1
|
Ashworth KE, Weisbrod J, Ballios BG. Inherited Retinal Diseases and Retinal Organoids as Preclinical Cell Models for Inherited Retinal Disease Research. Genes (Basel) 2024; 15:705. [PMID: 38927641 PMCID: PMC11203130 DOI: 10.3390/genes15060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been made in recent years. To accelerate treatment discovery, retinal organoids provide an ideal human IRD model. This review aims to give background on the development and importance of retinal organoids for the human-based in vitro study of the retina and human retinogenesis and retinal pathologies. From there, we explore retinal pathologies in the context of IRDs and the current landscape of IRD treatment discovery. We discuss the usefulness of retinal organoids in this context (as a patient-derived cell model for IRDs) to precisely understand the pathogenesis and potential mechanisms behind a specific IRD-causing variant of interest. Finally, we discuss the importance and promise of retinal organoids in treatment discovery for IRDs, now and in the future.
Collapse
Affiliation(s)
- Kristen E. Ashworth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Jessica Weisbrod
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Brian G. Ballios
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
2
|
Kao HJ, Lin TY, Hsieh FJ, Chien JY, Yeh EC, Lin WJ, Chen YH, Ding KH, Yang Y, Chi SC, Tsai PH, Hsu CC, Hwang DK, Tsai HY, Peng ML, Lee SH, Chau SF, Chen CY, Cheang WM, Chen SJ, Kwok PY, Chiou SH, Lu MYJ, Huang SP. Highly efficient capture approach for the identification of diverse inherited retinal disorders. NPJ Genom Med 2024; 9:4. [PMID: 38195571 PMCID: PMC10776681 DOI: 10.1038/s41525-023-00388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
Our study presents a 319-gene panel targeting inherited retinal dystrophy (IRD) genes. Through a multi-center retrospective cohort study, we validated the assay's effectiveness and clinical utility and characterized the mutation spectrum of Taiwanese IRD patients. Between January 2018 and May 2022, 493 patients in 425 unrelated families, all initially suspected of having IRD without prior genetic diagnoses, underwent detailed ophthalmic and physical examinations (with extra-ocular features recorded) and genetic testing with our customized panel. Disease-causing variants were identified by segregation analysis and clinical interpretation, with validation via Sanger sequencing. We achieved a read depth of >200× for 94.2% of the targeted 1.2 Mb region. 68.5% (291/425) of the probands received molecular diagnoses, with 53.9% (229/425) resolved cases. Retinitis pigmentosa (RP) is the most prevalent initial clinical impression (64.2%), and 90.8% of the cohort have the five most prevalent phenotypes (RP, cone-rod syndrome, Usher's syndrome, Leber's congenital amaurosis, Bietti crystalline dystrophy). The most commonly mutated genes of probands that received molecular diagnosis are USH2A (13.7% of the cohort), EYS (11.3%), CYP4V2 (4.8%), ABCA4 (4.5%), RPGR (3.4%), and RP1 (3.1%), collectively accounted for 40.8% of diagnoses. We identify 87 unique unreported variants previously not associated with IRD and refine clinical diagnoses for 21 patients (7.22% of positive cases). We developed a customized gene panel and tested it on the largest Taiwanese cohort, showing that it provides excellent coverage for diverse IRD phenotypes.
Collapse
Affiliation(s)
- Hsiao-Jung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Ting-Yi Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 115201, Taiwan
| | - Feng-Jen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970374, Taiwan
| | - Erh-Chan Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Wan-Jia Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Kai-Hsuan Ding
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Yu Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Sheng-Chu Chi
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Hsien-Yang Tsai
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Mei-Ling Peng
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Shi-Huang Lee
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Siu-Fung Chau
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Chen Yu Chen
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Wai-Man Cheang
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Pui-Yan Kwok
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan.
- Institute for Human Genetics, Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco, CA, USA.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Genomic Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| | - Shun-Ping Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970374, Taiwan.
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan.
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970374, Taiwan.
| |
Collapse
|
3
|
Twumasi G, Wang H, Xi Y, Qi J, Li L, Bai L, Liu H. Genome-Wide Association Studies Reveal Candidate Genes Associated with Pigmentation Patterns of Single Feathers of Tianfu Nonghua Ducks. Animals (Basel) 2023; 14:85. [PMID: 38200816 PMCID: PMC10778472 DOI: 10.3390/ani14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
In modern advanced genetics and breeding programs, the study of genes related to pigmentation in ducks is gaining much attention and popularity. Genes and DNA mutation cause variations in the plumage color traits of ducks. Therefore, discovering related genes responsible for different color traits and pigment patterns on each side of the single feathers in Chinese ducks is important for genetic studies. In this study, we collected feather images from 340 ducks and transported them into Image Pro Plus (IPP) 6.0 software to quantify the melanin content in the feathers. Thereafter, a genome-wide association study was conducted to reveal the genes responsible for variations in the feather color trait. The results from this study revealed that the pigmented region was larger in the male ducks as compared to the female ducks. In addition, the pigmented region was larger on the right side of the feather vane than on the left side in both dorsal and ventral feathers, and a positive correlation was observed among the feather color traits. Further, among the annotated genes, WNT3A, DOCK1, RAB1A, and ALDH1A3 were identified to play important roles in the variation in pigmented regions of the various feathers. This study also revealed that five candidate genes, including DPP8, HACD3, INTS14, SLC24A1, and DENND4A, were associated with the color pigment on the dorsal feathers of the ducks. Genes such as PRKG1, SETD6, RALYL, and ZNF704 reportedly play important roles in ventral feather color traits. This study revealed that genes such as WNT3A, DOCK1, RAB1A, and ALDH1A3 were associated with different pigmentation patterns, thereby providing new insights into the genetic mechanisms of single-feather pigmentation patterns in ducks.
Collapse
Affiliation(s)
- Grace Twumasi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huazhen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Stephenson KAJ, Whelan L, Zhu J, Dockery A, Wynne NC, Cairns RM, Kirk C, Turner J, Duignan ES, O'Byrne JJ, Silvestri G, Kenna PF, Farrar GJ, Keegan DJ. Usher Syndrome on the Island of Ireland: A Genotype-Phenotype Review. Invest Ophthalmol Vis Sci 2023; 64:23. [PMID: 37466950 PMCID: PMC10362925 DOI: 10.1167/iovs.64.10.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive (AR) syndromic inherited retinal degenerations (IRDs) representing 50% of deaf-blindness. All subtypes include retinitis pigmentosa, sensorineural hearing loss, and vestibular abnormalities. Thorough phenotyping may facilitate genetic diagnosis and intervention. Here we report the clinical/genetic features of an Irish USH cohort. Methods USH patients were selected from the Irish IRD registry (Target 5000). Patients were examined clinically (deep-phenotyping) and genetically using a 254 IRD-associated gene target capture sequencing panel, USH2A exon, and whole genome sequencing. Results The study identified 145 patients (24.1% USH1 [n = 35], 73.8% USH2 [n = 107], 1.4% USH3 [n = 2], and 0.7% USH4 [n = 1]). A genetic diagnosis was reached in 82.1%, the majority (80.7%) being MYO7A or USH2A genotypes. Mean visual acuity and visual field (VF) were 0.47 ± 0.58 LogMAR and 31.3° ± 32.8°, respectively, at a mean age of 43 years. Legal blindness criteria were met in 40.7%. Cataract was present in 77.4%. ADGRV1 genotypes had the most VF loss, whereas USH2A patients had greater myopia and CDH23 had the most astigmatism. Variants absent from gnomAD non-Finnish Europeans and ClinVar represented more than 20% of the variants identified and were detected in ADGRV1, ARSG, CDH23, MYO7A, and USH2A. Conclusions USH is a genetically diverse group of AR IRDs that have a profound impact on affected individuals and their families. The prevalence and phenotype/genotype characteristics of USH in Ireland have, as yet, gone unreported. Understanding the genotype of Irish USH patients may guide clinical and genetic characterization facilitating access to existing/novel therapeutics.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julia Zhu
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adrian Dockery
- Next Generation Sequencing Laboratory, Pathology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Niamh C Wynne
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - Rebecca M Cairns
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Claire Kirk
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Jacqueline Turner
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Emma S Duignan
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - James J O'Byrne
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giuliana Silvestri
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Paul F Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - David J Keegan
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
6
|
Whelan L, Dockery A, Stephenson KAJ, Zhu J, Kopčić E, Post IJM, Khan M, Corradi Z, Wynne N, O' Byrne JJ, Duignan E, Silvestri G, Roosing S, Cremers FPM, Keegan DJ, Kenna PF, Farrar GJ. Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Sci Rep 2023; 13:9380. [PMID: 37296172 PMCID: PMC10256698 DOI: 10.1038/s41598-023-35889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Adrian Dockery
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Kirk A J Stephenson
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Ella Kopčić
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Iris J M Post
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - James J O' Byrne
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Emma Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Peynshaert K, Devoldere J, De Smedt S, Remaut K. Every nano-step counts: a critical reflection on do's and don'ts in researching nanomedicines for retinal gene therapy. Expert Opin Drug Deliv 2023; 20:259-271. [PMID: 36630275 DOI: 10.1080/17425247.2023.2167979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Retinal disease affects millions of people worldwide, generating a massive social and economic burden. Current clinical trials for retinal diseases are dominated by gene augmentation therapies delivered with recombinant viruses as key players. As an alternative, nanoparticles hold great promise for the delivery of nucleic acid therapeutics as well. Nevertheless, despite numerous attempts, 'nano' is in practice not as successful as aspired and major breakthroughs in retinal gene therapy applying nanomaterials are yet to be seen. AREAS COVERED In this review, we summarize the advantages of nanomaterials and give an overview of nanoparticles designed for retinal nucleic acid delivery up to now. We furthermore critically reflect on the predominant issues that currently limit nano to progress to the clinic, where faulty study design and the absence of representative models play key roles. EXPERT OPINION Since the current approach of in vitro - in vivo experimentation is highly inefficient and creates misinformation, we advocate for a more prominent role for ex vivo testing early on in nanoparticle research. In addition, we elaborate on several concepts, including systematic studies and open science, which could aid in pushing the field of nanomedicine beyond the preclinical stage.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| |
Collapse
|
8
|
Chorfi S, Place EM, Huckfeldt RM. Disparities in Inherited Retinal Degenerations. Semin Ophthalmol 2023; 38:201-206. [PMID: 36536519 DOI: 10.1080/08820538.2022.2152715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To review disparities in the field of inherited retinal degenerations to establish foundations for future discussions oriented toward finding possible solutions. A narrative overview of the literature. Despite collective efforts towards democratization of genetic testing and investigation, genetic databases containing primarily European populations are heavily relied upon. Access to specialized care and other resources is also still not available to all. Recognizing and addressing disparities and inequities within the field of inherited retinal degenerations will improve our care of these patients and our knowledge of their conditions.
