1
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
2
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555449. [PMID: 37693391 PMCID: PMC10491195 DOI: 10.1101/2023.08.29.555449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Ligands such as insulin, epidermal growth factor, platelet derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & Biophysics
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University
| | - Shauna C. Otto
- University of Washington, Department of Physiology & Biophysics
| | | | - Anthony Nhim
- University of Washington, Department of Physiology & Biophysics
| | - Sara Carlson
- University of Washington, Department of Physiology & Biophysics
| | - Marium Raza
- University of Washington, Department of Physiology & Biophysics
| | | | | | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University
| | | |
Collapse
|
3
|
Katz B, Zaguri R, Edvardson S, Maayan C, Elpeleg O, Lev S, Davidson E, Peters M, Kfir-Erenfeld S, Berger E, Ghazalin S, Binshtok AM, Minke B. Nociception and pain in humans lacking a functional TRPV1 channel. J Clin Invest 2023; 133:153558. [PMID: 36454632 PMCID: PMC9888381 DOI: 10.1172/jci153558] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUNDChronic pain is a debilitating illness with currently limited therapy, in part due to difficulties in translating treatments derived from animal models to patients. The transient receptor potential vanilloid 1 (TRPV1) channel is associated with noxious heat detection and inflammatory pain, and reports of adverse effects in human trials have hindered extensive efforts in the clinical development of TRPV1 antagonists as novel pain relievers.METHODSWe examined 2 affected individuals (A1 and A2) carrying a homozygous missense mutation in TRPV1, rendering the channel nonfunctional. Biochemical and functional assays were used to analyze the mutant channel. To identify possible phenotypes of the affected individuals, we performed psychophysical and medical examinations.RESULTSWe demonstrated that diverse TRPV1 activators, acting at different sites of the channel protein, were unable to open the cloned mutant channel. This finding was not a consequence of impairment in the expression, cellular trafficking, or assembly of protein subunits. The affected individuals were insensitive to application of capsaicin to the mouth and skin and did not demonstrate aversive behavior toward capsaicin. Furthermore, quantitative sensory testing of A1 revealed an elevated heat-pain threshold but also, surprisingly, an elevated cold-pain threshold and extensive neurogenic inflammatory, flare, and pain responses following application of the TRPA1 channel activator mustard oil.CONCLUSIONOur study provides direct evidence in humans for pain-related functional changes linked to TRPV1, which is a prime target in the development of pain relievers.FUNDINGSupported by the Israel Science Foundation (368/19); Teva's National Network of Excellence in Neuroscience grant (no. 0394886) and Teva's National Network of Excellence in Neuroscience postdoctoral fellowship.
Collapse
Affiliation(s)
- Ben Katz
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Rachel Zaguri
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Simon Edvardson
- Pediatric Neurology Unit, Pediatric Department, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel
| | - Channa Maayan
- Pediatric Neurology Unit, Pediatric Department, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel
| | | | - Shaya Lev
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Elyad Davidson
- Pain Relief Unit, Department of Anesthesiology and Critical Care Medicine, and
| | - Maximilian Peters
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunology, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel
| | - Esther Berger
- Department of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Shifa Ghazalin
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Alexander M. Binshtok
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Baruch Minke
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Ramal-Sanchez M, Bernabò N, Valbonetti L, Cimini C, Taraschi A, Capacchietti G, Machado-Simoes J, Barboni B. Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. Int J Mol Sci 2021; 22:4306. [PMID: 33919147 PMCID: PMC8122410 DOI: 10.3390/ijms22094306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, were described to date in different species and cell types. Moreover, all those modulators with a relationship with the reproductive process, either found in the female tract, seminal plasma, or spermatozoa, are presented here. Since the sperm migration through the female reproductive tract is one of the most intriguing and less understood events of the fertilization process, in the present work, chemotaxis, thermotaxis, and rheotaxis guiding mechanisms and their relationship with TRPV1 receptor are deeply analyzed, hypothesizing its (in)direct participation during the sperm migration. Last, TRPV1 is presented as a pharmacological target, with a special focus on humans and some pathologies in mammals strictly related to the male reproductive system.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Juliana Machado-Simoes
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| |
Collapse
|
5
|
Takahashi N, Tsuzuno T, Mineo S, Yamada-Hara M, Aoki-Nonaka Y, Tabeta K. Epithelial TRPV1 channels: Expression, function, and pathogenicity in the oral cavity. J Oral Biosci 2020; 62:235-241. [DOI: 10.1016/j.job.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
|
6
|
Du G, Tian Y, Yao Z, Vu S, Zheng J, Chai L, Wang K, Yang S. A specialized pore turret in the mammalian cation channel TRPV1 is responsible for distinct and species-specific heat activation thresholds. J Biol Chem 2020; 295:9641-9649. [PMID: 32461255 DOI: 10.1074/jbc.ra120.013037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is a heat-activated cation channel that plays a crucial role in ambient temperature detection and thermal homeostasis. Although several structural features of TRPV1 have been shown to be involved in heat-induced activation of the gating process, the physiological significance of only a few of these key elements has been evaluated in an evolutionary context. Here, using transient expression in HEK293 cells, electrophysiological recordings, and molecular modeling, we show that the pore turret contains both structural and functional determinants that set the heat activation thresholds of distinct TRPV1 orthologs in mammals whose body temperatures fluctuate widely. We found that TRPV1 from the bat Carollia brevicauda exhibits a lower threshold temperature of channel activation than does its human ortholog and three bat-specific amino acid substitutions located in the pore turret are sufficient to determine this threshold temperature. Furthermore, the structure of the TRPV1 pore turret appears to be of physiological and evolutionary significance for differentiating the heat-activated threshold among species-specific TRPV1 orthologs. These findings support a role for the TRPV1 pore turret in tuning the heat-activated threshold, and they suggest that its evolution was driven by adaption to specific physiological traits among mammals exposed to variable temperatures.
