1
|
Amono R, Markussen T, Singh VK, Lund M, Manji F, Mor SK, Evensen Ø, Mikalsen AB. Unraveling the genomic landscape of piscine myocarditis virus: mutation frequencies, viral diversity and evolutionary dynamics in Atlantic salmon. Virus Evol 2024; 10:veae097. [PMID: 39717704 PMCID: PMC11665822 DOI: 10.1093/ve/veae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Over a decade since its discovery, piscine myocarditis virus (PMCV) remains a significant pathogen in Atlantic salmon aquaculture. Despite this significant impact, the genomic landscape, evolutionary dynamics, and virulence factors of PMCV are poorly understood. This study enhances the existing PMCV sequence dataset by adding 34 genome sequences and 202 new ORF3 sequences from clinical cardiomyopathy syndrome (CMS) cases in Norwegian aquaculture. Phylogenetic analyses, also including sequences from the Faroe Islands and Ireland revealed that PMCV sequences are highly conserved with distinct clustering by country of origin. Still, single CMS outbreaks display multiple PMCV variants, and although some clustering was seen by case origin, occasional grouping of sequences from different cases was also apparent. Temporal data from selected cases indicated increased sequence diversity in the population. We hypothesize that multiple bottlenecks and changing infection dynamics in the host population, with transfer to naïve individuals over time, represent a continuous selection pressure on the virus populations. No clear relation was found between PMCV variants and the severity of heart pathology. However, specific non-synonymous and synonymous mutations that might impact protein function and gene expression efficiency were identified. An additional factor that may impact PMCV replication is the presence of defective viral genomes, a novel finding for viruses of the order Ghabrivirales. This study provides new insights into PMCV genomic characteristics and evolutionary dynamics, highlighting the complex interplay of genetic diversity, virulence markers, and host-pathogen interactions, underscoring the epidemiological complexity of the virus. Keywords: piscine myocarditis virus; evolutionary dynamics; diversity; phylogeny; genomic sequencing; defective viral genomes.
Collapse
Affiliation(s)
- Racheal Amono
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Vikash K Singh
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States
| | - Morten Lund
- PatoGen AS, Rasmus Rønnebergs Gate 21, Ålesund 6002, Norway
| | - Farah Manji
- Mowi ASA, Post box 4102, Bergen 5835, Norway
| | - Sunil K Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences and Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Post box 2175 University Station, Brookings, SD 57007, USA
| | - Øystein Evensen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Aase B Mikalsen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| |
Collapse
|
2
|
Wang H, Marucci G, Munke A, Hassan MM, Lalle M, Okamoto K. High-resolution comparative atomic structures of two Giardiavirus prototypes infecting G. duodenalis parasite. PLoS Pathog 2024; 20:e1012140. [PMID: 38598600 PMCID: PMC11081498 DOI: 10.1371/journal.ppat.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.
Collapse
Affiliation(s)
- Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Mohammad Maruf Hassan
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Couto RDS, Ramos EDSF, Abreu WU, Rodrigues LRR, Marinho LF, Morais VDS, Villanova F, Pandey RP, Deng X, Delwart E, da Costa AC, Leal E. Metagenomic of Liver Tissue Identified at Least Two Genera of Totivirus-like Viruses in Molossus molossus Bats. Microorganisms 2024; 12:206. [PMID: 38276191 PMCID: PMC10819564 DOI: 10.3390/microorganisms12010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in diameter, and lack an envelope. There are five genera within this family, including Totivirus, Victorivirus, Giardiavirus, Leishmaniavirus, and Trichomonasvirus. While Totivirus and Victorivirus primarily infect fungi, Giardiavirus, Leishmaniavirus, and Trichomonasvirus infect diverse hosts, including protists, insects, and vertebrates. Recently, new totivirus-like species have been discovered in fish and plant hosts, and through metagenomic analysis, a novel totivirus-like virus (named Tianjin totivirus) has been isolated from bat guano. Interestingly, Tianjin totivirus causes cytopathic effects in insect cells but cannot grow in mammalian cells, suggesting that it infects insects consumed by insectivorous bats. In this study, we used next-generation sequencing and identified totivirus-like viruses in liver tissue from Molossus molossus bats in the Amazon region of Brazil. Comparative phylogenetic analysis based on the RNA-dependent RNA polymerase region revealed that the viruses identified in Molossus bats belong to two distinct phylogenetic clades, possibly comprising different genera within the Totiviridae family. Notably, the mean similarity between the Tianjin totivirus and the totiviruses identified in Molossus bats is less than 18%. These findings suggest that the diversity of totiviruses in bats is more extensive than previously recognized and highlight the potential for bats to serve as reservoirs for novel toti-like viruses.
Collapse
Affiliation(s)
- Roseane da Silva Couto
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (E.d.S.F.R.); (F.V.)
| | - Endrya do Socorro Foro Ramos
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (E.d.S.F.R.); (F.V.)
| | - Wandercleyson Uchôa Abreu
- Programa de Pos-Graduação REDE Bionorte, Polo Pará, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | - Luis Reginaldo Ribeiro Rodrigues
- Laboratory of Genetics & Biodiversity, Institute of Educational Sciences, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | | | - Vanessa dos Santos Morais
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (E.d.S.F.R.); (F.V.)