Collapse
Affiliation(s)
- Sarah Chorfi
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Ocular Genomics Institute, Boston, MS, USA
| | - Emily M Place
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Ocular Genomics Institute, Boston, MS, USA
| | - Rachel M Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Ocular Genomics Institute, Boston, MS, USA
| |
Collapse
|
9
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
10
|
Iarossi G, Sinibaldi L, Passarelli C, Coppe’ AM, Cappelli A, Petrocelli G, Catena G, Perrone C, Falsini B, Novelli A, Bartuli A, Buzzonetti L. A Novel Autosomal Recessive Variant of the NRL Gene Causing Enhanced S-Cone Syndrome: A Morpho-Functional Analysis of Two Unrelated Pediatric Patients. Diagnostics (Basel) 2022; 12:2183. [PMID: 36140584 PMCID: PMC9497687 DOI: 10.3390/diagnostics12092183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Enhanced S-cone syndrome (ESCS) is a rare autosomal recessive retinal degeneration mainly associated with pathogenic variations in the NR2E3 gene. Only a few pathogenic variations in the NRL gene associated with ESCS have been reported to date. Here, we describe the clinical and genetic findings of two unrelated pediatric patients with a novel frameshift homozygous variant in the NRL gene. Fundus examinations showed signs of peripheral degeneration in both patients, more severe in Proband 2, with relative sparing of the macular area. Spectral domain optical coherence tomography (SD-OCT) revealed a significant macular involvement with cysts in Proband 1, and minimal foveal alteration with peripheral retina involvement in Proband 2. Visual acuity was abnormal in both patients, but more severely affected in Proband 1 than Proband 2. The electroretinogram recordings showed reduced scotopic, mixed and single flash cone responses, with a typical supernormal S-cone response, meeting the criteria for a clinical diagnosis of ESCS in both patients. The present report expands the clinical and genetic spectrum of NRL-associated ESCS, and confirms the age-independent variability of phenotypic presentation already described in the NR2E3-associated ESCS.
Collapse
Affiliation(s)
- Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Maria Coppe’
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Alessandro Cappelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianni Petrocelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gino Catena
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Perrone
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| |
Collapse
|
11
|
Chien JY, Huang SP. Gene therapy in hereditary retinal dystrophy. Tzu Chi Med J 2022; 34:367-372. [PMID: 36578644 PMCID: PMC9791861 DOI: 10.4103/tcmj.tcmj_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs), such as retinitis pigmentosa, Leber's congenital amaurosis (LCA), Usher syndrome, and retinoschisis, are a group of genetic retinal disorders exhibiting both genetic and phenotypic heterogeneity. Symptoms include progressive retinal degeneration and constricted visual field. Some patients will be legal or completely blind. Advanced sequencing technologies improve the genetic diagnosis of HRD and lead to a new era of research into gene-targeted therapies. Following the first Food and Drug Administration approval of gene augmentation therapy for LCA caused by RPE65 mutations, multiple clinical trials are currently underway applying different techniques. In this review, we provide an overview of gene therapy for HRD and emphasize four distinct approaches to gene-targeted therapy that have the potential to slow or even reverse retinal degeneration: (1) viral vector-based and nonviral gene delivery, (2) RNA-based antisense oligonucleotide, (3) genome editing by the Clustered Regularly Interspaced Short Palindromic Repeat/cas9 system, and (4) optogenetics gene therapy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Department of Ophthalmology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,Address for correspondence: Dr. Shun-Ping Huang, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
12
|
Solaki M, Baumann B, Reuter P, Andreasson S, Audo I, Ayuso C, Balousha G, Benedicenti F, Birch D, Bitoun P, Blain D, Bocquet B, Branham K, Català-Mora J, De Baere E, Dollfus H, Falana M, Giorda R, Golovleva I, Gottlob I, Heckenlively JR, Jacobson SG, Jones K, Jägle H, Janecke AR, Kellner U, Liskova P, Lorenz B, Martorell-Sampol L, Messias A, Meunier I, Belga Ottoni Porto F, Papageorgiou E, Plomp AS, de Ravel TJL, Reiff CM, Renner AB, Rosenberg T, Rudolph G, Salati R, Sener EC, Sieving PA, Stanzial F, Traboulsi EI, Tsang SH, Varsanyi B, Weleber RG, Zobor D, Stingl K, Wissinger B, Kohl S. Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia. Hum Mutat 2022; 43:832-858. [PMID: 35332618 DOI: 10.1002/humu.24371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Collapse
Affiliation(s)
- Maria Solaki
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sten Andreasson
- Department of Ophthalmology, University Hospital Lund, Lund, Sweden
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET, and INSERM-DGOS CIC1423, Paris, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ghassan Balousha
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Francesco Benedicenti
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - David Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Pierre Bitoun
- Genetique Medicale, CHU Paris Nord, Hopital Jean Verdier, Bondy Cedex, France
| | | | - Beatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaume Català-Mora
- Unitat de Distròfies Hereditàries de Retina Hospital Sant Joan de Déu, Barcelona, Esplugues de Llobregat, Spain
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helene Dollfus
- CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- U-1112, Inserm, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mohammed Falana
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umea, Umea, Sweden
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, UK
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Andreas R Janecke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich Kellner
- Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
- RetinaScience, Bonn, 53192, Germany
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Ophthalmology, Universitaetsklinikum Bonn, Bonn, Germany
| | | | - André Messias
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Sensgene Care Network, France
| | | | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Mezourlo, Larissa, Greece
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomy J L de Ravel
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | | | | | - Thomas Rosenberg
- Department of Ophthalmology, National Eye Clinic, Glostrup Hospital, Glostrup, Denmark
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Roberto Salati
- Scientific Institute, IRCCS Eugenio Medea, Pediatric Ophthalmology Unit, Bosisio Parini, Lecco, Italy
| | - E Cumhur Sener
- Strabismus and Pediatric Ophthalmology, Private Practice, Ankara, Turkey
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, School of Medicine, University of California Davis, Sacramento, USA
| | - Franco Stanzial
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York City, New York, USA
| | - Balázs Varsanyi
- Department of Ophthalmology, Medical School, University of Pécs and Ganglion Medical Center, Pécs, Pécs, Hungary
| | - Richard G Weleber
- Oregon Health & Science University, Ophthalmic Genetics Service of the Casey Eye Institute, 515 SW Campus Drive, 97239, Portland, Oregon, USA
| | - Ditta Zobor
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Department of Ophthalmology, Semmelweis University Budapest, Budapest, Hungary
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Maltese PE, Colombo L, Martella S, Rossetti L, El Shamieh S, Sinibaldi L, Passarelli C, Coppè AM, Buzzonetti L, Falsini B, Chiurazzi P, Placidi G, Tanzi B, Bertelli M, Iarossi G. Genetics of Inherited Retinal Diseases in Understudied Ethnic Groups in Italian Hospitals. Front Genet 2022; 13:914345. [PMID: 35836572 PMCID: PMC9274138 DOI: 10.3389/fgene.2022.914345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Describing the clinical and genetic features of an ethnically heterogeneous group of (inherited retinal diseases) IRD patients from different underrepresented countries, referring to specialized Italian Hospitals, and expanding the epidemiological spectrum of the IRD in understudied populations. Methods: The patients’ phenotypes underwent were characterized by exhaustive ophthalmological examinations, including morpho-functional testing. Genetic testing was performed using next-generation sequencing (NGS) and gene sequencing panels targeting a specific set of genes, Sanger sequencing and—when necessary—multiplex ligation-dependent probe amplification (MLPA) to better identify the genotype. When possible, segregation analysis was performed in order to confirm unsolved cases. Results: The article reports the results of the phenotypes and genotypes of 123 IRD probands, 69 males and 54 females, mean age 41 (IQR, 54–30) years, disease onset at 13 (IQR, 27.25–5) years. Thirty-three patients out of 123 (26.8%) were Africans (North/Northwest Africa), 21 (17.1%) Asians, 19 (15.4%) Americans (South/Central America) and 50 (40.7%) Europeans (Eastern Europe). Retinitis pigmentosa was the most represented phenotype (56%), followed by cone dystrophy (11%) and Leber congenital amaurosis (7%), while ABCA4 was the most frequently mutated gene (18%), followed by USH2A (9%) and RPGR (5%). About ABCA4 variants found in Stargardt disease, macular and cone dystrophies were predominant in Asian (42%) and European (21%) patients. The most represented inheritance pattern was autosomal recessive, while a higher frequency of homozygous patients versus compound heterozygotes as compared to previous studies on Italian IRD patients was evidenced, reflecting a possible higher frequency of inbreeding marriages. Conclusion: Though limited by the relatively low number of patients, the present paper paints a picture of the clinical and genetic features of IRD patients from understudied ethnic groups referred to Italian specialized hospitals and extended the epidemiological studies on underrepresented world regional areas.
