05), and down-regulated (P < 0.05) of lipolytic genes and proteins, suggesting Met deficiency may suppress lipolysis in adipocyte. Conclusion Taken together, these data demonstrated that dietary Met deficiency in Pekin ducks resulted in stunted growth and excess fat deposition, which may be related to suppression of fatty acids transportation and hepatic catabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00709-z.
Collapse
Affiliation(s)
- Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhiguo Wen
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junting Cao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lulu Zhao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Montalvo-González E, Villagrán Z, González-Torres S, Iñiguez-Muñoz LE, Isiordia-Espinoza MA, Ruvalcaba-Gómez JM, Arteaga-Garibay RI, Acosta JL, González-Silva N, Anaya-Esparza LM. Physiological Effects and Human Health Benefits of Hibiscus sabdariffa: A Review of Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15040464. [PMID: 35455462 PMCID: PMC9033014 DOI: 10.3390/ph15040464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design
Collapse
Affiliation(s)
- Efigenia Montalvo-González
- Integral Food Research Laboratory, National Technological of Mexico/Technological Institute of Tepic, Av. Tecnologico 2595, Tepic 63175, Mexico;
| | - Zuamí Villagrán
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Sughey González-Torres
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Laura Elena Iñiguez-Muñoz
- División of Natural and Technological Exact Sciences, Southern Region University Center, University of Guadalajara, Av. Enrique Arreola Silva 883, Guadalajara 49000, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Department of Clinics, Division of Biomedical Sciences, Institute of Research in Medical Sciences, Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico;
| | - José Martín Ruvalcaba-Gómez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - Ramón Ignacio Arteaga-Garibay
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - José Luis Acosta
- Interdisciplinary Research Centre for Integral Regional Development Sinaloa Unit, National Polytechnic Institute, Boulevard Juan de Dios Bátiz 250, Guasave 81049, Mexico;
| | - Napoleón González-Silva
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| |
Collapse
|
7
|
Betaine Supplementation Causes an Increase in Fatty Acid Oxidation and Carbohydrate Metabolism in Livers of Mice Fed a High-Fat Diet: A Proteomic Analysis. Foods 2022; 11:foods11060881. [PMID: 35327303 PMCID: PMC8949908 DOI: 10.3390/foods11060881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a high fat (HF) diet to investigate the mechanism by which betaine affects hepatic metabolism. Although betaine supplementation had no significant effect on body weight, a total of 103 differentially expressed proteins were identified between HF diet + 1% betaine group (HFB) and HF diet group by LC-MS (fold change > 2, p < 0.05). The addition of 1% betaine had a significant enhancement of the expression of enzymes related to fatty acid oxidation metabolism, such as hydroxyacyl-Coenzyme A dehydrogenase (HADHA), enoyl Coenzyme A hydratase 1 (ECHS1) (p < 0.05) etc., and the expression of apolipoprotein A-II (APOA2) protein was significantly reduced (p < 0.01). Meanwhile, the protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and succinate-CoA ligase (SUCLG1) were highly significant (p < 0.01). Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the functions of differential proteins involved fatty acid catabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA) and peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway. Protein−protein interaction (PPI) analysis discovered that acetyl-Coenzyme A acetyltransferase 1 (ACAT1), HADHA and ECHS1 were central hubs of hepatic proteomic changes in the HFB group of mice. Betaine alleviates hepatic lipid accumulation by enhancing fatty acid oxidation and accelerating the TCA cycle and glycolytic process in the liver of mice on an HF diet.
Collapse
|
8
|
He X, Wu R, Yun Y, Qin X, Chen L, Han Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of messenger RNA and long noncoding RNA related to different developmental stages of tail adipose tissues of sunite sheep. Food Sci Nutr 2021; 9:5722-5734. [PMID: 34646540 PMCID: PMC8498062 DOI: 10.1002/fsn3.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The tail fat of sheep is the most typical deposited fat, and it can be widely used in human daily life, such as diet, cosmetics, and industrial raw materials. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6, 18, and 30 months. A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep. Based on functional analysis, we found that fat-related DEGs were mainly expressed at 6 months of age and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their transregulators. Further, we obtained several fat-related differentially expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Finally, we concluded that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process.
