1
|
Hua H, Guan L, Pan B, Gao J, Geng Y, Niu MM, Li Z, Li J. The identification of potent dual-target monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) inhibitors through pharmacophore modeling, molecular docking, molecular dynamics simulations, and biological evaluation. Front Pharmacol 2024; 15:1454523. [PMID: 39351092 PMCID: PMC11439681 DOI: 10.3389/fphar.2024.1454523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Background Overexpression of monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) is associated with the proliferation of liver cancer cells, so simultaneous inhibition of both MPS1 and HDAC8 could offer a promising therapeutic approach for the treatment of liver cancer. Dual-targeted MPS1/HDAC8 inhibitors have not been reported. Methods A combined approach of pharmacophore modeling and molecular docking was used to identify potent dual-target inhibitors of MPS1 and HDAC8. Enzyme inhibition assays were performed to evaluate the optimal compound with the strongest inhibitory activity against MPS1 and HDAC8. The selectivity of MPH-5 for MPS1 and HDAC8 was assessed on a panel of 68 kinases and other histone deacetylases. Subsequently, molecular dynamics (MD) simulation verified the binding stability of the optimal compound to MPS1 and HDAC8. Ultimately, in vitro cellular assays and in vivo antitumor assays evaluated the antitumor efficacy of the most promising compound for the treatment of hepatocellular carcinoma. Results Six dual-target compounds (MPHs 1-6) of both MPS1 and HDAC8 were identified from the database using a combined virtual screening protocol. Notably, MPH-5 showed nanomolar inhibitory effect on both MPS1 (IC50 = 4.52 ± 0.21 nM) and HDAC8 (IC50 = 6.07 ± 0.37 nM). MD simulation indicated that MPH-5 stably binds to both MPS1 and HDAC8. Importantly, cellular assays revealed that MPH-5 exhibited significant antiproliferative activity against human liver cancer cells, especially HepG2 cells. Moreover, MPH-5 exhibited low toxicity and high efficacy against tumor cells, and it overcomes drug resistance to some extent. In addition, MPH-5 may exert its antitumor effects by downregulating MPS1-driven phosphorylation of histone H3 and upregulating HDAC8-mediated K62 acetylation of PKM2. Furthermore, MPH-5 showed potent inhibition of HepG2 xenograft tumor growth in mice with no apparent toxicity and presented favorable pharmacokinetics. Conclusion The study suggests that MPH-5 is a potent, selective, high-efficacy, and low-toxicity antitumor candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huilian Hua
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Bo Pan
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, China
| | - Junyi Gao
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Jindong Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Liang C, Zhou Y, Xin L, Kang K, Tian L, Zhang D, Li H, Zhao Q, Gao H, Shi Z. Hijacking monopolar spindle 1 (MPS1) for various cancer types by small molecular inhibitors: Deep insights from a decade of research and patents. Eur J Med Chem 2024; 273:116504. [PMID: 38795520 DOI: 10.1016/j.ejmech.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China.
| | - Ying Zhou
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Liang Xin
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Kairui Kang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science& Technology, Xi'an, 710021, China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, China
| |
Collapse
|
3
|
Xiao Y, Hu Y. Comprehensive Bioinformatics Analysis and Machine Learning of TTK as a Transhepatic Arterial Chemoembolization Resistance Target in Hepatocellular Carcinoma. Mol Biotechnol 2024:10.1007/s12033-024-01233-3. [PMID: 38954354 DOI: 10.1007/s12033-024-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Transhepatic arterial chemoembolization (TACE) is the standard treatment for intermediate-stage hepatocellular carcinoma (HCC). However, a significant proportion of patients are non-responders or poor responders to TACE. Therefore, our aim is to identify the targets of TACE responders or non-responders. GSE104580 was utilized to identify differentially expressed genes (DEGs) in TACE responders and non-responders. Following the protein-protein interaction (PPI) analysis, hub genes were identified using the MCC and MCODE plugins in Cytoscape software, as well as LASSO regression analysis. Gene set enrichment analysis (GSEA) was performed to investigate potential mechanisms. Subsequently, the hub genes were validated using data from The Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and The Human Protein Atlas (HPA) database. To evaluate the clinical significance of the hub genes, Kaplan-Meier (KM) survival and Cox regression analysis were employed. A total of 375 DEGs were identified, with 126 remaining following PPI analysis, and TTK, a dual-specificity protein kinase associated with cell proliferation, was ultimately identified as the hub gene through multiple screening methods. Data analysis from TCGA, CCLE, and HPA databases revealed elevated TTK expression in HCC tissues. GSEA indicated that the cell cycle, farnesoid X receptor pathway, PPAR pathway, FOXM1 pathway, E2F pathway, and ferroptosis could be potential mechanisms for TACE non-responders. Analysis of immune cell infiltration showed a significant correlation between TTK and Th2 cells. KM and Cox analysis suggested that HCC patients with high TTK expression had a worse prognosis. TTK may play a pivotal role in HCC patients' response to TACE therapy and could be linked to the prognosis of these patients.