Collapse
Affiliation(s)
| | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Lorenzo Sinibaldi
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Passarelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Maria Coppè
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS/Universita’ Cattolica del S. Cuore, Ophthalmology Unit, Rome, Italy
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS & Istituto di Medicina Genomica, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Giorgio Placidi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS/Universita’ Cattolica del S. Cuore, Ophthalmology Unit, Rome, Italy
| | | | - Matteo Bertelli
- Magi’s Lab S.R.L., Rovereto, Italy
- MAGI Euregio s.c.s., Bolzano, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
14
|
Ganapathi M, Thomas-Wilson A, Buchovecky C, Dharmadhikari A, Barua S, Lee W, Ruan MZC, Soucy M, Ragi S, Tanaka J, Clark LN, Naini AB, Liao J, Mansukhani M, Tsang S, Jobanputra V. Clinical exome sequencing for inherited retinal degenerations at a tertiary care center. Sci Rep 2022; 12:9358. [PMID: 35672425 PMCID: PMC9174483 DOI: 10.1038/s41598-022-13026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Inherited retinal degenerations are clinically and genetically heterogeneous diseases characterized by progressive deterioration of vision. This study aimed at assessing the diagnostic yield of exome sequencing (ES) for an unselected cohort of individuals with hereditary retinal disorders. It is a retrospective study of 357 unrelated affected individuals, diagnosed with retinal disorders who underwent clinical ES. Variants from ES were filtered, prioritized, and classified using the ACMG recommendations. Clinical diagnosis of the individuals included rod-cone dystrophy (60%), macular dystrophy (20%), cone-rod dystrophy (9%), cone dystrophy (4%) and other phenotypes (7%). Majority of the cases (74%) were singletons and 6% were trios. A confirmed molecular diagnosis was obtained in 24% of cases. In 6% of cases, two pathogenic variants were identified with phase unknown, bringing the potential molecular diagnostic rate to ~ 30%. Including the variants of uncertain significance (VUS), potentially significant findings were reported in 57% of cases. Among cases with a confirmed molecular diagnosis, variants in EYS, ABCA4, USH2A, KIZ, CERKL, DHDDS, PROM1, NR2E3, CNGB1, ABCC6, PRPH2, RHO, PRPF31, PRPF8, SNRNP200, RP1, CHM, RPGR were identified in more than one affected individual. Our results support the utility of clinical ES in the diagnosis of genetically heterogeneous retinal disorders.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Amanda Thomas-Wilson
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Christie Buchovecky
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Avinash Dharmadhikari
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Subit Barua
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Merry Z C Ruan
- College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan Soucy
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Sara Ragi
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Joy Tanaka
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lorraine N Clark
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Ali B Naini
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jun Liao
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mahesh Mansukhani
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Stephen Tsang
- Department of Ophthalmology, Columbia University, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative-Departments of Ophthalmology, Biomedical Engineering, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vaidehi Jobanputra
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Precision Genomics Laboratory, Columbia University Irving Medical Center, 701 West 168th St., HHSC 1412, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Millo T, Rivera A, Obolensky A, Marks-Ohana D, Xu M, Li Y, Wilhelm E, Gopalakrishnan P, Gross M, Rosin B, Hanany M, Webster A, Tracewska AM, Koenekoop RK, Chen R, Arno G, Schueler-Furman O, Roosing S, Banin E, Sharon D. Identification of autosomal recessive novel genes and retinal phenotypes in members of the solute carrier (SLC) superfamily. Genet Med 2022; 24:1523-1535. [PMID: 35486108 DOI: 10.1016/j.gim.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This study aimed to investigate the clinical and genetic aspects of solute carrier (SLC) genes in inherited retinal diseases (IRDs). METHODS Exome sequencing data were filtered to identify pathogenic variants in SLC genes. Analysis of transcript and protein expression was performed on fibroblast cell lines and retinal sections. RESULTS Comprehensive analysis of 433 SLC genes in 913 exome sequencing IRD samples revealed homozygous pathogenic variants in 6 SLC genes, including 2 candidate novel genes, which were 2 variants in SLC66A1, causing autosomal recessive retinitis pigmentosa (ARRP), and a variant in SLC39A12, causing autosomal recessive mild widespread retinal degeneration with marked macular involvement. In addition, we present 4 families with ARRP and homozygous null variants in SLC37A3 that were previously suggested to cause retinitis pigmentosa, 2 of which cause exon skipping. The recently reported SLC4A7- c.2007dup variant was found in 2 patients with ARRP resulting in the absence of protein. Finally, variants in SLC24A1 were found in 4 individuals with either ARRP or congenital stationary night blindness. CONCLUSION We report on SLC66A1 and SLC39A12 as candidate novel IRD genes, establish SLC37A3 pathogenicity, and provide further evidence of SLC4A7 as IRD genes. We extend the phenotypic spectrum of SLC24A1 and suggest that its ARRP phenotype may be more common than previously reported.
Collapse
Affiliation(s)
- Talya Millo
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Antonio Rivera
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Obolensky
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devora Marks-Ohana
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mingchu Xu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Enosh Wilhelm
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prakadeeswari Gopalakrishnan
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Gross
- Department of Otolaryngology/Head and Neck Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Boris Rosin
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew Webster
- University College London, Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
| | - Anna Maria Tracewska
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka, Wrocław, Poland
| | - Robert K Koenekoop
- Department of Paediatric surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Gavin Arno
- University College London, Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Susanne Roosing
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Eyal Banin
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Dror Sharon
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Zhu J, Stephenson KAJ, Dockery A, Turner J, O’Byrne JJ, Fitzsimon S, Farrar GJ, Flitcroft DI, Keegan DJ. Electrophysiology-Guided Genetic Characterisation Maximises Molecular Diagnosis in an Irish Paediatric Inherited Retinal Degeneration Population. Genes (Basel) 2022; 13:615. [PMID: 35456422 PMCID: PMC9033125 DOI: 10.3390/genes13040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal degenerations (IRDs) account for over one third of the underlying causes of blindness in the paediatric population. Patients with IRDs often experience long delays prior to reaching a definitive diagnosis. Children attending a tertiary care paediatric ophthalmology department with phenotypic (i.e., clinical and/or electrophysiologic) evidence suggestive of IRD were contacted for genetic testing during the SARS-CoV-2-19 pandemic using a "telegenetics" approach. Genetic testing approach was panel-based next generation sequencing (351 genes) via a commercial laboratory (Blueprint Genetics, Helsinki, Finland). Of 70 patient samples from 57 pedigrees undergoing genetic testing, a causative genetic variant(s) was detected for 60 patients (85.7%) from 47 (82.5%) pedigrees. Of the 60 genetically resolved IRD patients, 5% (n = 3) are eligible for approved therapies (RPE65) and 38.3% (n = 23) are eligible for clinical trial-based gene therapies including CEP290 (n = 2), CNGA3 (n = 3), CNGB3 (n = 6), RPGR (n = 5) and RS1 (n = 7). The early introduction of genetic testing in the diagnostic/care pathway for children with IRDs is critical for genetic counselling of these families prior to upcoming gene therapy trials. Herein, we describe the pathway used, the clinical and genetic findings, and the therapeutic implications of the first systematic coordinated round of genetic testing of a paediatric IRD cohort in Ireland.
Collapse
Affiliation(s)
- Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (K.A.J.S.); (J.T.); (J.J.O.); (D.J.K.)
| | - Kirk A. J. Stephenson
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (K.A.J.S.); (J.T.); (J.J.O.); (D.J.K.)
- Ophthalmology Department, Children’s University Hospital, Temple Street, D01 XD99 Dublin, Ireland; (S.F.); (D.I.F.)
| | - Adrian Dockery
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
| | - Jacqueline Turner
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (K.A.J.S.); (J.T.); (J.J.O.); (D.J.K.)
| | - James J. O’Byrne
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (K.A.J.S.); (J.T.); (J.J.O.); (D.J.K.)
| | - Susan Fitzsimon
- Ophthalmology Department, Children’s University Hospital, Temple Street, D01 XD99 Dublin, Ireland; (S.F.); (D.I.F.)
| | - G. Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - D. Ian Flitcroft
- Ophthalmology Department, Children’s University Hospital, Temple Street, D01 XD99 Dublin, Ireland; (S.F.); (D.I.F.)
| | - David J. Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (K.A.J.S.); (J.T.); (J.J.O.); (D.J.K.)
- Ophthalmology Department, Children’s University Hospital, Temple Street, D01 XD99 Dublin, Ireland; (S.F.); (D.I.F.)
| |
Collapse
|
17
|
Colombo L, Maltese PE, Castori M, El Shamieh S, Zeitz C, Audo I, Zulian A, Marinelli C, Benedetti S, Costantini A, Bressan S, Percio M, Ferri P, Abeshi A, Bertelli M, Rossetti L. Molecular Epidemiology in 591 Italian Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33576794 PMCID: PMC7884295 DOI: 10.1167/iovs.62.2.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To describe the molecular epidemiology of nonsyndromic retinitis pigmentosa (RP) and Usher syndrome (US) in Italian patients. Methods A total of 591 probands (315 with family history and 276 sporadics) were analyzed. For 155 of them, we performed a family segregation study, considering a total of 382 relatives. Probands were analyzed by a customized multigene panel approach. Sanger sequencing was used to validate all genetic variants and to perform family segregation studies. Copy number variants of selected genes were analyzed by multiplex ligation-dependent probe amplification. Four patients who tested negative to targeted next-generation sequencing analysis underwent clinical exome sequencing. Results The mean diagnostic yield of molecular testing among patients with a family history of retinal disorders was 55.2% while the diagnostic yield including sporadic cases was 37.4%. We found 468 potentially pathogenic variants, 147 of which were unpublished, in 308 probands and 66 relatives. Mean ages of onset of the different classes of RP were autosomal dominant RP, 19.3 ± 12.6 years; autosomal recessive RP, 23.2 ± 16.6 years; X-linked RP, 13.9 ± 9.9 years; and Usher syndrome, 18.9 ± 9.5 years. We reported potential new genotype-phenotype correlations in three probands, two revealed by TruSight One testing. All three probands showed isolated RP caused by biallelic variants in genes usually associated with syndromes such as PERCHING and Senior-Loken or with retinal dystrophy, iris coloboma, and comedogenic acne syndrome. Conclusions This is the largest molecular study of Italian patients with RP in the literature, thus reflecting the epidemiology of the disease in Italy with reasonable accuracy.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | | | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | | | | | | | | | | | - Paolo Ferri
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Andi Abeshi
- MAGI's Lab s.r.l., Rovereto, Italy.,Department of Otolaryngology, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Mullin NK, Voigt AP, Cooke JA, Bohrer LR, Burnight ER, Stone EM, Mullins RF, Tucker BA. Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Prog Retin Eye Res 2021; 83:100918. [PMID: 33130253 PMCID: PMC8559964 DOI: 10.1016/j.preteyeres.2020.100918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of inherited retinal disease has benefited immensely from molecular genetic analysis over the past several decades. New technologies that allow for increasingly detailed examination of a patient's DNA have expanded the catalog of genes and specific variants that cause retinal disease. In turn, the identification of pathogenic variants has allowed the development of gene therapies and low-cost, clinically focused genetic testing. Despite this progress, a relatively large fraction (at least 20%) of patients with clinical features suggestive of an inherited retinal disease still do not have a molecular diagnosis today. Variants that are not obviously disruptive to the codon sequence of exons can be difficult to distinguish from the background of benign human genetic variations. Some of these variants exert their pathogenic effect not by altering the primary amino acid sequence, but by modulating gene expression, isoform splicing, or other transcript-level mechanisms. While not discoverable by DNA sequencing methods alone, these variants are excellent targets for studies of the retinal transcriptome. In this review, we present an overview of the current state of pathogenic variant discovery in retinal disease and identify some of the remaining barriers. We also explore the utility of new technologies, specifically patient-derived induced pluripotent stem cell (iPSC)-based modeling, in further expanding the catalog of disease-causing variants using transcriptome-focused methods. Finally, we outline bioinformatic analysis techniques that will allow this new method of variant discovery in retinal disease. As the knowledge gleaned from previous technologies is informing targets for therapies today, we believe that integrating new technologies, such as iPSC-based modeling, into the molecular diagnosis pipeline will enable a new wave of variant discovery and expanded treatment of inherited retinal disease.