Collapse
Affiliation(s)
- Xige He
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Rihan Wu
- College of Biochemistry and EngineeringHohhot Vocational CollegeHohhotChina
| | - Yueying Yun
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
- School of Life Science and TechnologyInner Mongolia University of Science and TechnologyBaotouChina
| | - Xia Qin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lu Chen
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Yunfei Han
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Jindi Wu
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lina Sha
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Gerelt Borjigin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
9
|
Bibyk MJ, Campbell MJ, Hummon AB. Mass spectrometric investigations of caloric restriction mimetics. Proteomics 2021; 21:e2000121. [PMID: 33460282 PMCID: PMC8262777 DOI: 10.1002/pmic.202000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022]
Abstract
Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs: resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.
Collapse
Affiliation(s)
- Michael J. Bibyk
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Melanie J. Campbell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Wu C, Chen C, Liu Y, Li H, Cheng B. Proteomic analysis of liver tissue between fat and lean broiler lines. Br Poult Sci 2021; 62:211-218. [PMID: 33263412 DOI: 10.1080/00071668.2020.1847253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The liver is the major site of fatty acid synthesis in chickens. Lipid metabolism in the liver correlates with the deposition of triglycerides in adipose tissue. Northeast Agricultural University broilers lines divergently selected for abdominal fat content (NEAUHLF) provide a unique model to study the mechanisms of fat deposition.2. In previous studies, differentially expressed genes (DEGs) in the livers of fat and lean broilers were evaluated across different developmental stages. Whether protein expression differences exist between the livers of fat and lean broilers is largely unknown. The current experiment used 2D fluorescence difference gel electrophoresis (2D-DIGE) to screen expressed protein (DEP) spots in the liver tissues of NEAUHLF at one, four and seven weeks of age.3. Twenty-two DEPs were identified by MALDI-TOF-MS that were involved in lipid, energy, protein and amino acid metabolism, oxidative stress, cytoskeleton, and transport.4. These data furthered the understanding of the fat and lean phenotypes of broiler chickens.
Collapse
Affiliation(s)
- C Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang, China.,College of Animal Science and Technology, Northeast Agricultural University, Heilongjiang, China
| | - C Chen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang, China.,College of Animal Science and Technology, Northeast Agricultural University, Heilongjiang, China
| | - Y Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang, China.,College of Animal Science and Technology, Northeast Agricultural University, Heilongjiang, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang, China.,College of Animal Science and Technology, Northeast Agricultural University, Heilongjiang, China
| | - B Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang, China.,College of Animal Science and Technology, Northeast Agricultural University, Heilongjiang, China
| |
Collapse
|
11
|
Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E. Organic Acids from Roselle ( Hibiscus sabdariffa L.)-A Brief Review of Its Pharmacological Effects. Biomedicines 2020; 8:E100. [PMID: 32354172 PMCID: PMC7277581 DOI: 10.3390/biomedicines8050100] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.), also known as jamaica in Spanish, is a perennial plant that grows in tropical and subtropical regions, including China, Egypt, Indonesia, Mexico, Nigeria, Thailand, and Saudi Arabia. It has a long history of uses, mainly focused on culinary, botanical, floral, cosmetic, and medicinal uses. The latter being of great impact due to the diuretic, choleretic, analgesic, antitussive, antihypertensive, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and anti-cancer effects. These therapeutic properties have been attributed to the bioactive compounds of the plant, mainly phenolic acids, flavonoids, anthocyanins, and organic acids (citric, hydroxycitric, hibiscus, tartaric, malic, and ascorbic). Most literature reviews and meta-analyses on the therapeutic potential of Hibiscus sabdariffa L. (Hs) compounds have not adequately addressed the contributions of its organic acids present in the Hs extracts. This review compiles information from published research (in vitro, in vivo, and clinical studies) on demonstrated pharmacological properties of organic acids found in Hs. The intent is to encourage and aid researchers to expand their studies on the pharmacologic and therapeutic effects of Hs to include assessments of the organic acid components.