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, Uttarakhand, India;
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94143, USA;
| | - Eric Delwart
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (E.d.S.F.R.); (F.V.)
| |
Collapse
|
4
|
Munke A, Kimura K, Tomaru Y, Wang H, Yoshida K, Mito S, Hongo Y, Okamoto K. Primordial Capsid and Spooled ssDNA Genome Structures Unravel Ancestral Events of Eukaryotic Viruses. mBio 2022; 13:e0015622. [PMID: 35856561 PMCID: PMC9426455 DOI: 10.1128/mbio.00156-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
Marine algae viruses are important for controlling microorganism communities in the marine ecosystem and played fundamental roles during the early events of viral evolution. Here, we have focused on one major group of marine algae viruses, the single-stranded DNA (ssDNA) viruses from the Bacilladnaviridae family. We present the capsid structure of the bacilladnavirus Chaetoceros tenuissimus DNA virus type II (CtenDNAV-II), determined at 2.4-Å resolution. A structure-based phylogenetic analysis supported the previous theory that bacilladnaviruses have acquired their capsid protein via horizontal gene transfer from a ssRNA virus. The capsid protein contains the widespread virus jelly-roll fold but has additional unique features; a third β-sheet and a long C-terminal tail. Furthermore, a low-resolution reconstruction of the CtenDNAV-II genome revealed a partially spooled structure, an arrangement previously only described for dsRNA and dsDNA viruses. Together, these results exemplify the importance of genetic recombination for the emergence and evolution of ssDNA viruses and provide important insights into the underlying mechanisms that dictate genome organization. IMPORTANCE Single-stranded DNA (ssDNA) viruses are an extremely widespread group of viruses that infect diverse hosts from all three domains of life, consequently having great economic, medical, and ecological importance. In particular, bacilladnaviruses are highly abundant in marine sediments and greatly influence the dynamic appearance and disappearance of certain algae species. Despite the importance of ssDNA viruses and the last couple of years' advancements in cryo-electron microscopy, structural information on the genomes of ssDNA viruses remains limited. This paper describes two important achievements: (i) the first atomic structure of a bacilladnavirus capsid, which revealed that the capsid protein gene presumably was acquired from a ssRNA virus in early evolutionary events; and (ii) the structural organization of a ssDNA genome, which retains a spooled arrangement that previously only been observed for double-stranded viruses.
Collapse
Affiliation(s)
- Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kei Kimura
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
| | - Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Seiya Mito
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yuki Hongo
- Bioinformatics and Biosciences Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Grybchuk D, Procházková M, Füzik T, Konovalovas A, Serva S, Yurchenko V, Plevka P. Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly. Commun Biol 2022; 5:847. [PMID: 35986212 PMCID: PMC9391438 DOI: 10.1038/s42003-022-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA. A 2.9 Å resolution structure of the L-BC virus provides insight into the contacts between capsid proteins and the mechanism of capsid assembly.
Collapse
|
6
|
Shao Q, Jia X, Gao Y, Liu Z, Zhang H, Tan Q, Zhang X, Zhou H, Li Y, Wu D, Zhang Q. Cryo-EM reveals a previously unrecognized structural protein of a dsRNA virus implicated in its extracellular transmission. PLoS Pathog 2021; 17:e1009396. [PMID: 33730056 PMCID: PMC7968656 DOI: 10.1371/journal.ppat.1009396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Mosquito viruses cause unpredictable outbreaks of disease. Recently, several unassigned viruses isolated from mosquitoes, including the Omono River virus (OmRV), were identified as totivirus-like viruses, with features similar to those of the Totiviridae family. Most reported members of this family infect fungi or protozoans and lack an extracellular life cycle stage. Here, we identified a new strain of OmRV and determined high-resolution structures for this virus using single-particle cryo-electron microscopy. The structures feature an unexpected protrusion at the five-fold vertex of the capsid. Disassociation of the protrusion could result in several conformational changes in the major capsid. All these structures, together with some biological results, suggest the protrusions’ associations with the extracellular transmission of OmRV. Mosquito is a reservoir of viruses, with a large amount of them perform significant research value. Omono River virus (OmRV) has been isolated from Culex mosquito and is closely related to the family Totiviridae. However, current researches have reported the extracellular transmission ability of OmRV, which is lacked in most members of Totiviridae. In the current study, we isolated a new strain, OmRV-LZ, and obtained its high-resolution cryo-electron microscopy (cryo-EM) structure. Unexpectedly, a protrusion structure has been found located at the five-fold vertex, which is unrecognized in the previous studies. Structural and molecular biological experiments were applied to try to investigate its functions. The results may be helpful to understand the extracellular transmission ability of OmRV-LZ and similar double-stranded RNA (dsRNA) viruses.