Collapse
Affiliation(s)
- Nathaniel K Mullin
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica A Cooke
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Laura R Bohrer
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Stephenson KAJ, Zhu J, Wynne N, Dockery A, Cairns RM, Duignan E, Whelan L, Malone CP, Dempsey H, Collins K, Routledge S, Pandey R, Crossan E, Turner J, O'Byrne JJ, Brady L, Silvestri G, Kenna PF, Farrar GJ, Keegan DJ. Target 5000: a standardized all-Ireland pathway for the diagnosis and management of inherited retinal degenerations. Orphanet J Rare Dis 2021; 16:200. [PMID: 33952326 PMCID: PMC8097252 DOI: 10.1186/s13023-021-01841-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction Inherited retinal degenerations (IRD) are rare genetic disorders with > 300 known genetic loci, manifesting variably progressive visual dysfunction. IRDs were historically underserved due to lack of effective interventions. Many novel therapies will require accurate diagnosis (phenotype and genotype), thus an efficient and effective pathway for assessment and management is required.
Methods Using surveys of existing practice patterns and advice from international experts, an all-Ireland IRD service (Target 5000) was designed. Detailed phenotyping was followed by next generation genetic sequencing in both a research and accredited laboratory. Unresolved pedigrees underwent further studies (whole gene/whole exome/whole genome sequencing). Novel variants were interrogated for pathogenicity (cascade screening, in silico analysis, functional studies). A multidisciplinary team (MDT; ophthalmologists, physicians, geneticists, genetic counsellors) reconciled phenotype with genotype. A bespoke care plan was created for each patient comprising supports, existing interventions, and novel therapies/clinical trials. Results and discussion Prior to Target 5000, a significant cohort of patients were not engaged with healthcare/support services due to lack of effective interventions. Pathogenic or likely pathogenic variants in IRD-associated genes were detected in 62.3%, with 11.6% having variants of unknown significance. The genotyping arm of Target 5000 allowed a 42.73% cost saving over independent testing, plus the value of MDT expertise/processing. Partial funding has transferred from charitable sources to government resources. Conclusion Target 5000 demonstrates efficacious and efficient clinical/genetic diagnosis, while discovering novel IRD-implicated genes/variants and investigating mechanisms of disease and avenues of intervention. This model could be used to develop similar IRD programmes in small/medium-sized nations. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01841-1.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Niamh Wynne
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Adrian Dockery
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Rebecca M Cairns
- Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Emma Duignan
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Laura Whelan
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Conor P Malone
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Hilary Dempsey
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Karen Collins
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Shana Routledge
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Rajiv Pandey
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elaine Crossan
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland.,National Council for the Blind of Ireland, Whitworth Road, Dublin 9, Ireland
| | - Jacqueline Turner
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - James J O'Byrne
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Laura Brady
- Fighting Blindness Ireland, Ely Place, Dublin 2, Ireland
| | - Giuliana Silvestri
- Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Paul F Kenna
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland.,Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - G Jane Farrar
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David J Keegan
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
20
|
Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S, Inai C, Iwasaki Y, Kumano M, Murakami Y, Komori S, Gao D, Kurata K, Hosono K, Ueno S, Hotta Y, Murakami A, Terasaki H, Wada Y, Nakazawa T, Ishibashi T, Ikeda Y, Kubo M, Sonoda KH. Regional differences in genes and variants causing retinitis pigmentosa in Japan. Jpn J Ophthalmol 2021; 65:338-343. [PMID: 33629268 DOI: 10.1007/s10384-021-00824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the regional differences in the genes and variants causing retinitis pigmentosa (RP) in Japan STUDY DESIGN: Retrospective multicenter study METHODS: In total, 1204 probands of each pedigree clinically diagnosed with nonsyndromic RP were enrolled from 5 Japanese facilities. The regions were divided into the Tohoku region, the Kanto and Chubu regions, and the Kyushu region according to the location of the hospitals where the participants were enrolled. We compared the proportions of the causative genes and the distributions of the pathogenic variants among these 3 regions. RESULTS The proportions of genetically solved cases were 29.4% in the Tohoku region (n = 500), 29.6% in the Kanto and Chubu regions (n = 196), and 29.7% in the Kyushu region (n = 508), which did not differ statistically (P = .99). No significant regional differences in the proportions of each causative gene in genetically solved patients were observed after correction by multiple testing. Among the 29 pathogenic variants detected in all 3 regions, only p.(Pro347Leu) in RHO was an autosomal dominant variant; the remaining 28 variants were found in autosomal recessive genes. Conversely, 78.6% (275/350) of the pathogenic variants were detected only in a single region, and 6 pathogenic variants (p.[Asn3062fs] in EYS, p.[Ala315fs] in EYS, p.[Arg872fs] in RP1, p.[Ala126Val] in RDH12, p.[Arg41Trp] in CRX, and p.[Gly381fs] in PRPF31) were frequently found in ≥ 4 patients in the single region. CONCLUSION We observed region-specific pathogenic variants in the Japanese population. Further investigations of causative genes in multiple regions in Japan will contribute to the expansion of the catalog of genetic variants causing RP.
Collapse
Affiliation(s)
- Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan. .,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sadaaki Takata
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Chihiro Inai
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mikako Kumano
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shiori Komori
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dan Gao
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Wang J, Xiao X, Li S, Wang P, Sun W, Zhang Q. Dominant RP in the Middle While Recessive in Both the N- and C-Terminals Due to RP1 Truncations: Confirmation, Refinement, and Questions. Front Cell Dev Biol 2021; 9:634478. [PMID: 33681214 PMCID: PMC7935555 DOI: 10.3389/fcell.2021.634478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
RP1 truncation variants, including frameshift, nonsense, and splicing, are a common cause of retinitis pigmentosa (RP). RP1 is a unique gene where truncations cause either autosomal dominant RP (adRP) or autosomal recessive RP (arRP) depending on the location of the variants. This study aims to clarify the boundaries between adRP and arRP caused by RP1 truncation variants based on a systemic analysis of 165 RP1 variants from our in-house exome-sequencing data of 7,092 individuals as well as a thorough review of 185 RP1 variants from published literature. In our cohort, potential pathogenic variants were detected in 16 families, including 11 new and five previously described families. Of the 16, seven families with adRP had heterozygous truncations in the middle portion, while nine families with either arRP (eight) or macular degeneration had biallelic variants in the N- and C-terminals, involving 10 known and seven novel variants. In the literature, 147 truncations in RP1 were reported to be responsible for either arRP (85) or adRP (58) or both (four). An overall evaluation of RP1 causative variants suggested three separate regions, i.e., the N-terminal from c.1 (p.1) to c.1837 (p.613), the middle portion from c.1981 (p.661) to c.2749 (p.917), and the C-terminal from c.2816 (p.939) to c.6471 (p.2157), where truncations in the middle portion were associated with adRP, while those in the N- and C-terminals were responsible for arRP. Heterozygous truncations alone in the N- and C- terminals were unlikely pathogenic. However, conflict reports with reverse situation were present for 13 variants, suggesting a complicated pathogenicity awaiting to be further elucidated. In addition, pathogenicity for homozygous truncations around c.5797 and thereafter might also need to be further clarified, so as for missense variants and for truncations located in the two gaps. Our data not only confirmed and refined the boundaries between dominant and recessive RP1 truncations but also revealed unsolved questions valuable for further investigation. These findings remind us that great care is needed in interpreting the results of RP1 variants in clinical gene testing as well as similar features may also be present in some other genes.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Zeitz C, Nassisi M, Laurent-Coriat C, Andrieu C, Boyard F, Condroyer C, Démontant V, Antonio A, Lancelot ME, Frederiksen H, Kloeckener-Gruissem B, El-Shamieh S, Zanlonghi X, Meunier I, Roux AF, Mohand-Saïd S, Sahel JA, Audo I. CHM mutation spectrum and disease: An update at the time of human therapeutic trials. Hum Mutat 2021; 42:323-341. [PMID: 33538369 DOI: 10.1002/humu.24174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Said El-Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Xavier Zanlonghi
- Clinique Pluridisciplinaire Jules Verne, Institut Ophtalmologique de l'Ouest, Nantes, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences-Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Department of Genetics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
23
|
Genetic characteristics and epidemiology of inherited retinal degeneration in Taiwan. NPJ Genom Med 2021; 6:16. [PMID: 33608557 PMCID: PMC7896090 DOI: 10.1038/s41525-021-00180-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of phenotypically and genotypically heterogeneous disorders with substantial socioeconomic impact. In this cohort study, we tried to address the genetic characteristics and epidemiology of IRDs in Taiwan. Totally, 312 families with IRDs were identified and recruited and genetic testing was performed via probe capture-based NGS targeting 212 IRD-related genes. Statistical analysis was based on the proband of each affected family. Disease-causing genotypes were identified in 178 families (57.1%). ABCA4 variants were the most common cause of disease in this cohort (27 families, 15.2%), whereas CYP4V2 variants were the most common cause for the single phenotype—Bietti’s crystalline dystrophy (12 families, 3.8%). Some variants such as ABCA4:c.1804C>T, CYP4V2:c.802-8_810delinsGC, and EYS:c6416G>A were population-specific disease-causing hotspots. Probands affected by ABCA4, RPGR, RP1L1, and CEP290 sought medical help earlier while patients affected by EYS and CYP4V2 visited our clinic at an older age. To evaluate the representativeness of our cohort in the genetic epidemiology of IRDs in Taiwan, our demographic data were compared with that of the total IRD population in Taiwan, obtained from the National Health Insurance Research Database. This is currently the largest-scale, comprehensive study investigating the genetic characteristics and epidemiology of IRD in Taiwan. These data could help patients and caregivers to adopt precision genomic medicine and novel gene therapies in near future.