Collapse
Affiliation(s)
- Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Diego A. Arteaga-Badillo
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Carlos A. Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto 42184, Mexico
| | - Javier Castro-Rosas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto 42184, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42080, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| |
Collapse
|
12
|
Cao C, Xiao Z, Ge C, Wu Y. Application and Research Progress of Proteomics in Chicken Meat Quality and Identification: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changwei Cao
- College of Food Science, Sichuan Agricultural University, Ya’ An, Sichuan, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya’ An, Sichuan, China
| |
Collapse
|
13
|
Liu L, Cui H, Xing S, Zhao G, Wen J. Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals (Basel) 2019; 10:ani10010004. [PMID: 31861430 PMCID: PMC7023311 DOI: 10.3390/ani10010004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Intramuscular fat is an important factor affecting meat quality and consumer acceptance. Appropriate increases in the intramuscular fat content contribute to the improvement of meat quality, and genetic selection is an effective method to increase the intramuscular fat content in chickens. In this study, chicken lines divergently selected for their intramuscular fat content were used to investigate the mechanisms behind differential intramuscular fat deposition. These results found in this study may contribute to the improvement of meat quality in chickens. Abstract Intramuscular fat (IMF)—an important factor affecting meat quality—can be appropriately increased by genetic selection. Chicken lines divergently selected for IMF content were used in this study to investigate the mechanisms behind differential IMF deposition. Sixty 15th generation chickens were genotyped using the IASCHICK 55K single nucleotide polymorphism (SNP) chip. After quality control, 59 chickens and 36,893 SNPs were available for subsequent analysis. Population structure assessment indicated that the lines were genetically differentiated. Based on the top 1% paired fixation index values, three pathways were significantly (p < 0.05) enriched, and nine genes were considered candidate genes for differential IMF deposition. Differences between the lines in the expressions of representative genes involved in the above pathways were detected in 16th generation chickens. This study suggests that genetic selection for increased IMF in the pectoralis major muscle may enhance fatty acid synthesis, transport, and esterification, and reduce triglyceride hydrolysis. The peroxisome proliferator-activated receptor (PPAR) signaling pathway, glycerolipid metabolism, and fatty acid degradation pathway may have contributed to the differences in IMF deposition between the lines. These results contribute to the understanding of the genetic mechanisms behind IMF deposition, and the improvement of chicken meat quality.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708WD, The Netherlands
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence: (G.Z.); (J.W.); Tel.: +86-10-6281-5856 (J.W.)
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.L.); (H.C.); (S.X.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence: (G.Z.); (J.W.); Tel.: +86-10-6281-5856 (J.W.)
| |
Collapse
|
14
|
Shi L, Liu L, Ma Z, Lv X, Li C, Xu L, Han B, Li Y, Zhao F, Yang Y, Sun D. Identification of genetic associations of ECHS1 gene with milk fatty acid traits in dairy cattle. Anim Genet 2019; 50:430-438. [PMID: 31392738 DOI: 10.1111/age.12833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
Abstract
Our previous genome-wide association study identified 83 genome-wide significant SNPs and 20 novel promising candidate genes for milk fatty acids in Chinese Holstein. Among them, the enoyl-CoA hydratase, short chain 1 (ECHS1) and enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH) genes were located near two SNPs and one SNP respectively, and they play important roles in fatty acid metabolism pathways. We herein validated whether the two genes have genetic effects on milk fatty acid traits in dairy cattle. By re-sequencing the full-length coding region, partially adjacent introns and 3000 bp up/downstream flanking sequences, we identified 12 SNPs in ECHS1: two in exons, four in the 3' flanking region and six in introns. The g.25858322C>T SNP results in an amino acid replacement from leucine to phenylalanine and changes the secondary structure of the ECHS1 protein, and single-locus association analysis showed that it was significantly associated with three milk fatty acids (P = 0.0002-0.0013). The remaining 11 SNPs were found to be significantly associated with at least one milk fatty acid (P = <0.0001-0.0040). Also, we found that two haplotype blocks, consisting of nine and two SNPs respectively, were significantly associated with eight milk fatty acids (P = <0.0001-0.0125). However, none of polymorphisms was observed in the EHHADH gene. In conclusion, our findings are the first to indicate that the ECHS1 gene has a significant genetic impact on long-chain unsaturated and medium-chain saturated fatty acid traits in dairy cattle, although the biological mechanism is still undetermined and requires further in-depth validation.
