1
|
Hatakeyama Y, Horino T, Yasui S, Terada Y, Okuhara Y. Differences in characteristics and risk factors for acute kidney injury between elderly and very elderly patients: a retrospective review. Clin Exp Nephrol 2024; 28:1097-1110. [PMID: 38814420 DOI: 10.1007/s10157-024-02512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Few epidemiologic studies on acute kidney injury (AKI) have focused on the older adult population. This study aimed to clarify the characteristics and risk factors for AKI in this population. METHODS This retrospective observational study was performed with the clinical data of all outpatients and inpatients aged ≥ 65 years at the time of enrolment at Kochi Medical School Hospital between 1 January 1981 and 31 December 2021. The primary cohort was divided into those aged 65-74 and ≥ 75 years. The primary outcome was the occurrence of AKI. RESULTS Of 83,822 patients, 38,333 were included in the 65-74-year-old group, whereas 45,489 were included in the ≥ 75-year-old group. Prevalences of the first AKI event in the 65-74-year-old and ≥ 75-year-old groups were 11.9% and 12.4%, respectively. Overall, lower estimated glomerular filtration rate, lower albumin level, lower or higher level of serum uric acid, and histories of diabetes mellitus, chronic heart failure, ischaemic heart disease, non-ischaemic heart disease, cerebrovascular disease, cancer, and liver disease were independent risk factors for an AKI event. The risk factors for AKI unique to each cohort were using non-steroidal anti-inflammatory drugs (NSAIDs) and loop diuretics (L-DI), and histories of hypertension (HT) and vascular diseases (VD) in men aged 65-74 years; using NSAIDs, angiotensin-converting enzyme inhibitors (ACEIs), L-DI and other diuretics (O-DI), and histories of HT and VD in men aged ≥ 75 years; using NSAIDs and O-DI and not using angiotensin-receptor blockers (ARBs), and a history of HT in women aged 65-74 years; and use of L-DI and a history of VD in women aged ≥ 75 years. Presence of proteinuria was a risk factor for developing AKI. CONCLUSIONS Many AKI risk factors reported thus far are associated with AKI development. However, there are differences in the effects of the renin-angiotensin system inhibitors, ACEIs, and ARBs (ARBs may be protective). Additionally, the U-shaped relationship between AKI onset and uric acid levels differs between sexes in the elderly population, similar to other age groups, but this sex difference disappears in the very elderly population. Pre-existing chronic kidney disease is a risk factor for the development of AKI.
Collapse
Affiliation(s)
- Yutaka Hatakeyama
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Shigehiro Yasui
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Yoshiyasu Okuhara
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
2
|
Kung CW, Lin YC, Tseng CS, Chou YH. Impact of Renin-Angiotensin System Blockade on Mortality and Allograft Loss among Renal Transplant Recipients: A Systematic Review and Meta-Analysis. Nephron Clin Pract 2024:1-11. [PMID: 39008959 DOI: 10.1159/000540305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
INTRODUCTION The blockade of the renin-angiotensin system (RAS) has a beneficial effect on reducing the levels of proteinuria and blood pressure in patients with chronic kidney disease (CKD) and reduces the risk of developing end-stage kidney disease in CKD patients. Nonetheless, a debate persists regarding the impact of RAS inhibitors on outcomes such as mortality and graft survival in renal transplant patients. To assess the effect of RAS inhibitors on graft recipients in the past decade, we conducted a systematic review and meta-analysis. METHODS We searched Embase, PubMed, and the Cochrane Central Register of Clinical Trials from January 1, 2012, to August 1, 2022. We included 14 articles, comprising 5 randomized controlled trials (RCTs) and 9 cohort studies, including 45,377 patients. These studies compared patient or graft survival between an RAS inhibitor treatment arm and a control arm. RESULTS The meta-analysis revealed that RAS blockade was significantly associated with lower mortality in cohort studies (risk ratio [RR] = 0.66, 95% confidence interval [CI]: 0.55-0.79), reduced allograft loss in cohort studies (RR = 0.62, 95% CI: 0.54-0.71), and significant changes in systolic blood pressure in RCTs. Subgroup analysis of the groups of interest (interventions involving RAS blockade, follow-up period of ≥5 years) showed consistently reduced mortality (RR = 0.67, 95% CI: 0.56-0.81) and reduced allograft loss (RR = 0.61, 95% CI: 0.54-0.70). CONCLUSIONS Our results demonstrated that the application of RAS blockade among renal transplant recipients was associated with lower mortality and allograft loss in cohort studies but not in RCTs. More powered clinical trials are needed to evaluate the effects of RAS blockade in renal transplant recipients.