Collapse
|
24
|
Al-khuzaei S, Broadgate S, Halford S, Jolly JK, Shanks M, Clouston P, Downes SM. Novel Pathogenic Sequence Variants in NR2E3 and Clinical Findings in Three Patients. Genes (Basel) 2020; 11:E1288. [PMID: 33138239 PMCID: PMC7716234 DOI: 10.3390/genes11111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
A retrospective review of the clinical records of patients seen at the Oxford Eye Hospital identified as having NR2E3 mutations was performed. The data included symptoms, best-corrected visual acuity, multimodal retinal imaging, visual fields and electrophysiology testing. Three participants were identified with biallelic NR2E3 pathogenic sequence variants detected using a targeted NGS gene panel, two of which were novel. Participant I was a Nepalese male aged 68 years, and participants II and III were white Caucasian females aged 69 and 10 years old, respectively. All three had childhood onset nyctalopia, a progressive decrease in central vision, and visual field loss. Patients I and III had photopsia, patient II had photosensitivity and patient III also had photophobia. Visual acuities in patients I and II were preserved even into the seventh decade, with the worst visual acuity measured at 6/36. Visual field constriction was severe in participant I, less so in II, and fields were full to bright targets targets in participant III. Electrophysiology testing in all three demonstrated loss of rod function. The three patients share some of the typical distinctive features of NR2E3 retinopathies, as well as a novel clinical observation of foveal ellipsoid thickening.
Collapse
Affiliation(s)
- Saoud Al-khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Jasleen K. Jolly
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Morag Shanks
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Penny Clouston
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| |
Collapse
|
25
|
McLaren TL, De Roach JN, Thompson JA, Chen FK, Mackey DA, Hoffmann L, Urwin IR, Lamey TM. Expanding the genetic spectrum of choroideremia in an Australian cohort: report of five novel CHM variants. Hum Genome Var 2020; 7:35. [PMID: 33110609 PMCID: PMC7584600 DOI: 10.1038/s41439-020-00122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in the CHM gene. Several CHM gene replacement clinical trials are in advanced stages. In this study, we report the molecular confirmation of choroideremia in 14 Australian families sourced from the Australian Inherited Retinal Disease Registry and DNA Bank. Sixteen males (14 symptomatic) and 18 females (4 symptomatic; 14 obligate carriers) were identified for analysis. Participants' DNA was analyzed for disease-causing CHM variants by Sanger sequencing, TaqMan qPCR and targeted NGS. We report phenotypic and genotypic data for the 14 symptomatic males and four females manifesting disease symptoms. A pathogenic or likely pathogenic CHM variant was detected in all families. Eight variants were previously reported, and five were novel. Two de novo variants were identified. We previously reported the molecular confirmation of choroideremia in 11 Australian families. This study expands the CHM genetically confirmed Australian cohort to 32 males and four affected carrier females.
Collapse
Affiliation(s)
- Terri L. McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
| | - John N. De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - Fred K. Chen
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
- Lions Eye Institute, 2 Verdun Street, Nedlands, Western Australia Australia
- Department of Ophthalmology, Royal Perth Hospital, Victoria Square, Perth, Western Australia Australia
- Department of Ophthalmology, Perth Children’s Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - David A. Mackey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
- Lions Eye Institute, 2 Verdun Street, Nedlands, Western Australia Australia
| | - Ling Hoffmann
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - Isabella R. Urwin
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - Tina M. Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
| |
Collapse
|
26
|
Sun W, Li S, Xiao X, Wang P, Zhang Q. Genotypes and phenotypes of genes associated with achromatopsia: A reference for clinical genetic testing. Mol Vis 2020; 26:588-602. [PMID: 32913385 PMCID: PMC7479066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/20/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Achromatopsia is a congenital autosomal recessive cone disorder, and it has been found to be associated with six genes. However, pathogenic variants in these six genes have been identified in patients with various retinal dystrophies with the exception of achromatopsia. Thus, this study aims to investigate the contribution of these genes in hereditary retinal diseases and the potential genotype-phenotype correlations. METHODS Biallelic variants in six achromatopsia-related genes, namely, CNGA3, CNGB3, GNAT2, ATF6, PDE6C, and PDE6H, were analyzed based on data obtained from 7,195 probands with different eye conditions. A systematic genotype-phenotype analysis of these genes was performed based on these data, along with the data reported in the literature. RESULTS Biallelic potential pathogenic variants (PPVs) in five of the six genes were identified in 119 probands with genetic eye diseases. The variants in CNGA3 were the most common and accounted for 81.5% (97/119). Of the 119 probands, 62.2% (74/119) have cone-rod dystrophy, whereas only 25.2% (30/119) have achromatopsia. No biallelic pathogenic variants in these genes were identified in patients with rod-dominant degeneration. A systematic review of genotypes and phenotypes revealed certain characteristics of each of the six genes, providing clues for the pathogenicity evaluation of the variants of the genes. CONCLUSIONS PPVs in the six genes were identified in various inherited retinal degeneration diseases, most of which are cone-dominant diseases but no rod-dominant diseases based on the data from a cohort of 7,195 probands with different eye conditions. The systematic genotype-phenotype analysis of these genes will be useful in drafting guidelines for the clinical genetic diagnostic application for the investigated genes.
Collapse
|
27
|
Stephenson KA, O'Keefe M, Keegan DJ. Surgical management of non-syndromic ectopia lentis. Int J Ophthalmol 2020; 13:1156-1160. [PMID: 32685406 DOI: 10.18240/ijo.2020.07.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To compare whether aphakic contact lenses or secondary iris-claw intraocular lenses are superior in the refractive management post-pars plana vitreolensectomy in a pedigree with an FBN1 mutation causing non-syndromic ectopia lentis (NSEL) with retinal detachment (RD). METHODS Eight affected individuals had pars plana vitreolensectomy for bilateral ectopia lentis (EL). Twelve eyes of 6 patients had secondary iris-claw intraocular lenses inserted and 4 eyes of 2 patients were managed with contact lenses. Rhegmatogenous retinal detachment (RRD) was treated when necessary. Pre- and post-operative assessment included visual acuity, endothelial cell count and dilated fundal examination. RESULTS Macula-on RRD was present in all individuals >18y, 64% (7/11 eyes) presenting post-vitreolensectomy with 57% having bilateral non-synchronous RRD. Surgical aphakia was managed with iris-fixated intraocular lenses (IOL group, n=6), or contact lenses (CL group, n=2). Visual acuity ≥0.3 logMAR (driving standard) was achieved in 75% of IOL group eyes and 25% of the CL group eyes. Mean loss of corneal endothelial cell count in the IOL group was 4% at 2y post-operative. CONCLUSION In this cohort, refractive management with iris-claw IOLs provided superior outcomes to contact lenses and the authors recommend this as the optimal refractive correction in EL patients.
Collapse
Affiliation(s)
- Kirk Aj Stephenson
- Retinal Research Group, Mater Misericordiae University Hospital & Mater Private Hospital, Dublin 7, Ireland
| | - Michael O'Keefe
- Retinal Research Group, Mater Misericordiae University Hospital & Mater Private Hospital, Dublin 7, Ireland
| | - David J Keegan
- Retinal Research Group, Mater Misericordiae University Hospital & Mater Private Hospital, Dublin 7, Ireland
| |
Collapse
|
28
|
Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 2020; 77:100827. [PMID: 31899291 PMCID: PMC8714059 DOI: 10.1016/j.preteyeres.2019.100827] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Due to improved phenotyping and genetic characterization, the field of 'incurable' and 'blinding' inherited retinal diseases (IRDs) has moved substantially forward. Decades of ascertainment of IRD patient data from Philadelphia and Toronto centers illustrate the progress from Mendelian genetic types to molecular diagnoses. Molecular genetics have been used not only to clarify diagnoses and to direct counseling but also to enable the first clinical trials of gene-based treatment in these diseases. An overview of the recent reports of gene augmentation clinical trials by subretinal injections is used to reflect on the reasons why there has been limited success in this early venture into therapy. These first-in human experiences have taught that there is a need for advancing the techniques of delivery of the gene products - not only for refining further subretinal trials, but also for evaluating intravitreal delivery. Candidate IRDs for intravitreal gene delivery are then suggested to illustrate some of the disorders that may be amenable to improvement of remaining central vision with the least photoreceptor trauma. A more detailed understanding of the human IRDs to be considered for therapy and the calculated potential for efficacy should be among the routine prerequisites for initiating a clinical trial.
Collapse
Affiliation(s)
- Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rebecca Sheplock
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander Pearson
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Caberry WeiYang Yu
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Alexander Sumaroka
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Dan H, Huang X, Xing Y, Shen Y. Application of targeted panel sequencing and whole exome sequencing for 76 Chinese families with retinitis pigmentosa. Mol Genet Genomic Med 2020; 8:e1131. [PMID: 31960602 PMCID: PMC7057118 DOI: 10.1002/mgg3.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to identify the gene variants and molecular etiologies in 76 unrelated Chinese families with retinitis pigmentosa (RP). METHODS In total, 76 families with syndromic or nonsyndromic RP, diagnosed on the basis of clinical manifestations, were recruited for this study. Genomic DNA samples from probands were analyzed by targeted panels or whole exome sequencing. Bioinformatics analysis, Sanger sequencing, and available family member segregation were used to validate sequencing data and confirm the identities of disease-causing genes. RESULTS The participants enrolled in the study included 62 families that exhibited nonsyndromic RP, 13 that exhibited Usher syndrome, and one that exhibited Bardet-Biedl syndrome. We found that 43 families (56.6%) had disease-causing variants in 15 genes, including RHO, PRPF31, USH2A, CLRN1, BBS2, CYP4V2, EYS, RPE65, CNGA1, CNGB1, PDE6B, MERTK, RP1, RP2, and RPGR; moreover, 12 families (15.8%) had only one heterozygous variant in seven autosomal recessive RP genes, including USH2A, EYS, CLRN1, CERKL, RP1, CRB1, and SLC7A14. We did not detect any variants in the remaining 21 families (27.6%). We also identified 67 potential pathogenic gene variants, of which 24 were novel. CONCLUSION The gene variants identified in this study expand the variant frequency and spectrum of RP genes; moreover, the identification of these variants supplies foundational clues for future RP diagnosis and therapy.