Collapse
Affiliation(s)
- L Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Z Ma
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - X Lv
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - C Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - L Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Y Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.,Beijing Dairy Cattle Center, Beijing, 100192, China
| | - F Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Y Yang
- Beijing Municipal Bureau of Agriculture, Beijing, 100101, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Li S, Yang Z, Zhang H, Peng M, Ma H. (-)-Hydroxycitric Acid Influenced Fat Metabolism via Modulating of Glucose-6-phosphate Isomerase Expression in Chicken Embryos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7336-7347. [PMID: 31184119 DOI: 10.1021/acs.jafc.9b02330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The current research aimed to explore the impact of (-)-hydroxycitric acid (HCA) on fat metabolism and investigate whether this action of (-)-HCA was associated with modulation of glucose-6-phosphote isomerase (GPI) expression in chicken embryos. We constructed a recombinant plasmid (sh2-GPI) to inhibit GPI expression, and then embryos were treated with (-)-HCA. Results showed that (-)-HCA reduced lipid droplet accumulation, triglyceride content, and lipogenesis factors mRNA level and increased lipolysis factors mRNA expression, while this effect caused by (-)-HCA was markedly reversed when the chicken embryos were pretreated with sh2-GPI. (-)-HCA increased phospho (p)-acetyl-CoA carboxylase, enoyl-CoA hydratase short chain-1, carnitine palmitoyl transferase 1A, p-AMP-activated protein kinase, and peroxisome proliferators-activated receptor α protein expression, and this action of (-)-HCA also dispelled when the chicken embryos were pretreated with sh2-GPI. These data demonstrated that (-)-HCA decreased fat deposition via activation of the AMPK pathway, and the fat-reduction action of (-)-HCA was due to the increasing of GPI expression in chicken embryos.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Mengling Peng
- College of Animal Science and Technology , Anhui Agricultural University , Hefei 230036 , China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
16
|
Li S, Yang Z, Zhang H, Peng M, Ma H. Potential role of ALDH3A2 on the lipid and glucose metabolism regulated by (-)-hydroxycitric acid in chicken embryos. Anim Sci J 2019; 90:961-976. [PMID: 31132807 DOI: 10.1111/asj.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023]
Abstract
This study aimed to investigate the effect of (-)-hydroxycitric acid ((-)-HCA) on lipid and glucose metabolism, and further analyzed these actions whether associated with modulation of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) expression in chicken embryos. Results showed that (-)-HCA decreased triglyceride content and lipid droplet counts, while these effects induced by (-)-HCA were reversed in chicken embryos pre-transfected with sh4-ALDH3A2. (-)-HCA decreased malic enzyme, acetyl-CoA carboxylase, fatty acid synthase, and sterol regulatory element binding protein-1c mRNA level, while increased carnitine palmitoyl transferase 1A (CPT1A) and peroxisome proliferators-activated receptor α (PPARα) mRNA level; and the action of (-)-HCA on lipid metabolism factors had completely eliminated in embryos pre-transfected with sh4-ALDH3A2. Chicken embryos pre-transfected with sh4-ALDH3A2 had eliminated the increasing of serum glucose and hepatic glycogen content induced by (-)-HCA. (-)-HCA decreased phosphofructokinase-1 and increased G6P, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase mRNA level in chicken embryos. Similarly, the effect of (-)-HCA on these key enzyme mRNA level was reversed in embryos pre-transfected with sh4-ALDH3A2. Furthermore, (-)-HCA increased PPAR-γ-coactivator-1α (PGC-1α), PPARα, hepatic nuclear factor-4A, PEPCK, and CPT1A protein level, and these actions of (-)-HCA disappeared in embryos pre-transfected with sh4-ALDH3A2. These results indicated that (-)-HCA reduced fat accumulation and accelerated gluconeogenesis via activation of PGC-1α signaling pathway, and these effects of (-)-HCA might associate with the increasing of ALDH3A2 expression level in chicken embryos.