Collapse
Affiliation(s)
- Guangxu Du
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Zhihao Yao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of the Yunnan Province Kunming Institute of Zoology, Kunming, Yunnan China
| | - Simon Vu
- University of California Davis, School of Medicine, Davis, California, USA
| | - Jie Zheng
- University of California Davis, School of Medicine, Davis, California, USA
| | - Longhui Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Ladrón-de-Guevara E, Dominguez L, Rangel-Yescas GE, Fernández-Velasco DA, Torres-Larios A, Rosenbaum T, Islas LD. The Contribution of the Ankyrin Repeat Domain of TRPV1 as a Thermal Module. Biophys J 2019; 118:836-845. [PMID: 31757360 DOI: 10.1016/j.bpj.2019.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.
Collapse
Affiliation(s)
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Mexico City, Mexico
| | | | | | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tamara Rosenbaum
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leon D Islas
- Facultad de Medicina, Departamento de Fisiología, Mexico City, Mexico.
| |
Collapse
|
8
|
Jiang M, Li H, Johnson A, Karasawa T, Zhang Y, Meier WB, Taghizadeh F, Kachelmeier A, Steyger PS. Inflammation up-regulates cochlear expression of TRPV1 to potentiate drug-induced hearing loss. SCIENCE ADVANCES 2019; 5:eaaw1836. [PMID: 31328162 PMCID: PMC6636990 DOI: 10.1126/sciadv.aaw1836] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/13/2019] [Indexed: 05/26/2023]
Abstract
Aminoglycoside antibiotics are essential for treating life-threatening bacterial infections, despite the risk of lifelong hearing loss. Infections induce inflammation and up-regulate expression of candidate aminoglycoside-permeant cation channels, including transient receptor potential vanilloid-1 (TRPV1). Heterologous expression of TRPV1 facilitated cellular uptake of (fluorescently tagged) gentamicin that was enhanced by agonists, and diminished by antagonists, of TRPV1. Cochlear TRPV1 was immunolocalized near the apical membranes of sensory hair cells, adjacent supporting cells, and marginal cells in the stria vascularis. Exposure to immunostimulatory lipopolysaccharides, to simulate of bacterial infections, increased cochlear expression of TRPV1 and hair cell uptake of gentamicin. Lipopolysaccharide exposure exacerbated aminoglycoside-induced auditory threshold shifts and loss of cochlear hair cells in wild-type, but not in heterozygous Trpv1+/- or Trpv1 knockout, mice. Thus, TRPV1 facilitates cochlear uptake of aminoglycosides, and bacteriogenic stimulation upregulates TRPV1 expression to exacerbate cochleotoxicity. Furthermore, loss-of-function polymorphisms in Trpv1 can protect against immunogenic exacerbation of aminoglycoside-induced cochleotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Anastasiya Johnson
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yuan Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - William B. Meier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
9
|
Dong Y, Yin Y, Vu S, Yang F, Yarov-Yarovoy V, Tian Y, Zheng J. A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem Biophys Res Commun 2019; 516:365-372. [PMID: 31213294 DOI: 10.1016/j.bbrc.2019.06.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Piperine, the principle pungent compound in black peppers, is known to activate the capsaicin receptor TRPV1 ion channel. How piperine interacts with the channel protein, however, remains unclear. Here we show that piperine binds to the same ligand-binding pocket as capsaicin but in different poses. There was no detectable detrimental effect when T551 and E571, two major sites known to form hydrogen bond with capsaicin, were mutated to a hydrophobic amino acid. Computational structural modeling suggested that piperine makes interactions with multiple amino acids within the ligand binding pocket, including T671 on the pore-forming S6 segment. Mutations of this residue could substantially reduce or even eliminate piperine-induced activation, confirming that T671 is an important site. Our results suggest that the bound piperine may directly interact with the pore-forming S6 segment to induce channel opening. These findings help to explain why piperine is a weak agonist, and may guide future efforts to develop novel pharmaceutical reagents targeting TRPV1.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Yue Yin
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Simon Vu
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China.
| | - Jie Zheng
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Luo L, Wang Y, Li B, Xu L, Kamau PM, Zheng J, Yang F, Yang S, Lai R. Molecular basis for heat desensitization of TRPV1 ion channels. Nat Commun 2019; 10:2134. [PMID: 31086183 PMCID: PMC6513986 DOI: 10.1038/s41467-019-09965-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel is a prototypical molecular sensor for noxious heat in mammals. Its role in sustained heat response remains poorly understood, because rapid heat-induced desensitization (Dh) follows tightly heat-induced activation (Ah). To understand the physiological role and structural basis of Dh, we carried out a comparative study of TRPV1 channels in mouse (mV1) and those in platypus (pV1), which naturally lacks Dh. Here we show that a temperature-sensitive interaction between the N- and C-terminal domains of mV1 but not pV1 drives a conformational rearrangement in the pore leading to Dh. We further show that knock-in mice expressing pV1 sensed heat normally but suffered scald damages in a hot environment. Our findings suggest that Dh evolved late during evolution as a protective mechanism and a delicate balance between Ah and Dh is crucial for mammals to sense and respond to noxious heat.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lizhen Xu
- Key Laboratory of Medical Neurobiology, Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| | - Fan Yang
- Key Laboratory of Medical Neurobiology, Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| |
Collapse
|
11
|
Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017; 8:169-177. [PMID: 28044278 PMCID: PMC5326624 DOI: 10.1007/s13238-016-0353-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-and-contact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.
Collapse
|