Collapse
Affiliation(s)
- Handong Dan
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xin Huang
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yiqiao Xing
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yin Shen
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
30
|
Whelan L, Dockery A, Wynne N, Zhu J, Stephenson K, Silvestri G, Turner J, O’Byrne JJ, Carrigan M, Humphries P, Keegan D, Kenna PF, Farrar GJ. Findings from a Genotyping Study of Over 1000 People with Inherited Retinal Disorders in Ireland. Genes (Basel) 2020; 11:E105. [PMID: 31963381 PMCID: PMC7016747 DOI: 10.3390/genes11010105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
The Irish national registry for inherited retinal degenerations (Target 5000) is a clinical and scientific program to identify individuals in Ireland with inherited retinal disorders and to attempt to ascertain the genetic cause underlying the disease pathology. Potential participants first undergo a clinical assessment, which includes clinical history and analysis with multimodal retinal imaging, electrophysiology, and visual field testing. If suitable for recruitment, a sample is taken and used for genetic analysis. Genetic analysis is conducted by use of a retinal gene panel target capture sequencing approach. With over 1000 participants from 710 pedigrees now screened, there is a positive candidate variant detection rate of approximately 70% (495/710). Where an autosomal recessive inheritance pattern is observed, an additional 9% (64/710) of probands have tested positive for a single candidate variant. Many novel variants have also been detected as part of this endeavor. The target capture approach is an economic and effective means of screening patients with inherited retinal disorders. Despite the advances in sequencing technology and the ever-decreasing associated processing costs, target capture remains an attractive option as the data produced is easily processed, analyzed, and stored compared to more comprehensive methods. However, with decreasing costs of whole genome and whole exome sequencing, the focus will likely move towards these methods for more comprehensive data generation.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - Adrian Dockery
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - Niamh Wynne
- The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland;
| | - Julia Zhu
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Kirk Stephenson
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Giuliana Silvestri
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, UK;
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Jacqueline Turner
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - James J. O’Byrne
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Matthew Carrigan
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - Peter Humphries
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - David Keegan
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Paul F. Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
- The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland;
| | - G. Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| |
Collapse
|
31
|
Zenteno JC, García-Montaño LA, Cruz-Aguilar M, Ronquillo J, Rodas-Serrano A, Aguilar-Castul L, Matsui R, Vencedor-Meraz CI, Arce-González R, Graue-Wiechers F, Gutiérrez-Paz M, Urrea-Victoria T, de Dios Cuadras U, Chacón-Camacho OF. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next-generation sequencing. Mol Genet Genomic Med 2019; 8. [PMID: 31736247 PMCID: PMC6978239 DOI: 10.1002/mgg3.1044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Retinal dystrophies (RDs) are one of the most genetically heterogeneous monogenic disorders with ~270 associated loci identified by early 2019. The recent application of next‐generation sequencing (NGS) has greatly improved the molecular diagnosis of RD patients. Genetic characterization of RD cohorts from different ethnic groups is justified, as it would improve the knowledge of molecular basis of the disease. Here, we present the results of genetic analysis in a large cohort of 143 unrelated Mexican subjects with a variety of RDs. Methods A targeted NGS approach covering 199 RD genes was employed for molecular screening of 143 unrelated patients. In addition to probands, 258 relatives were genotyped by Sanger sequencing for familial segregation of pathogenic variants. Results A solving rate of 66% (95/143) was achieved, with evidence of extensive loci (44 genes) and allelic (110 pathogenic variants) heterogeneity. Forty‐eight percent of the identified pathogenic variants were novel while ABCA4, CRB1, USH2A, and RPE65 carried the greatest number of alterations. Novel deleterious variants in IDH3B and ARL6 were identified, supporting their involvement in RD. Familial segregation of causal variants allowed the recognition of 124 autosomal or X‐linked carriers. Conclusion Our results illustrate the utility of NGS for genetic diagnosis of RDs of different populations for a better knowledge of the mutational landscape associated with the disease.
Collapse
Affiliation(s)
- Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | | | - Marisa Cruz-Aguilar
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Josué Ronquillo
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Agustín Rodas-Serrano
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Rodrigo Matsui
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Rocío Arce-González
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Mario Gutiérrez-Paz
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Tatiana Urrea-Victoria
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Ulises de Dios Cuadras
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Oscar F Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| |
Collapse
|
32
|
Dan H, Huang X, Xing Y, Shen Y. Application of targeted exome and whole-exome sequencing for Chinese families with Stargardt disease. Ann Hum Genet 2019; 84:177-184. [PMID: 31674661 DOI: 10.1111/ahg.12361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate pathogenic variants and molecular etiologies of Stargardt disease (STGD) in a cohort of Chinese families. MATERIALS AND METHODS A cohort of 12 unrelated STGD families diagnosed on the basis of clinical manifestations underwent analysis by targeted exome or whole-exome sequencing. Bioinformatics analysis, Sanger sequencing, and cosegregation analysis of available family members were used to validate sequencing data and confirm the presence of disease-causing genes. RESULTS Using targeted exome and whole-exome sequencing, we found that eight families had disease-causing variants in the ABCA4 gene, one family had only one heterozygous variant in the ABCA4 gene, and the remaining three families have not been identified with any disease-causing variants for STGD. We identified 15 variants in the ABCA4 gene; of these, five variants have not been previously described for STGD. CONCLUSION The findings in this study expand the data regarding the frequency and spectrum of variants in the ABCA4 gene, thus potentially enriching our understanding of the molecular basis of STGD. Moreover, they constitute clues for future STGD diagnosis and therapy.
Collapse
Affiliation(s)
- Handong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Liu Z, Zhu L, Roberts R, Tong W. Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends Genet 2019; 35:852-867. [PMID: 31623871 DOI: 10.1016/j.tig.2019.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have changed the landscape of genetic testing in rare diseases. However, the rapid evolution of NGS technologies has outpaced its clinical adoption. Here, we re-evaluate the critical steps in the clinical application of NGS-based genetic testing from an informatics perspective. We suggest a 'fit-for-purpose' triage of current NGS technologies. We also point out potential shortcomings in the clinical management of genetic variants and offer ideas for potential improvement. We specifically emphasize the importance of ensuring the accuracy and reproducibility of NGS-based genetic testing in the context of rare disease diagnosis. We highlight the role of artificial intelligence (AI) in enhancing understanding and prioritization of variance in the clinical setting and propose deep learning frameworks for further investigation.
Collapse
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Liyuan Zhu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK; University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
34
|
Stephenson KAJ, Dockery A, O'Keefe M, Green A, Farrar GJ, Keegan DJ. A FBN1 variant manifesting as non-syndromic ectopia lentis with retinal detachment: clinical and genetic characteristics. Eye (Lond) 2019; 34:690-694. [PMID: 31527767 PMCID: PMC7093504 DOI: 10.1038/s41433-019-0580-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Background/objectives Fibrillin-1 (FBN1) mutations cause connective tissue dysgenesis the main ocular manifestation being ectopia lentis (EL), which may be syndromic or non-syndromic. We describe a pedigree with a FBN1 mutation causing non-syndromic EL with retinal detachment (RRD) and their management. Subjects/methods Patients with familial EL with RRD were invited to participate (vitreoretinopathy branch of Target 5000, the Irish inherited retinal degeneration study). All patients signed full informed consent. The study was approved by the Institutional Review Board of the Mater Hospital, Dublin and abided by the Declaration of Helsinki. Results Seven adults were affected with bilateral EL. All subjects had RRD with bilateral non-synchronous RRD in 57%. Conclusions The FBN1 variant described herein confers an increased risk of both EL and RRD and can now be upgraded to ‘pathogenic’ ACMG status.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Retinal Research Group: Mater Misericordiae University Hospital & Mater Private Hospital, Dublin, Ireland.
| | - Adrian Dockery
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Michael O'Keefe
- Retinal Research Group: Mater Misericordiae University Hospital & Mater Private Hospital, Dublin, Ireland
| | - Andrew Green
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - G Jane Farrar
- School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - David J Keegan
- Retinal Research Group: Mater Misericordiae University Hospital & Mater Private Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S, Inai C, Iwasaki Y, Kumano M, Murakami Y, Omodaka K, Abe T, Komori S, Gao D, Hirakata T, Kurata K, Hosono K, Ueno S, Hotta Y, Murakami A, Terasaki H, Wada Y, Nakazawa T, Ishibashi T, Ikeda Y, Kubo M, Sonoda KH. Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J Med Genet 2019; 56:662-670. [PMID: 31213501 DOI: 10.1136/jmedgenet-2018-105691] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/21/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The genetic profile of retinitis pigmentosa (RP) in East Asian populations has not been well characterised. Therefore, we conducted a large-scale sequencing study to investigate the genes and variants causing RP in a Japanese population. METHODS A total of 1209 Japanese patients diagnosed with typical RP were enrolled. We performed deep resequencing of 83 known causative genes of RP using next-generation sequencing. We defined pathogenic variants as those that were putatively deleterious or registered as pathogenic in the Human Gene Mutation Database or ClinVar database and had a minor allele frequency in any ethnic population of ≤0.5% for recessive genes or ≤0.01% for dominant genes as determined using population-based databases. RESULTS We successfully sequenced 1204 patients with RP and determined 200 pathogenic variants in 38 genes as the cause of RP in 356 patients (29.6%). Variants in six genes (EYS, USH2A, RP1L1, RHO, RP1 and RPGR) caused RP in 65.4% (233/356) of those patients. Among autosomal recessive genes, two known founder variants in EYS [p.(Ser1653fs) and p.(Tyr2935*)] and four East Asian-specific variants [p.(Gly2752Arg) in USH2A, p.(Arg658*) in RP1L1, p.(Gly2186Glu) in EYS and p.(Ile535Asn) in PDE6B] and p.(Cys934Trp) in USH2A were found in ≥10 patients. Among autosomal dominant genes, four pathogenic variants [p.(Pro347Leu) in RHO, p.(Arg872fs) in RP1, p.(Arg41Trp) in CRX and p.(Gly381fs) in PRPF31] were found in ≥4 patients, while these variants were unreported or extremely rare in both East Asian and non-East Asian population-based databases. CONCLUSIONS East Asian-specific variants in causative genes were the major causes of RP in the Japanese population.