Collapse
Affiliation(s)
- Yangyang Xiao
- Department of Gerontology, Jiangxi University of Traditional Chinese Medicine Affiliated Hospital, Nanchang, Jiangxi Province, China
| | - Youwen Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Rd, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Du H, Zhang L, Chen J, Chen X, Qiang R, Ding X, Wang Y, Yang X. Upregulation of TTK expression is associated with poor prognosis and immune infiltration in endometrial cancer patients. Cancer Cell Int 2024; 24:20. [PMID: 38195567 PMCID: PMC10775523 DOI: 10.1186/s12935-023-03192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Threonine and tyrosine kinase (TTK) is associated with invasion and metastasis in various tumors. However, the prognostic importance of TTK and its correlation with immune infiltration in endometrial cancer (EC) remain unclear. METHODS The expression profile of TTK was analyzed using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteome Cancer Analysis Consortium (CPTAC). TTK protein and mRNA levels were verified in EC cell lines. Receiver operating characteristic (ROC) curve analysis was used to evaluate the ability of TTK to distinguish between normal and EC tissues. K-M survival analysis was also conducted to evaluate the impact of TTK on survival outcomes. Protein‒protein interaction (PPI) networks associated with TTK were explored using the STRING database. Functional enrichment analysis was performed to elucidate the biological functions of TTK. TTK mRNA expression and immune infiltration correlations were examined using the Tumor Immune Estimation Resource (TIMER) and the Tumor-Immune System Interaction Database (TISIDB). RESULTS TTK expression was significantly greater in EC tissues than in adjacent normal tissues. Higher TTK mRNA expression was associated with tumor metastasis and advanced TNM stage. The protein and mRNA expression of TTK was significantly greater in tumor cell lines than in normal endometrial cell lines. ROC curve analysis revealed high accuracy (94.862%), sensitivity (95.652%), and specificity (94.894%) of TTK in differentiating EC from normal tissues. K-M survival analysis demonstrated that patients with high TTK expression had worse overall survival (OS) and disease-free survival (DFS) rates. Correlation analysis revealed that TTK mRNA expression was correlated with B cells and neutrophils. CONCLUSION TTK upregulation is significantly associated with poor survival outcomes and immune infiltration in patients with EC. TTK can serve as a potential biomarker for poor prognosis and a promising immunotherapy target in EC. Further investigation of the role of TTK in EC may provide valuable insights for therapeutic interventions and personalized treatment strategies.
Collapse
Affiliation(s)
- Hongxiang Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Li Zhang
- Department of Cancer Research Center, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Gynaecology and Obstetrics, JiangSu XiangShui Hospital of Chinese Medicine, XiangShui, China
| | - Xinyi Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ronghui Qiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiaoyi Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yilang Wang
- Department of Oncology, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China.
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
6
|
Cui CH, Wu Q, Zhou HM, He H, Wang Y, Tang Z, Zhang Y, Wang X, Xiao J, Zhang H. High tyrosine threonine kinase expression predicts a poor prognosis: a potential therapeutic target for endometrial carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1352. [PMID: 36660721 PMCID: PMC9843307 DOI: 10.21037/atm-22-5783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Background As the most common female malignancy, the incidence and mortality of endometrial carcinoma (EC) continue to increase worldwide. The effects of traditional standard therapy are limited; thus, novel therapeutic strategies urgently need to be developed. We sought to provide prospective targeting insights into EC therapeutics by comprehensively examining and confirming the biological molecular characterization of EC genes. Methods The molecular characterization of EC genes was integrated and analyzed using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) databases. The differentially expressed genes (DEGs) were identified, and the abnormal expression of some core cell-cycle proteins in the EC specimens was determined by examining and integrating the TCGA and GTEx data. The enriched signaling pathways involved in tumor progression were also examined. Results Immunohistochemical staining data from the Human Protein Atlas database showed that the differential expression levels of the cyclin dependent kinase inhibitor 2A (CDKN2A) and tyrosine threonine kinase (TTK) molecules, and the high messenger ribonucleic acid (RNA) levels of CDKN2A and TTK were associated with a poor prognosis in EC patients. High TTK expression was also significantly correlated with the tumor progression associated signaling pathways, such as the cell-cycle, nucleolus, and RNA processing pathways. The inhibition of TTK expression by a TTK inhibitor (NTRC0066-0) significantly suppressed the proliferation of the EC cells and synergistically increased the sensitivity of the EN and AN3-CA EC cell lines. Conclusions The findings suggest that the TTK inhibitor could be used in EC therapy. This study highlighted the potential predictive role of TTK molecules and showed that TTK molecules might serve as prospective targets for EC therapy.