Collapse
Affiliation(s)
- Qianqian Shao
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xudong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhu Gao
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
| | - Huan Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
| | - Qiqi Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
| | - Huiqiong Zhou
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
| | - Yinyin Li
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
- * E-mail: (DW); (QZ)
| | - Qinfen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail: (DW); (QZ)
| |
Collapse
|
7
|
Hewson I, Johnson MR, Tibbetts IR. An Unconventional Flavivirus and Other RNA Viruses in the Sea Cucumber (Holothuroidea; Echinodermata) Virome. Viruses 2020; 12:v12091057. [PMID: 32972018 PMCID: PMC7551563 DOI: 10.3390/v12091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0151
| | | | - Ian R. Tibbetts
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| |
Collapse
|
8
|
Zhang Y, Qiang X, Guo X, Peng H, Qin S, Cui Y, Fan H, Zhou H, Zhang J, Wang J, Tong Y. Identification and Molecular Characterization of a New Omono River Virus Isolated from Culex Tritaeniorhynchus in Yunnan, China. Virol Sin 2020; 36:152-154. [PMID: 32691306 DOI: 10.1007/s12250-020-00247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, China
| | - Honghong Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, China.
| | - Jiusong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Acquired Functional Capsid Structures in Metazoan Totivirus-like dsRNA Virus. Structure 2020; 28:888-896.e3. [PMID: 32413288 DOI: 10.1016/j.str.2020.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Non-enveloped icosahedral double-stranded RNA (dsRNA) viruses possess multifunctional capsids required for their proliferation. Whereas protozoan/fungal dsRNA viruses have a relatively simple capsid structure, which suffices for the intracellular phase in their life cycle, metazoan dsRNA viruses have acquired additional structural features as an adaptation for extracellular cell-to-cell transmission in multicellular hosts. Here, we present the first atomic model of a metazoan dsRNA totivirus-like virus and the structure reveals three unique structural traits: a C-terminal interlocking arm, surface projecting loops, and an obstruction at the pore on the 5-fold symmetry axis. These traits are keys to understanding the capsid functions of metazoan dsRNA viruses, such as particle stability and formation, cell entry, and endogenous intraparticle transcription of mRNA. On the basis of molecular dynamics simulations of the obstructed pore, we propose a possible mechanism of intraparticle transcription in totivirus-like viruses, which dynamically switches between open and closed states of the pore(s).
Collapse
|
10
|
Kleschenko Y, Grybchuk D, Matveeva NS, Macedo DH, Ponirovsky EN, Lukashev AN, Yurchenko V. Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes (Basel) 2019; 10:genes10100830. [PMID: 31640177 PMCID: PMC6826456 DOI: 10.3390/genes10100830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L. major) and common geographical origin.
Collapse
Affiliation(s)
- Yuliya Kleschenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
| | - Danyil Grybchuk
- Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
- CEITEC-Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
| | - Nadezhda S Matveeva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
- Department of Molecular Biology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia.
| | - Diego H Macedo
- Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| | - Evgeny N Ponirovsky
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
- Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| |
Collapse
|
11
|
Sutter M, Greber B, Aussignargues C, Kerfeld CA. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science 2018. [PMID: 28642439 DOI: 10.1126/science.aan3289] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many bacteria contain primitive organelles composed entirely of protein. These bacterial microcompartments share a common architecture of an enzymatic core encapsulated in a selectively permeable protein shell; prominent examples include the carboxysome for CO2 fixation and catabolic microcompartments found in many pathogenic microbes. The shell sequesters enzymatic reactions from the cytosol, analogous to the lipid-based membrane of eukaryotic organelles. Despite available structural information for single building blocks, the principles of shell assembly have remained elusive. We present the crystal structure of an intact shell from Haliangium ochraceum, revealing the basic principles of bacterial microcompartment shell construction. Given the conservation among shell proteins of all bacterial microcompartments, these principles apply to functionally diverse organelles and can inform the design and engineering of shells with new functionalities.
Collapse
Affiliation(s)
- Markus Sutter
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Basil Greber
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Clement Aussignargues
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Daurer BJ, Okamoto K, Bielecki J, Maia FRNC, Mühlig K, Seibert MM, Hantke MF, Nettelblad C, Benner WH, Svenda M, Tîmneanu N, Ekeberg T, Loh ND, Pietrini A, Zani A, Rath AD, Westphal D, Kirian RA, Awel S, Wiedorn MO, van der Schot G, Carlsson GH, Hasse D, Sellberg JA, Barty A, Andreasson J, Boutet S, Williams G, Koglin J, Andersson I, Hajdu J, Larsson DSD. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCRJ 2017; 4:251-262. [PMID: 28512572 PMCID: PMC5414399 DOI: 10.1107/s2052252517003591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 05/25/2023]
Abstract
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.
Collapse
Affiliation(s)
- Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerstin Mühlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Max F. Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Carl Nettelblad
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lägerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - W. Henry Benner
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Nicuşor Tîmneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1 (Box 516), SE-751 20 Uppsala, Sweden
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - N. Duane Loh
- Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Alessandro Zani
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Asawari D. Rath
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Bhabha Atomic Research Center, Mumbai 400 085, India
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Richard A. Kirian
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gunilla H. Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jonas A. Sellberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth Williams
- Brookhaven National Laboratory, 743 Brookhaven Avenue, Upton, NY 11973, USA
| | - Jason Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|