Collapse
Affiliation(s)
- Yoshito Koyanagi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sadaaki Takata
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Chihiro Inai
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mikako Kumano
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shiori Komori
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dan Gao
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
The Oculome Panel Test: Next-Generation Sequencing to Diagnose a Diverse Range of Genetic Developmental Eye Disorders. Ophthalmology 2019; 126:888-907. [PMID: 30653986 DOI: 10.1016/j.ophtha.2018.12.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To develop a comprehensive next-generation sequencing panel assay that screens genes known to cause developmental eye disorders and inherited eye disease and to evaluate its diagnostic yield in a pediatric cohort with malformations of the globe, anterior segment anomalies, childhood glaucoma, or a combination thereof. DESIGN Evaluation of diagnostic test. PARTICIPANTS Two hundred seventy-seven children, 0 to 16 years of age, diagnosed with nonsyndromic or syndromic developmental eye defects without a genetic diagnosis. METHODS We developed a new oculome panel using a custom-designed Agilent SureSelect QXT target capture method (Agilent Technologies, Santa Clara, CA) to capture and perform parallel high-throughput sequencing analysis of 429 genes associated with eye disorders. Bidirectional Sanger sequencing confirmed suspected pathogenic variants. MAIN OUTCOME MEASURES Collated clinical details and oculome molecular genetic results. RESULTS The oculome design covers 429 known eye disease genes; these are subdivided into 5 overlapping virtual subpanels for anterior segment developmental anomalies including glaucoma (ASDA; 59 genes), microphthalmia-anophthalmia-coloboma (MAC; 86 genes), congenital cataracts and lens-associated conditions (70 genes), retinal dystrophies (RET; 235 genes), and albinism (15 genes), as well as additional genes implicated in optic atrophy and complex strabismus (10 genes). Panel development and testing included analyzing 277 clinical samples and 3 positive control samples using Illumina sequencing platforms; more than 30× read depth was achieved for 99.5% of the targeted 1.77-Mb region. Bioinformatics analysis performed using a pipeline based on Freebayes and ExomeDepth to identify coding sequence and copy number variants, respectively, resulted in a definitive diagnosis in 68 of 277 samples, with variability in diagnostic yield between phenotypic subgroups: MAC, 8.2% (8 of 98 cases solved); ASDA, 24.8% (28 of 113 cases solved); other or syndromic, 37.5% (3 of 8 cases solved); RET, 42.8% (21 of 49 cases solved); and congenital cataracts and lens-associated conditions, 88.9% (8 of 9 cases solved). CONCLUSIONS The oculome test diagnoses a comprehensive range of genetic conditions affecting the development of the eye, potentially replacing protracted and costly multidisciplinary assessments and allowing for faster targeted management. The oculome enabled molecular diagnosis of a significant number of cases in our sample cohort of varied ocular birth defects.
Collapse
|
37
|
Birtel J, Gliem M, Oishi A, Müller PL, Herrmann P, Holz FG, Mangold E, Knapp M, Bolz HJ, Charbel Issa P. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases. Clin Exp Ophthalmol 2019; 47:779-786. [PMID: 30977268 DOI: 10.1111/ceo.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/15/2023]
Abstract
IMPORTANCE Uncommon characteristics in genetically unsolved retinitis pigmentosa (RP) patients may indicate an incorrect clinical diagnosis or as yet unknown genetic causes resulting in specific retinal phenotypes. The diagnostic yield of targeted next-generation sequencing may be increased by a reasonable preselection of RP-patients. BACKGROUND To systematically evaluate and compare features of genetically solved and unsolved RP-patients. DESIGN Retrospective, observational study. PARTICIPANTS One-hundred and twelve consecutive RP-patients who underwent extensive molecular genetic analysis. METHODS Characterization of patients based on multimodal imaging and medical history. MAIN OUTCOME MEASURES Differences between genetically solved and unsolved RP-patients. RESULTS Compared to genetically solved patients (n = 77), genetically unsolved patients (n = 35) more frequently had an age of disease-onset above 30 years (60% vs 8%; P < 0.0001), showed atypical fundus features (49% vs 8%; P < 0. 0001) and indicators for phenocopies (eg, autoimmune diseases) (17% vs 0%; P < 0. 001). Evidence for a particular inheritance pattern was less common (20% vs 49%; P < 0. 01). The diagnostic yield was 84% (71/85) in patients with first symptoms below 30 years-of-age, compared to 69% (77/112) in the overall cohort. The other selection criteria alone or in combination resulted in limited further increase of the diagnostic yield (up to 89%) while excluding considerably more patients (up to 56%) from genetic testing. CONCLUSIONS AND RELEVANCE The medical history and retinal phenotype differ between genetically solved and a subgroup of unsolved RP-patients, which may reflect undetected genotypes or retinal conditions mimicking RP. Patient stratification may inform on the individual likelihood of identifying disease-causing mutations and may impact patient counselling.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akio Oishi
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.,Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Owaidah T, Saleh M, Baz B, Abdulaziz B, Alzahrani H, Tarawah A, Almusa A, AlNounou R, AbaAlkhail H, Al-Numair N, Altahan R, Abouelhoda M, Alamoudi T, Monies D, Jabaan A, Al Tassan N. Molecular yield of targeted sequencing for Glanzmann thrombasthenia patients. NPJ Genom Med 2019; 4:4. [PMID: 30792900 PMCID: PMC6375963 DOI: 10.1038/s41525-019-0079-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glanzmann thrombasthenia (GT) is a rare autosomal recessive bleeding disorder. Around 490 mutations in ITGA2B and ITGB3 genes were reported. We aimed to use targeted next-generation sequencing (NGS) to identify variants in patients with GT. We screened 72 individuals (including unaffected family members) using a panel of 393 genes (SHGP heme panel). Validation was done by Sanger sequencing and pathogenicity was predicted using multiple tools. In 83.5% of our cohort, 17 mutations were identified in ITGA2B and ITGB3 (including 6 that were not previously reported). In addition to variants in the two known genes, we found variants in ITGA2, VWF and F8. The SHGP heme panel can be used as a high-throughput molecular diagnostic assay to screen for mutations and variants in GT cases and carriers. Our findings expand the molecular landscape of GT and emphasize the robustness and usefulness of this panel.
Collapse
Affiliation(s)
- Tarek Owaidah
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mahasen Saleh
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Batoul Baz
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Basma Abdulaziz
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hazza Alzahrani
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Tarawah
- Medina Maternity and Children Hospital, Medina, Saudi Arabia
| | - Abdulrahman Almusa
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Randa AlNounou
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hala AbaAlkhail
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nouf Al-Numair
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Rahaf Altahan
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Abouelhoda
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Thamer Alamoudi
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Amjad Jabaan
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
A Novel FLVCR1 Variant Implicated in Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:203-207. [PMID: 31884612 DOI: 10.1007/978-3-030-27378-1_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we describe the identification and evaluation of a rare novel autosomal recessive mutation in FLVCR1 which is implicated solely in RP, with no evidence of posterior column ataxia in a number of affected patients. The mutation was detected as part of an ongoing target capture NGS study (Target 5000), aimed at identifying candidate variants in pedigrees with inherited retinal degenerations (IRDs) in Ireland. The mutation, FLVCR1 p.Tyr341Cys, was observed homozygously in seven affected patients across four pedigrees. FLVCR1 p.Tyr341Cys is a very rare mutation, with no previous reports of pathogenicity and no homozygous cases reported in online allele frequency databases. Our sequencing study identified seven homozygotes across multiple pedigrees, all with similar clinical presentations of RP without ataxia, a scenario extremely unlikely to occur by chance for a benign allele, particularly given the low population frequency of p.Tyr341Cys.
Collapse
|
40
|
Sun W, Zhang Q. Diseases associated with mutations in CNGA3: Genotype-phenotype correlation and diagnostic guideline. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:1-27. [PMID: 30711023 DOI: 10.1016/bs.pmbts.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Along with the molecular and functional characterization of CNGA3, knowledge about diseases associated with CNGA3 mutations has made great progress. So far, CNGA3 mutations are not only one of the most common causes of achromatopsia and cone dystrophy or cone-rod dystrophy but also one of the most commonly mutated genes among various forms of retinopathy. Understanding the clinical characteristics of CNGA3-associated retinal diseases may help clinical practice of infants or children with related diseases. Recognizing the importance of CNGA3 in inherited retinal diseases may enhance related research in searching for functional restoration or repair of CNGA3 defects.
Collapse
Affiliation(s)
- Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Stephenson K, Dockery A, Wynne N, Carrigan M, Kenna P, Jane Farrar G, Keegan D. Multimodal imaging in a pedigree of X-linked Retinoschisis with a novel RS1 variant. BMC MEDICAL GENETICS 2018; 19:195. [PMID: 30419843 PMCID: PMC6233547 DOI: 10.1186/s12881-018-0712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/29/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND To describe the clinical phenotype and genetic cause underlying the disease pathology in a pedigree (affected n = 9) with X-linked retinoschisis (XLRS1) due to a novel RS1 mutation and to assess suitability for novel therapies using multimodal imaging. METHODS The Irish National Registry for Inherited Retinal Degenerations (Target 5000) is a program including clinical history and examination with multimodal retinal imaging, electrophysiology, visual field testing and genetic analysis. Nine affected patients were identified across 3 generations of an XLRS1 pedigree. DNA sequencing was performed for each patient, one carrier female and one unaffected relative. Pedigree mapping revealed a further 4 affected males. RESULTS All affected patients had a history of reduced visual acuity and dyschromatopsia; however, the severity of phenotype varied widely between the nine affected subjects. The stage of disease was classified as previously described. Phenotypic severity was not linearly correlated with age. A novel RS1 (Xp22.2) mutation was detected (NM_000330: c.413C > A) resulting in a p.Thr138Asn substitution. Protein modelling demonstrated a change in higher order protein folding that is likely pathogenic. CONCLUSIONS This family has a novel gene mutation in RS1 with clinical evidence of XLRS1. A proportion of the older generation has developed end-stage macular atrophy; however, the severity is variable. Confirmation of genotype in the affected grandsons of this pedigree in principle may enable them to avail of upcoming gene therapies, provided there is anatomical evidence (from multimodal imaging) of potentially reversible early stage disease.
Collapse
Affiliation(s)
- Kirk Stephenson
- The Catherine McAuley Centre, Mater Private Hospital, Nelson Street, Dublin 7, Ireland.
| | - Adrian Dockery
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Niamh Wynne
- The Research Foundation, The Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | | | - Paul Kenna
- The Research Foundation, The Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Keegan
- The Catherine McAuley Centre, Mater Private Hospital, Nelson Street, Dublin 7, Ireland
| |
Collapse
|
42
|
A new approach based on targeted pooled DNA sequencing identifies novel mutations in patients with Inherited Retinal Dystrophies. Sci Rep 2018; 8:15457. [PMID: 30337596 PMCID: PMC6194132 DOI: 10.1038/s41598-018-33810-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
Abstract
Inherited retinal diseases (IRD) are a heterogeneous group of diseases that mainly affect the retina; more than 250 genes have been linked to the disease and more than 20 different clinical phenotypes have been described. This heterogeneity both at the clinical and genetic levels complicates the identification of causative mutations. Therefore, a detailed genetic characterization is important for genetic counselling and decisions regarding treatment. In this study, we developed a method consisting on pooled targeted next generation sequencing (NGS) that we applied to 316 eye disease related genes, followed by High Resolution Melting and copy number variation analysis. DNA from 115 unrelated test samples was pooled and samples with known mutations were used as positive controls to assess the sensitivity of our approach. Causal mutations for IRDs were found in 36 patients achieving a detection rate of 31.3%. Overall, 49 likely causative mutations were identified in characterized patients, 14 of which were first described in this study (28.6%). Our study shows that this new approach is a cost-effective tool for detection of causative mutations in patients with inherited retinopathies.