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengling Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Han S, Zhao C, Pokhrel G, Sun X, Chen Z, Xu H. Hydroxycitric Acid Tripotassium Inhibits Calcium Oxalate Crystal Formation in the Drosophila Melanogaster Model of Hyperoxaluria. Med Sci Monit 2019; 25:3662-3667. [PMID: 31099342 PMCID: PMC6540651 DOI: 10.12659/msm.913637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Hydroxycitric acid is a potential lithontriptic agent for calcium oxalate (CaOx) stones in the kidneys. This study aimed to evaluate the safety and efficiency of hydroxycitric acid tripotassium (K-HCA) against CaOx crystal formation using Drosophila melanogaster hyperoxaluria models. Material/Methods Wild-type D. melanogaster were fed standard medium with ethylene glycol or sodium oxalate added to induce hyperoxaluria. Their Malpighian tubules were dissected and observed under a microscope every 3 days. Crystal deposit score of each Malpighian tubule were evaluated under a magnification of ×200. Using hyperoxaluria Drosophila models, we investigated the inhibitory efficiency of hydroxycitrate acid tripotassium and citric acid tripotassium (K-CA) against CaOx crystal formation. The survival rate of each group was also assessed. Results When fed with 0.05% NaOx, the CaOx formation in Malpighian tubules increased significantly, without reduction of life span. Therefore, we selected 0.05% NaOx-induced hyperoxaluria models for the further investigations. After treatment, the stone scores showed that K-CA and K-HCA both significantly inhibit the formation of CaOx crystals in a dose-dependent manner, and with smaller dosage (0.01%), K-HCA was more efficient than K-CA. Moreover, after treatment of K-CA or K-HCA, the life span in different groups did not change, reflecting the safety to life. Conclusions The hyperoxaluria Drosophila models fed on 0.05% NaOx diet might be a useful tool to screen novel agents for the management of CaOx stones. K-HCA may be a promising agent for the prevention CaOx stones, with satisfying efficiency and acceptable safety.
Collapse
Affiliation(s)
- Shanfu Han
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chenming Zhao
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Gaurab Pokhrel
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xifeng Sun
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hua Xu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
18
|
Li L, Zhang H, Yao Y, Yang Z, Ma H. (-)-Hydroxycitric Acid Suppresses Lipid Droplet Accumulation and Accelerates Energy Metabolism via Activation of the Adiponectin-AMPK Signaling Pathway in Broiler Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3188-3197. [PMID: 30827101 DOI: 10.1021/acs.jafc.8b07287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
(-)-Hydroxycitric acid (HCA) inhibits the deposition of fat in animals and humans, while the molecular mechanism is still unclear. The present study investigated the effect and mechanism of (-)-HCA's regulation of lipid, glucose, and energy metabolism in broiler chickens. The current results showed that (-)-HCA decreased the accumulation of lipid droplets and triglyceride content by reducing fatty acid synthase protein level and enhancing phosphorylation of acetyl-CoA carboxylase protein level. (-)-HCA accelerated carbohydrate aerobic metabolisms by increasing the activities of phosphofructokinase-1, pyruvate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. Furthermore, (-)-HCA increased adiponectin receptor 1 mRNA level and enhanced phospho-AMPKα, peroxisome proliferator-activated receptor gamma coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A protein levels in broiler chickens. These data indicated that (-)-HCA reduced lipid droplet accumulation, improved glucose catabolism, and accelerated energy metabolism in broiler chickens, possibly via activation of adiponectin-AMPK signaling pathway. These results revealed the biochemical mechanism of (-)-HCA-mediated fat accumulation and the prevention of metabolic disorder-related diseases in broiler chickens.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