Collapse
Affiliation(s)
- Chun-Hong Cui
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai 10th People’s Hospital of Tongji University, Shanghai, China
| | - Hong-Mei Zhou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiju He
- Department of Hematology, Soochow University Affiliated No. 1 People’s Hospital, Suzhou, China
| | - Yan Wang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Tang
- School of Data Science and Engineering, East China Normal University, Shanghai, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xue Wang
- Department of Dermatology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
M Serafim RA, da Silva Santiago A, Schwalm MP, Hu Z, Dos Reis CV, Takarada JE, Mezzomo P, Massirer KB, Kudolo M, Gerstenecker S, Chaikuad A, Zender L, Knapp S, Laufer S, Couñago RM, Gehringer M. Development of the First Covalent Monopolar Spindle Kinase 1 (MPS1/TTK) Inhibitor. J Med Chem 2022; 65:3173-3192. [PMID: 35167750 DOI: 10.1021/acs.jmedchem.1c01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, RMS-07, targeting a poorly conserved cysteine in the kinase's hinge region. RMS-07 shows potent MPS1 inhibitory activity and selectivity against all protein kinases with an equivalent cysteine but also in a broader kinase panel. We demonstrate potent cellular target engagement and pronounced activity against various cancer cell lines. The covalent binding mode was validated by mass spectrometry and an X-ray crystal structure. This proof of MPS1 covalent ligandability may open new avenues for the design of MPS1-specific chemical probes or drugs.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - André da Silva Santiago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Martin P Schwalm
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Zexi Hu
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Jessica E Takarada
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Priscila Mezzomo
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Katlin B Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Mark Kudolo
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Gerstenecker
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 72076 Tübingen, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI) and German Translational Cancer Network (DKTK) Site Frankfurt/Mainz, 60596 Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Lu M, Qiu S, Jiang X, Wen D, Zhang R, Liu Z. Development and Validation of Epigenetic Modification-Related Signals for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649093. [PMID: 34235075 PMCID: PMC8256693 DOI: 10.3389/fonc.2021.649093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increasing evidence has indicated that abnormal epigenetic factors such as RNA m6A modification, histone modification, DNA methylation, RNA binding proteins and transcription factors are correlated with hepatocarcinogenesis. However, it is unknown how epigenetic modification-associated genes contribute to the occurrence and clinical outcome of hepatocellular carcinoma (HCC). Thus, we constructed the epigenetic modification-associated models that may enhance the diagnosis and prognosis of HCC. Methods In this study, we focused on the clinical value of epigenetic modification-associated genes for HCC. Our gene expression data were collected from TCGA and HCC data sets from the GEO database to ensure the reliability of the data. Their functions were analyzed by bioinformatics methods. We used lasso regression, Support vector machine (SVM), logistic regression and Cox regression to construct the diagnostic and prognostic models. We also constructed a nomogram of the practicability of the above-mentioned prognostic model. The above results were verified in an independent liver cancer data set from the ICGC database and clinical samples. Furthermore, we carried out pan-cancer analysis to verify the specificity of the above model and screened a wide range of drug candidates. Results Many epigenetic modification-associated genes were significantly different in HCC and normal liver tissues. The gene signatures showed a good ability to predict the occurrence and survival of HCC patients, as verified by DCA and ROC curve analysis. Conclusion Gene signatures based on epigenetic modification-associated genes can be used to identify the occurrence and prognosis of liver cancer.
Collapse
Affiliation(s)
- Maoqing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sheng Qiu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Diguang Wen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ronggui Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Khedkar HN, Wang YC, Yadav VK, Srivastava P, Lawal B, Mokgautsi N, Sumitra MR, Wu ATH, Huang HS. In-Silico Evaluation of Genetic Alterations in Ovarian Carcinoma and Therapeutic Efficacy of NSC777201, as a Novel Multi-Target Agent for TTK, NEK2, and CDK1. Int J Mol Sci 2021; 22:ijms22115895. [PMID: 34072728 PMCID: PMC8198179 DOI: 10.3390/ijms22115895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease’s pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Harshita Nivrutti Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Prateeti Srivastava
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- National Defense Medical Center, School of Pharmacy, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| |
Collapse
|
11
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
12
|
Prajumwongs P, Phumphu R, Waenphimai O, Lert-itthiporn W, Vaeteewoottacharn K, Wongkham S, Chamgramol Y, Pairojkul C, Sawanyawisuth K. High Monopolar Spindle 1 Is Associated with Short Survival of Cholangiocarcinoma Patients and Enhances the Progression Via AKT and STAT3 Signaling Pathways. Biomedicines 2021; 9:68. [PMID: 33450849 PMCID: PMC7828338 DOI: 10.3390/biomedicines9010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. The major problems of this cancer are late diagnosis and a high rate of metastasis. CCA patients in advanced stages have poor survival and cannot be cured with surgery. Therefore, targeting molecules involved in the metastatic process may be an effective CCA treatment. Monopolar spindle 1 (MPS1) is a kinase protein that controls the spindle assemble checkpoint in mitosis. It is overexpressed in proliferating cells and various cancers. The functional roles of MPS1 in CCA progression have not been investigated. The aims of this study were to examine the roles and molecular mechanisms of MPS1 in CCA progression. Immunohistochemistry results showed that MPS1 was up-regulated in carcinogenesis of CCA in a hamster model, and positive expression of MPS1 in human CCA tissues was correlated to short survival of CCA patients (n = 185). Small interfering RNA (siRNA)-induced knockdown of MPS1 expression reduced cell proliferation via G2/M arrest, colony formation, migration, and invasion. Moreover, MPS1 controlled epithelial to mesenchymal transition (EMT)-mediated migration via AKT and STAT3 signaling transductions. MPS1 was also involved in MMPs-dependent invasion of CCA cell lines. The current research highlights for the first time that MPS1 has an essential role in promoting the progression of CCA via AKT and STAT3 signaling pathways and could be an attractive target for metastatic CCA treatment.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Ratthaphong Phumphu
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Worachart Lert-itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| |
Collapse
|
13
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
14
|
Wang W, Wang L, Xie X, Yan Y, Li Y, Lu Q. A gene-based risk score model for predicting recurrence-free survival in patients with hepatocellular carcinoma. BMC Cancer 2021; 21:6. [PMID: 33402113 PMCID: PMC7786458 DOI: 10.1186/s12885-020-07692-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains the most frequent liver cancer, accounting for approximately 90% of primary liver cancers worldwide. The recurrence-free survival (RFS) of HCC patients is a critical factor in devising a personal treatment plan. Thus, it is necessary to accurately forecast the prognosis of HCC patients in clinical practice. METHODS Using The Cancer Genome Atlas (TCGA) dataset, we identified genes associated with RFS. A robust likelihood-based survival modeling approach was used to select the best genes for the prognostic model. Then, the GSE76427 dataset was used to evaluate the prognostic model's effectiveness. RESULTS We identified 1331 differentially expressed genes associated with RFS. Seven of these genes were selected to generate the prognostic model. The validation in both the TCGA cohort and GEO cohort demonstrated that the 7-gene prognostic model can predict the RFS of HCC patients. Meanwhile, the results of the multivariate Cox regression analysis showed that the 7-gene risk score model could function as an independent prognostic factor. In addition, according to the time-dependent ROC curve, the 7-gene risk score model performed better in predicting the RFS of the training set and the external validation dataset than the classical TNM staging and BCLC. Furthermore, these seven genes were found to be related to the occurrence and development of liver cancer by exploring three other databases. CONCLUSION Our study identified a seven-gene signature for HCC RFS prediction that can be used as a novel and convenient prognostic tool. These seven genes might be potential target genes for metabolic therapy and the treatment of HCC.