Collapse
|
43
|
Application of Whole Exome and Targeted Panel Sequencing in the Clinical Molecular Diagnosis of 319 Chinese Families with Inherited Retinal Dystrophy and Comparison Study. Genes (Basel) 2018; 9:genes9070360. [PMID: 30029497 PMCID: PMC6071067 DOI: 10.3390/genes9070360] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of clinically and genetically heterogeneous diseases involving more than 280 genes and no less than 20 different clinical phenotypes. In this study, our aims were to identify the disease-causing gene variants of 319 Chinese patients with IRD, and compare the pros and cons of targeted panel sequencing and whole exome sequencing (WES). Patients were assigned for analysis with a hereditary eye disease enrichment panel (HEDEP) or WES examination based on time of recruitment. This HEDEP was able to capture 441 hereditary eye disease genes, which included 291 genes related to IRD. As RPGR ORF15 was difficult to capture, all samples were subjected to Sanger sequencing for this region. Among the 163 disease-causing variants identified in this study, 73 had been previously reported, and the other 90 were novel. Genes most commonly implicated in different inheritances of IRDs in this cohort were presented. HEDEP and WES achieved diagnostic yield with 41.2% and 33.0%, respectively. In addition, nine patients were found to carry pathogenic mutations in the RPGR ORF15 region with Sanger sequencing. Our study demonstrates that HEDEP can be used as a first-tier test for patients with IRDs.
Collapse
|
44
|
Mustafa AE, Faquih T, Baz B, Kattan R, Al-Issa A, Tahir AI, Imtiaz F, Ramzan K, Al-Sayed M, Alowain M, Al-Hassnan Z, Al-Zaidan H, Abouelhoda M, Al-Mubarak BR, Al Tassan NA. Validation of Ion Torrent TM Inherited Disease Panel with the PGM TM Sequencing Platform for Rapid and Comprehensive Mutation Detection. Genes (Basel) 2018; 9:genes9050267. [PMID: 29789446 PMCID: PMC5977207 DOI: 10.3390/genes9050267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023] Open
Abstract
Quick and accurate molecular testing is necessary for the better management of many inherited diseases. Recent technological advances in various next generation sequencing (NGS) platforms, such as target panel-based sequencing, has enabled comprehensive, quick, and precise interrogation of many genetic variations. As a result, these technologies have become a valuable tool for gene discovery and for clinical diagnostics. The AmpliSeq Inherited Disease Panel (IDP) consists of 328 genes underlying more than 700 inherited diseases. Here, we aimed to assess the performance of the IDP as a sensitive and rapid comprehensive gene panel testing. A total of 88 patients with inherited diseases and causal mutations that were previously identified by Sanger sequencing were randomly selected for assessing the performance of the IDP. The IDP successfully detected 93.1% of the mutations in our validation cohort, achieving high overall gene coverage (98%). The sensitivity for detecting single nucleotide variants (SNVs) and short Indels was 97.3% and 69.2%, respectively. IDP, when coupled with Ion Torrent Personal Genome Machine (PGM), delivers comprehensive and rapid sequencing for genes that are responsible for various inherited diseases. Our validation results suggest the suitability of this panel for use as a first-line screening test after applying the necessary clinical validation.
Collapse
Affiliation(s)
- Abeer E Mustafa
- Behavioral Genetics Unit, Department of Genetics, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| | - Tariq Faquih
- Department of Genetics, King Faisal Specialist Hospital & Research Centre. P.O. Box 3354, Riyadh 11211, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| | - Batoul Baz
- Behavioral Genetics Unit, Department of Genetics, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Rana Kattan
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| | - Abdulelah Al-Issa
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| | - Asma I Tahir
- Behavioral Genetics Unit, Department of Genetics, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital & Research Centre. P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital & Research Centre. P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Moeenaldeen Al-Sayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital & Research Centre. P.O. Box 3354, Riyadh 11211, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| | - Bashayer R Al-Mubarak
- Behavioral Genetics Unit, Department of Genetics, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| | - Nada A Al Tassan
- Behavioral Genetics Unit, Department of Genetics, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia.
| |
Collapse
|
45
|
A Novel Heterozygous Missense Mutation in GNAT1 Leads to Autosomal Dominant Riggs Type of Congenital Stationary Night Blindness. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7694801. [PMID: 29850563 PMCID: PMC5937575 DOI: 10.1155/2018/7694801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 01/03/2023]
Abstract
Autosomal dominant congenital stationary night blindness (adCSNB) is rare and results from altered phototransduction giving a Riggs type of electroretinogram (ERG) with loss of the rod a-wave and small b-waves. These patients usually have normal vision in light. Only few mutations in genes coding for proteins of the phototransduction cascade lead to this condition; most of these gene defects cause progressive rod-cone dystrophy. Mutation analysis of an adCSNB family with a Riggs-type ERG revealed a novel variant (c.155T>A p.Ile52Asn) in GNAT1 coding for the α-subunit of transducin, cosegregating with the phenotype. Domain predictions and 3D-modelling suggest that the variant does not affect the GTP-binding site as other GNAT1 adCSNB mutations do. It affects a predicted nuclear localization signal and a part of the first α-helix, which is distant from the GTP-binding site. The subcellular protein localization of this and other mutant GNAT1 proteins implicated in CSNB are unaltered in mammalian GNAT1 overexpressing cells. Our findings add a third GNAT1 mutation causing adCSNB and suggest that different pathogenic mechanisms may cause this condition.
Collapse
|
46
|
Imani S, Cheng J, Mobasher‐Jannat A, Wei C, Fu S, Yang L, Jadidi K, Khosravi MH, Mohazzab‐Torabi S, Shasaltaneh MD, Li Y, Chen R, Fu J. Identification of a novel RPGRIP1 mutation in an Iranian family with leber congenital amaurosis by exome sequencing. J Cell Mol Med 2018; 22:1733-1742. [PMID: 29193763 PMCID: PMC5824405 DOI: 10.1111/jcmm.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a heterogeneous, early-onset inherited retinal dystrophy, which is associated with severe visual impairment. We aimed to determine the disease-causing variants in Iranian LCA and evaluate the clinical implications. Clinically, a possible LCA disease was found through diagnostic imaging, such as fundus photography, autofluorescence and optical coherence tomography. All affected patients showed typical eye symptoms associated with LCA including narrow arterioles, blindness, pigmentary changes and nystagmus. Target exome sequencing was performed to analyse the proband DNA. A homozygous novel c. 2889delT (p.P963 fs) mutation in the RPGRIP1 gene was identified, which was likely the deleterious and pathogenic mutation in the proband. Structurally, this mutation lost a retinitis pigmentosa GTPase regulator (RPGR)-interacting domain at the C-terminus which most likely impaired stability in the RPGRIP1 with the distribution of polarised proteins in the cilium connecting process. Sanger sequencing showed complete co-segregation in this pedigree. This study provides compelling evidence that the c. 2889delT (p.P963 fs) mutation in the RPGRIP1 gene works as a pathogenic mutation that contributes to the progression of LCA.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
- Hunan Normal University Medical CollegeChangshaHunanChina
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Abdolkarim Mobasher‐Jannat
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
- Student Research CommitteeBaqiyatallah University of Medical SciencesTehran Iran
| | - Chunli Wei
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Shangyi Fu
- The Honors CollegeUniversity of HoustonHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Lisha Yang
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khosrow Jadidi
- Department of OphthalmologyBaqiyatallah University of Medical SciencesTehranIran
| | | | - Saman Mohazzab‐Torabi
- Eye Research CenterFarabi Eye HospitalTehran University of Medical SciencesTehranIran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro‐organic ChemistryInstitute of Biochemistry and Biophysics (IBB)University of TehranTehranIran
- Laboratory of Systems Biology and Bioinformatics (LBB)Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | - Yumei Li
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Rui Chen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
- Hunan Normal University Medical CollegeChangshaHunanChina
| |
Collapse
|
47
|
Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P. Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 2017; 26:R2-R11. [PMID: 28510639 PMCID: PMC5886474 DOI: 10.1093/hmg/ddx185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
While individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP). However, targeted sequencing studies of exons from known IRD genes have resulted in the identification of candidate mutations in only approximately 60% of IRD cases. Given recent advances in the development of gene-based medicines, characterization of IRD patient cohorts for known IRD genes and elucidation of the molecular pathologies of disease in those remaining unresolved cases has become an endeavor of the highest priority. Here, we provide an outline of progress in this area.
Collapse
Affiliation(s)
- G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Matthew Carrigan
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Adrian Dockery
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Sophia Millington-Ward
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Arpad Palfi
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Marian Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Anna Sophia Kiang
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Paul F Kenna
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Pete Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
48
|
Target 5000: Target Capture Sequencing for Inherited Retinal Degenerations. Genes (Basel) 2017; 8:genes8110304. [PMID: 29099798 PMCID: PMC5704217 DOI: 10.3390/genes8110304] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023] Open
Abstract
There are an estimated 5000 people in Ireland who currently have an inherited retinal degeneration (IRD). It is the goal of this study, through genetic diagnosis, to better enable these 5000 individuals to obtain a clearer understanding of their condition and improved access to potentially applicable therapies. Here we show the current findings of a target capture next-generation sequencing study of over 750 patients from over 520 pedigrees currently situated in Ireland. We also demonstrate how processes can be implemented to retrospectively analyse patient datasets for the detection of structural variants in previously obtained sequencing reads. Pathogenic or likely pathogenic mutations were detected in 68% of pedigrees tested. We report nearly 30 novel mutations including three large structural variants. The population statistics related to our findings are presented by condition and credited to their respective candidate gene mutations. Rediagnosis rates of clinical phenotypes after genotyping are discussed. Possible causes of failure to detect a candidate mutation are evaluated. Future elements of this project, with a specific emphasis on structural variants and non-coding pathogenic variants, are expected to increase detection rates further and thereby produce an even more comprehensive representation of the genetic landscape of IRDs in Ireland.
Collapse
|
49
|
Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:85-141. [PMID: 29305015 DOI: 10.1016/bs.ircmb.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.
Collapse
|