19
|
Sánchez-Roque Y, Pérez-Luna YDC, Pérez-Luna E, Hernández RB, Saldaña-Trinidad S. Evaluation of different agroindustrial waste on the effect of different carcass characteristics and physiological and biochemical parameters in broilers chicken. Vet World 2017; 10:368-374. [PMID: 28507406 PMCID: PMC5422238 DOI: 10.14202/vetworld.2017.368-374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Aim: This study was conducted to evaluate the physiological and biochemical effect in chickens of the Ross breed of a food enriched with agroindustrial waste. Materials and Methods: The food is one of the main components of the total cost for the production of chickens. Rations should be formulated to provide the correct balance of energy, protein, amino acids, minerals, vitamins and essential fatty acids, to allow optimal growth and performance. This study was intended to evaluate a natural feed for chicken, made from corn, yucca meal, eggshells, orange peel, soybean meal, salt and garlic, enriched with agroindustrial waste (molasses, milk whey and ferment of coffee). The weight gain was evaluated in broilers using a diet enriched with different agroindustrial wastes, with respect to a control food of the same composition but not containing residue. To develop the experiment 120 male Ross 308 chicks were used, these were evaluated for 6 weeks. Physicochemical test for the food and the agroindustrial waste were performed; moisture was determined; organic carbon, organic material and the ash, to characterize the agroindustrial wastes, the reducing sugars content using a spectrophotometer at 540 nm and proteins through the Kjeldahl method was evaluated. During the experiment, the weight gain of chickens and feed conversion was evaluated; the end of the experiment the weight of eviscerated channel relative weight breast, thighs, pancreas, and abdominal fat was determined, besides including blood chemistries as determination of cholesterol, triglycerides, and glucose. Finally, the microbiological analyzes to detect the presence of Escherichia coli in the cecum was determinate. Data were analyzed by InfoStat statistical program using the generalized linear model procedure. The statistical comparison was made by Tukey test at the 95% probability level. Results: After the evaluation, fed chickens with the treatments food + milk whey (FMW) and food + ferment of coffee (FFC) demonstrated increased from 1949 to 1892 g, respectively, to the 42 days of evaluation, showing the best treatment for weight gain. However, the FFC treatment showed the best feed conversion reaching values of 1.79 related to levels of blood glucose (249 mg/dl). Even so the eviscerated channel yields were higher for the treatment FFC reaching 1810.1 g unlike the treatment FMW which it reached a weight of 1718.2 g with increased formation of abdominal fat (7.4 g) unlike other treatments. From the results, it is concluded that food enriched with coffee ferment allows an increase in weight, better feed conversion in addition to high production of lean meat. Conclusion: It was shown that the best treatment was the food enriched with the ferment of coffee, due to increased intake and weight gain at the end of 42 days of the experiment.
Collapse
Affiliation(s)
- Y Sánchez-Roque
- Department of Agroindustrial Engineering, Universidad Politécnica de Chiapas, Eduardo J. Selvas s. n. Col. Magisterial. C. P. 29080, Tuxtla Gutiérrez, Chiapas, México
| | - Y D C Pérez-Luna
- Department of Agroindustrial Engineering, Universidad Politécnica de Chiapas, Eduardo J. Selvas s. n. Col. Magisterial. C. P. 29080, Tuxtla Gutiérrez, Chiapas, México
| | - E Pérez-Luna
- Department of Zootechnical, Faculty of Agronomic Sciences Campus V Universidad Autónoma de Chiapas, Carretera Ocozocoautla Villaflores, CHIS 230, 30470 Chis, Mexico
| | - R Berrones Hernández
- Department of Agroindustrial Engineering, Universidad Politécnica de Chiapas, Eduardo J. Selvas s. n. Col. Magisterial. C. P. 29080, Tuxtla Gutiérrez, Chiapas, México
| | - S Saldaña-Trinidad
- Department of Agroindustrial Engineering, Universidad Politécnica de Chiapas, Eduardo J. Selvas s. n. Col. Magisterial. C. P. 29080, Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|