Collapse
Affiliation(s)
- Wenhua Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Lingchen Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yue Li
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
15
|
Tsai YM, Wu KL, Chang YY, Hung JY, Chang WA, Chang CY, Jian SF, Tsai PH, Huang YC, Chong IW, Hsu YL. Upregulation of Thr/ Tyr kinase Increases the Cancer Progression by Neurotensin and Dihydropyrimidinase-Like 3 in Lung Cancer. Int J Mol Sci 2020; 21:ijms21051640. [PMID: 32121246 PMCID: PMC7084211 DOI: 10.3390/ijms21051640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death globally, thus elucidation of its molecular pathology is highly highlighted. Aberrant alterations of the spindle assembly checkpoint (SAC) are implicated in the development of cancer due to abnormal cell division. TTK (Thr/Tyr kinase), a dual serine/threonine kinase, is considered to act as a cancer promoter by controlling SAC. However, the mechanistic details of how TTK-mediated signaling network supports cancer development is still a mystery. Here, we found that TTK was upregulated in the tumor tissue of patients with lung cancer, and enhanced tumor growth and metastasis in vitro and in vivo. Mechanistically, TTK exerted a significant enhancement in cancer growth by neurotensin (NTS) upregulation, and subsequently increased the expression of cyclin A and cdk2, which was resulting in the increase of DNA synthesis. In contrast, TTK increased cell migration and epithelial-to-mesenchymal transition (EMT) by enhancing the expression of dihydropyrimidinase-like 3 (DPYSL3) followed by the increase of snail-regulated EMT, thus reinforce metastatic potential and ultimately tumor metastasis. TTK and DPYSL3 upregulation was positively correlated with a poor clinical outcome in patients with lung cancer. Together, our findings revealed a novel mechanism underlying the oncogenic potential effect of TTK and clarified its downstream factors NTS and DPYSL3 might represent a novel, promising candidate oncogenes with potential therapeutic vulnerabilities in lung cancer.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jen-Yu Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
| | - Inn-Wen Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-Y.C.); (J.-Y.H.); (C.-Y.C.); (S.-F.J.); (P.-H.T.); (Y.-C.H.); (I.-W.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Zhang L, Jiang B, Zhu N, Tao M, Jun Y, Chen X, Wang Q, Luo C. Mitotic checkpoint kinase Mps1/TTK predicts prognosis of colon cancer patients and regulates tumor proliferation and differentiation via PKCα/ERK1/2 and PI3K/Akt pathway. Med Oncol 2019; 37:5. [PMID: 31720873 DOI: 10.1007/s12032-019-1320-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023]
Abstract
Mps1/TTK plays an important role in development of many tumors. The purpose of the present study was designed to investigate the role of TTK in colon cancer. We analyzed TTK and colon cancer in the GEO database, colon cancer tissues and normal tissues were collected to verify the results by immunohistochemistry. We detected the TTK expression in the colon cancer cell lines, and overexpressed or silenced TTK expression in colon cancer cell lines. GEO database showed that the expression of TTK was higher in the colon cancer tissues than normal tissues, higher level of TTK shows unfavourable prognosis in colon patients. Furthermore, high differentiation of colon shows the lower expression of TTK. The higher expression of TTK links with the high microsatellite status. However, the expression of TTK has no significant difference among the different stages of colon cancer patients, and has no significant relationship with recurrence or relapse. Here, we also report that the differential expression of TTK in colon cancer cells alters the intrinsic negative regulation of cell proliferation and differentiation, resulting in the difference of proliferation and differentiation capacity. TTK could activate the PKCα/ERK1/2 to influence the proliferation and inactivate the PI3K/AKT pathway to inhibition the expression of MUC2 and TFF3 that related to the differentiation of colon cells. In conclusions, TTK promote the colon cancer cell proliferation via activation of PKCα/ERK1/2 and inhibit the differentiation via inactivation of PI3K/Akt pathway. TTK inhibition may be the potential therapeutic pathway for the treatment of colon cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Ni Zhu
- Department of Microbiology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Mingyue Tao
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Yali Jun
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Xiaofei Chen
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| | - Qilong Wang
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| | - Chao Luo
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
17
|
Chen FF, Zhang SR, Peng H, Chen YZ, Cui XB. Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma. Mol Med Rep 2019; 20:3649-3660. [PMID: 31485619 PMCID: PMC6755233 DOI: 10.3892/mmr.2019.10608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The main purpose of the present study was to recognize the integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma (ESCC). The mRNA gene expression profile data of GSE38129 were downloaded from the Gene Expression Omnibus database, which included 30 ESCC and 30 normal tissue samples. The differentially expressed genes (DEGs) between ESCC and normal samples were identified using the GEO2R tool. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify the functions and related pathways of the genes. The protein‑protein interaction (PPI) network of these DEGs was constructed with the Search Tool for the Retrieval of Interacting Genes and visualized with a molecular complex detection plug‑in via Cytoscape. The top five important modules were selected from the PPI network. A total of 928 DEGs, including ephrin‑A1 (EFNA1), collagen type IV α1 (COL4A1), C‑X‑C chemokine receptor 2 (CXCR2), adrenoreceptor β2 (ADRB2), P2RY14, BUB1B, cyclin A2 (CCNA2), checkpoint kinase 1 (CHEK1), TTK, pituitary tumor transforming gene 1 (PTTG1) and COL5A1, including 498 upregulated genes, were mainly enriched in the 'cell cycle', 'DNA replication' and 'mitotic nuclear division', whereas 430 downregulated genes were enriched in 'oxidation‑reduction process', 'xenobiotic metabolic process' and 'cell‑cell adhesion'. The KEGG analysis revealed that 'ECM‑receptor interaction', 'cell cycle' and 'p53 signaling pathway' were the most relevant pathways. According to the degree of connectivity and adjusted P‑value, eight core genes were selected, among which those with the highest correlation were CHEK1, BUB1B, PTTG1, COL4A1 and CXCR2. Gene Expression Profiling Interactive Analysis in The Cancer Genome Atlas database for overall survival (OS) was applied among these genes and revealed that EFNA1 and COL4A1 were significantly associated with a short OS in 182 patients. Immunohistochemical results revealed that the expression of PTTG1 in esophageal carcinoma tissues was higher than that in normal tissues. Therefore, these genes may serve as crucial predictors for the prognosis of ESCC.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Shi-Rong Zhang
- Department of Science and Education, The First Affiliated Hospital of Nanyang Medical College, Nanyang, Henan 473000, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yun-Zhao Chen
- The People's Hospital of Suzhou National Hi‑Tech District, Suzhou, Jiangsu 215010, P.R. China
| | - Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
18
|
Zhu GQ, Yang Y, Chen EB, Wang B, Xiao K, Shi SM, Zhou ZJ, Zhou SL, Wang Z, Shi YH, Fan J, Zhou J, Liu TS, Dai Z. Development and validation of a new tumor-based gene signature predicting prognosis of HBV/HCV-included resected hepatocellular carcinoma patients. J Transl Med 2019; 17:203. [PMID: 31215439 PMCID: PMC6582497 DOI: 10.1186/s12967-019-1946-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Due to the phenotypic and molecular diversity of hepatocellular carcinomas (HCC), it is still a challenge to determine patients' prognosis. We aim to identify new prognostic markers for resected HCC patients. METHODS 274 patients were retrospectively identified and samples collected from Zhongshan hospital, Fudan University. We analyzed the gene expression patterns of tumors and compared expression patterns with patient survival times. We identified a "9-gene signature" associated with survival by using the coefficient and regression formula of multivariate Cox model. This molecular signature was then validated in three patients cohorts from internal cohort (n = 69), TCGA (n = 369) and GEO dataset (n = 80). RESULTS We identified 9-gene signature consisting of ZC2HC1A, MARCKSL1, PTGS1, CDKN2B, CLEC10A, PRDX3, PRKCH, MPEG1 and LMO2. The 9-gene signature was used, combined with clinical parameters, to fit a multivariable Cox model to the training cohort (concordance index, ci = 0.85), which was successfully validated (ci = 0.86 for internal cohort; ci = 0.78 for in silico cohort). The signature showed improved performance compared with clinical parameters alone (ci = 0.70). Furthermore, the signature predicted patient prognosis than previous gene signatures more accurately. It was also used to stratify early-stage, HBV or HCV-infected patients into low and high-risk groups, leading to significant differences in survival in training and validation (P < 0.001). CONCLUSIONS The 9-gene signature, in which four were upregulated (ZC2HC1A, MARCKSL1, PTGS1, CDKN2B) and five (CLEC10A, PRDX3, PRKCH, MPEG1, LMO2) were downregulated in HCC with poor prognosis, stratified HCC patients into low and high risk group significantly in different clinical settings, including receiving adjuvant transarterial chemoembolization and especially in early stage disease. This new signature should be validated in prospective studies to stratify patients in clinical decisions.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yi Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Er-Bao Chen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Kun Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Shi-Ming Shi
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Shao-Lai Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Tian-Shu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Wiltberger G, Wu Y, Lange U, Hau HM, Tapper E, Krenzien F, Atanasov G, Benzing C, Feldbrügge L, Csizmadia E, Broschewitz J, Bartels M, Seehofer D, Jonas S, Berg T, Hessel P, Ascherl R, Neumann UP, Pratschke J, Robson SC, Schmelzle M. Protective effects of coffee consumption following liver transplantation for hepatocellular carcinoma in cirrhosis. Aliment Pharmacol Ther 2019; 49:779-788. [PMID: 30811647 DOI: 10.1111/apt.15089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing evidence suggests that coffee consumption might protect against hepatocellular carcinoma (HCC) and liver cirrhosis-associated death risk. Caffeine is a natural antagonist to extracellular adenosine and exhibits experimental tumoricidal activity. AIM To evaluate if coffee consumption has beneficial effects on HCC recurrence after orthotopic liver transplantation (OLT). METHODS Coffee consumption of patients before and after OLT for HCC was assessed and correlated with HCC recurrence. HepG2 cells were analysed for proliferation and metastasis potential after treatment with adenosine, in the presence or absence of adenosine receptor antagonists. Expression of adenosine receptors was determined, and known adenosine-mediated cancer pathways inclusive of MAPK and NF-kappa B were tested. RESULTS Ninety patients underwent OLT for HCC. Sixteen (17.8%) patients experienced HCC recurrence after median time of 11.5 months (range 1-40.5). For overall survival postoperative coffee intake emerged as major factor of hazard reduction in a multivariate analysis (HR = 0.2936, 95% CI = 0.12-0.71, P = 0.006). Those with such postoperative coffee intake (≥3 cups per day) had a longer overall survival than those who consumed less or no coffee: M = 11.0 years, SD = 0.52 years vs. M = 7.48 years, SD = 0.76 years = 4.7, P = 0.029). CONCLUSIONS Coffee consumption is associated with a decreased risk of HCC recurrence and provides for increased survival following OLT. We suggest that these results might be, at least in part, associated with the antagonist activity of caffeine on adenosine-A2AR mediated growth-promoting effects on HCC cells.
Collapse
Affiliation(s)
- Georg Wiltberger
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Yan Wu
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Undine Lange
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Hans-Michael Hau
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Elliot Tapper
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Felix Krenzien
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georgi Atanasov
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Benzing
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Feldbrügge
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Csizmadia
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes Broschewitz
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Bartels
- Department of General- and Visceral surgery, Helios Clinic Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sven Jonas
- Department of Hepato-, Pancreato- and Biliary Surgery, 310Klinik Nürnberg, Nuremberg, Germany
| | - Thomas Berg
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Phillip Hessel
- Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts
| | - Rudi Ascherl
- Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Ulf P Neumann
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Johann Pratschke
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon C Robson
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Moritz Schmelzle
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Zhang Y, Zhang Y, Zhang L. Expression of cancer-testis antigens in esophageal cancer and their progress in immunotherapy. J Cancer Res Clin Oncol 2019; 145:281-291. [PMID: 30656409 PMCID: PMC6373256 DOI: 10.1007/s00432-019-02840-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Esophageal cancer is a common disease in China with low survival rate due to no obvious early symptoms and lack of effective screening strategies. Traditional treatments usually do not produce desirable results in patients with advanced esophageal cancer, so immunotherapy which relies on tumor-related antigens is needed to combat low survival rates effectively. Cancer-testis antigens (CTA), a large family of tumor-related antigens, have a strong in vivo immunogenicity and tumor-restricted expressing patterns in normal adult tissues. These two characteristics are ideal features of anticancer immunotherapy targets and, therefore, promoted the development of some studies of CTA-based therapy. To provide ideas for the role of the cancer-testis antigens MAGE-A, NY-ESO-1, LAGE-1, and TTK in esophageal cancer, we summarized their expression, prognostic value, and development in immunotherapy. METHODS The relevant literature from PubMed is reviewed in this study. RESULTS In esophageal cancer, although the relationship between expression of MAGE-A, NY-ESO-1, LAGE-1, and TTK and prognosis value is still in a controversial situation, MAGE-A, NY-ESO-1, LAGE-1, and TTK are highly expressed and can induce specific CTL cells to produce particular killing effect on tumor cells, and some clinical trials have demonstrated that immunotherapy for esophageal cancer patients is effective and safe, which provides a new therapeutic strategy for the treatment of esophageal cancer in the future. CONCLUSION In this review, we summarize expression and prognostic value of MAGE-A, NY-ESO-1, LAGE-1, and TTK in esophageal cancer and point out recent advances in immunotherapy about them.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Li Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
21
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
22
|
Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis 2018; 7:66. [PMID: 30140005 PMCID: PMC6107643 DOI: 10.1038/s41389-018-0076-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022] Open
Abstract
Given the dependence of cancers on de novo lipogenesis, we tested the effect of fatostatin, a small molecule thought to target this pathway by blocking activation of SREBP transcription factors, in breast cancer cell lines and xenograft tumors. We found that estrogen receptor (ER) positive cells were more sensitive to fatostatin than ER negative cells and responded with cell cycle arrest and apoptosis. Surprisingly, we found that rather than inhibiting lipogenesis, fatostatin caused an accumulation of lipids as a response to endoplasmic reticulum stress rather than inhibition of SREBP activity. In particular, ceramide and dihydroceramide levels increased and contributed to the apoptotic effects of fatostatin. In addition, an accumulation of triacylglycerides (TAGs), particularly those containing polyunsaturated fatty acids (PUFAs), was also observed as a result of elevated diacylglycerol transferase activity. Blocking PUFA-TAG production enhanced the apoptotic effect of fatostatin, suggesting that these lipids play a protective role and limit fatostatin response. Together, these findings indicate that the ability of breast cancer cells to respond to fatostatin depends on induction of endoplasmic reticulum stress and subsequent ceramide accumulation, and that limiting production of PUFA-TAGs may be therapeutically beneficial in specific tumor subtypes.
Collapse
|
23
|
Li M, Sun Q, Wang X. Transcriptional landscape of human cancers. Oncotarget 2018; 8:34534-34551. [PMID: 28427185 PMCID: PMC5470989 DOI: 10.18632/oncotarget.15837] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The homogeneity and heterogeneity in somatic mutations, copy number alterations and methylation across different cancer types have been extensively explored. However, the related exploration based on transcriptome data is lacking. In this study we explored gene expression profiles across 33 human cancer types using The Cancer Genome Atlas (TCGA) data. We identified consistently upregulated genes (such as E2F1, EZH2, FOXM1, MYBL2, PLK1, TTK, AURKA/B and BUB1) and consistently downregulated genes (such as SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 and HMGCLL1) across various cancers. The dysregulation of these genes is likely to be associated with poor clinical outcomes in cancer. The dysregulated pathways commonly in cancers include cell cycle, DNA replication, repair, and recombination, Notch signaling, p53 signaling, Wnt signaling, TGFβ signaling, immune response etc. We also identified genes consistently upregulated or downregulated in highly-advanced cancers compared to lowly-advanced cancers. The highly (low) expressed genes in highly-advanced cancers are likely to have higher (lower) expression levels in cancers than in normal tissue, indicating that common gene expression perturbations drive cancer initiation and cancer progression. In addition, we identified a substantial number of genes exclusively dysregulated in a single cancer type or inconsistently dysregulated in different cancer types, demonstrating the intertumor heterogeneity. More importantly, we found a number of genes commonly dysregulated in various cancers such as PLP1, MYOM1, NKAPL and USP2 which were investigated in few cancer related studies, and thus represent our novel findings. Our study provides comprehensive portraits of transcriptional landscape of human cancers.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
Wang J, Xie Y, Bai X, Wang N, Yu H, Deng Z, Lian M, Yu S, Liu H, Xie W, Wang M. Targeting dual specificity protein kinase TTK attenuates tumorigenesis of glioblastoma. Oncotarget 2017; 9:3081-3088. [PMID: 29423030 PMCID: PMC5790447 DOI: 10.18632/oncotarget.23152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has proved that glioma stem-like cells (GSCs) are responsible for tumorigenesis, treatment resistance, and subsequent tumor recurrence in glioblastoma (GBM). In this study, we identified dual specificity protein kinase TTK (TTK) as the most up-regulated and differentially expressed kinase encoding genes in GSCs. Functionally, TTK was essential for in vitro clonogenicity and in vivo tumor propagation in GSCs. Clinically, TTK expression was highly enriched in GBM, moreover, was inversely correlated with a poor prognosis in GBM patients. Mechanistically, mitochondrial fission regulator 2 (MTFR2) was identified as one of the most correlated genes to TTK and transcriptionally regulated TTK expression via activation of TTK promoter. Collectively, MTFR2-dependent regulation of TTK plays a key role in maintaining GSCs in GBM and is a potential novel druggable target for GBM.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Xie
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuo Yu
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
25
|
Xie Y, Lin JZ, Wang AQ, Xu WY, Long JY, Luo YF, Shi J, Liang ZY, Sang XT, Zhao HT. Threonine and tyrosine kinase may serve as a prognostic biomarker for gallbladder cancer. World J Gastroenterol 2017; 23:5787-5797. [PMID: 28883705 PMCID: PMC5569294 DOI: 10.3748/wjg.v23.i31.5787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of threonine and tyrosine kinase (TTK) in gallbladder cancer (GBC) specimens and analyze the associations between TTK expression and clinicopathological parameters and clinical prognosis.
METHODS A total of 68 patients with GBC who underwent surgical resection were enrolled in this study. The expression of TTK in GBC tissues was detected by immunohistochemistry. The assessment of TTK expression was conducted using the H-scoring system. H-score was calculated by the multiplication of the overall staining intensity with the percentage of positive cells. The expression of TTK in the cytoplasm and nucleus was scored separately to achieve respective H-score values. The correlations between TTK expression and clinicopathological parameters and clinical prognosis were analyzed using Chi-square test, Kaplan-Meier method and Cox regression.
RESULTS In both the nucleus and cytoplasm, the expression of TTK in tumor tissues was significantly lower than that in normal tissues (P < 0.001 and P = 0.026, respectively). Using the median H-score as the cutoff value, it was discovered that, GBC patients with higher levels of TTK expression in the nucleus, but not the cytoplasm, had favorable overall survival (P < 0.001), and it was still statistically meaningful in Cox regression analysis. Further investigation indicated that there were close negative correlations between TTK expression and tumor differentiation (P = 0.041), CA 19-9 levels (P = 0.016), T stage (P < 0.001), nodal involvement (P < 0.001), distant metastasis (P = 0.024) and TNM stage (P < 0.001).
CONCLUSION The expression of TTK in GBC is lower than that in normal tissues. Higher levels of TTK expression in GBC are concomitant with longer overall survival. TTK is a favorable prognostic biomarker for patients with GBC.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - An-Qiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei-Yu Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Yu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu-Feng Luo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
26
|
Zhang J, Jiang Y, Zhao Y, Wang W, Xie Y, Wang H, Yang Y. Downregulation of tyrosine threonine kinase inhibits tumor growth via G2/M arrest in human endometrioid endometrial adenocarcinoma. Tumour Biol 2017; 39:1010428317712444. [PMID: 28718377 DOI: 10.1177/1010428317712444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy, about 80% of which is endometrial endometrioid carcinoma. Dysregulation of spindle assembly checkpoint plays a vital role in endometrial endometrioid carcinoma tumorigenesis and progression. The purpose of this study was to explore how tyrosine threonine kinase, a spindle assembly checkpoint-related protein, promotes the endometrial endometrioid carcinoma progression. We found that both messenger RNA and protein levels of tyrosine threonine kinase in endometrial endometrioid carcinoma tissues are higher than those in normal endometrial tissues, and its expression is associated with tumor stages. Genetic depletion of tyrosine threonine kinase by RNA interference in two endometrial endometrioid carcinoma cell lines significantly inhibits cell proliferation and induces apoptosis. Mechanistically, depletion of tyrosine threonine kinase induces G2/M cell cycle arrest and triggers caspase-dependent cell apoptosis. Collectively, tyrosine threonine kinase is significantly upregulated in endometrial endometrioid carcinoma, and downregulation of tyrosine threonine kinase can suppress endometrial endometrioid carcinoma cell proliferation and promote apoptosis via G2/M cell cycle arrest. Our study demonstrates that tyrosine threonine kinase can be a potential therapeutic target for endometrial endometrioid carcinoma treatment.
Collapse
Affiliation(s)
- Jiamiao Zhang
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Yan Jiang
- 2 Department of Obstetrics and Gynecology of The Zhong Kang Hospital in Zhengzhou, Zhengzhou, China
| | - Yu Zhao
- 3 Li Ka Shing Institute of Health Sciences and Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong
| | - Wanxue Wang
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Yiran Xie
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Huating Wang
- 3 Li Ka Shing Institute of Health Sciences and Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong
| | - Yihua Yang
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| |
Collapse
|
27
|
Choi M, Min YH, Pyo J, Lee CW, Jang CY, Kim JE. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability. Br J Pharmacol 2017; 174:1810-1825. [PMID: 28299790 DOI: 10.1111/bph.13782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo Hong Min
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Novel high-throughput cell-based hybridoma screening methodology using the Celigo Image Cytometer. J Immunol Methods 2017; 447:23-30. [PMID: 28414024 DOI: 10.1016/j.jim.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/18/2023]
Abstract
Hybridoma screening is a critical step for antibody discovery, which necessitates prompt identification of potential clones from hundreds to thousands of hybridoma cultures against the desired immunogen. Technical issues associated with ELISA- and flow cytometry-based screening limit accuracy and diminish high-throughput capability, increasing time and cost. Conventional ELISA screening with coated antigen is also impractical for difficult-to-express hydrophobic membrane antigens or multi-chain protein complexes. Here, we demonstrate novel high-throughput screening methodology employing the Celigo Image Cytometer, which avoids nonspecific signals by contrasting antibody binding signals directly on living cells, with and without recombinant antigen expression. The image cytometry-based high-throughput screening method was optimized by detecting the binding of hybridoma supernatants to the recombinant antigen CD39 expressed on Chinese hamster ovary (CHO) cells. Next, the sensitivity of the image cytometer was demonstrated by serial dilution of purified CD39 antibody. Celigo was used to measure antibody affinities of commercial and in-house antibodies to membrane-bound CD39. This cell-based screening procedure can be completely accomplished within one day, significantly improving throughput and efficiency of hybridoma screening. Furthermore, measuring direct antibody binding to living cells eliminated both false positive and false negative hits. The image cytometry method was highly sensitive and versatile, and could detect positive antibody in supernatants at concentrations as low as ~5ng/mL, with concurrent Kd binding affinity coefficient determination. We propose that this screening method will greatly facilitate antibody discovery and screening technologies.
Collapse
|
29
|
Xie Y, Wang A, Lin J, Wu L, Zhang H, Yang X, Wan X, Miao R, Sang X, Zhao H. Mps1/TTK: a novel target and biomarker for cancer. J Drug Target 2016; 25:112-118. [PMID: 27819146 DOI: 10.1080/1061186x.2016.1258568] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monopolar spindle1 (Mps1, also known as TTK) is the core component of the spindle assembly checkpoint, which functions to ensure proper distribution of chromosomes to daughter cells. Mps1 is hardly detectable in normal organs except the testis and placenta. However, high levels of Mps1 are found in many types of human malignancies, including glioblastoma, thyroid carcinoma, breast cancer, and other cancers. Several Mps1 inhibitors can inhibit the proliferation of cancer cells and exhibit demonstrable survival benefits. Mps1 can be utilized as a new immunogenic epitope, which is able to induce potent cytotoxic T lymphocyte activity against cancer cells while sparing normal cells. Some clinical trials have validated its safety, immunogenicity and clinical response. Thus, Mps1 may be a novel target for cancer therapy. Mps1 is differentially expressed between normal and malignant tissues, indicating its potential as a molecular biomarker for diagnosis. Meanwhile, the discovery that it clearly correlates with recurrence and survival time suggests it may serve as an independent prognostic biomarker as well.
Collapse
Affiliation(s)
- Yuan Xie
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Anqiang Wang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Jianzhen Lin
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Liangcai Wu
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Haohai Zhang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xiaobo Yang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xueshuai Wan
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Ruoyu Miao
- b Liver Center and The Transplant Institute, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Xinting Sang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Haitao Zhao
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|