Collapse
Affiliation(s)
| | - Yi-Chih Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chi-Shin Tseng
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
3
|
Chou YH, Pan SY, Shih HM, Lin SL. Update of pericytes function and their roles in kidney diseases. J Formos Med Assoc 2024; 123:307-317. [PMID: 37586973 DOI: 10.1016/j.jfma.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Studies have highlighted the significant involvement of kidney pericytes in renal fibrosis. Kidney pericytes, classified as interstitial mesenchymal cells, are extensively branched, collagen-producing cells that closely interact with endothelial cells. This article aims to provide an overview of the recent advancements in understanding the physiological functions of pericytes and their roles in kidney diseases. In a healthy kidney, pericytes have essential physiological function in angiogenesis, erythropoietin (EPO) production, and the regulation of renal blood flow. Nevertheless, pericyte-myofibroblast transition has been identified as the primary cause of disease progression in acute kidney injury (AKI)-to-chronic kidney disease (CKD) continuum. Our recent research has demonstrated that hypoxia-inducible factor-2α (HIF-2α) regulates erythropoietin production in pericytes. However, this production is repressed by EPO gene hypermethylation and HIF-2α downregulation which were induced by transforming growth factor-β1-activated DNA methyltransferase and activin receptor-like kinase-5 signaling pathway during renal fibrosis, respectively. Additionally, AKI induces epigenetic modifications in pericytes, rendering them more prone to extracellular matrix production, cell migration and proliferation, thereby contributing to subsequent capillary rarefaction and renal fibrosis. Further investigation into the specific functions and roles of different subpopulations of pericytes may contribute for the development of targeted therapies aimed at attenuating kidney disease and mitigating their adverse effects.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Shelke V, Dagar N, Gaikwad AB. Phloretin as an add-on therapy to losartan attenuates diabetes-induced AKI in rats: A potential therapeutic approach targeting TLR4-induced inflammation. Life Sci 2023; 332:122095. [PMID: 37722590 DOI: 10.1016/j.lfs.2023.122095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
AIM Targeting Toll-like receptor 4 (TLR4) and Angiotensin II type 1 receptor (AT1R) could provide renoprotection during acute kidney injury (AKI) mainly by regulating inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Phloretin (TLR4 inhibitor) as an add-on therapy to losartan (AT1R inhibitor) could provide more therapeutic benefits against AKI under diabetic condition. We aimed to study the effect of phloretin as an add-on therapy to losartan against AKI under diabetic condition. MAIN METHODS To mimic diabetic AKI condition, bilateral ischemia-reperfusion injury (BIRI) was done in diabetic male Wistar rats, and sodium azide treatment was given to high glucose NRK52E cells to mimic hypoxia-reperfusion injury. In diabetic rats, phloretin (50 mg/kg/per os (p.o.)) and losartan (10 mg/kg/p.o.) treatment was given for 4 days and 1 h prior to surgery while in NRK52E cells, both drugs (phloretin 50 μM and losartan 10 μM) were given 24 h prior to the hypoxia condition. The in vivo and in vitro samples were further used for different experiments. KEY FINDINGS Treatment with phloretin and losartan decreased diabetic and AKI biomarkers such as plasma creatinine, blood urea nitrogen (BUN), and kidney injury molecular 1 (KIM1). Moreover, a combination of phloretin and losartan significantly preserved ΔΨm and kidney morphology potentially by inhibiting TLR4-associated inflammation and AT1R-associated mitochondrial dysfunction, thereby oxidative stress. SIGNIFICANCE Combination therapy of phloretin and losartan was more effective than monotherapies. Both drugs target TLR4/MyD88/NF-κB pathway and reduce inflammation and mitochondrial dysfunction in AKI under diabetic condition.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
5
|
Kung CW, Chou YH. Acute kidney disease: an overview of the epidemiology, pathophysiology, and management. Kidney Res Clin Pract 2023; 42:686-699. [PMID: 37165615 DOI: 10.23876/j.krcp.23.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 05/12/2023] Open
Abstract
Acute kidney injury (AKI) increases the risk of chronic kidney disease (CKD), and AKI and CKD are seen as interconnected syndromes. Acute kidney disease (AKD) is defined as subacute damage and/or loss of kidney function occurring 7 to 90 days after AKI, during which period key interventions may be initiated to hinder the development of CKD. While AKD is usually under-recognized, it is associated with high morbidity and mortality globally. This review article aims to summarize the current knowledge concerning the epidemiology, pathophysiology, and management of AKD with the aim to develop monitoring strategies and therapeutic agents of AKD. Generally, AKD tends to occur more frequently in the elderly and those with chronic diseases, such as hypertension, diabetes mellitus, and metabolic syndrome. In addition, the severity, duration, and frequency of AKI are independent risk factors for AKD. Investigations of several mechanisms of AKD, such as renal tubular epithelium cell-cycle arrest, epigenetic change, chronic inflammation, mitochondria dysfunction, failed regeneration of tubular cells, metabolic reprogramming, and renin-angiotensin system (RAS) activation, have identified additional potential pharmacotherapy targets. Management of AKD includes prevention of repeated AKI, early and regular follow-up by a nephrologist, resumption and adjustment of essential medication, optimization of blood pressure control and nutrition management, and development of new pharmaceutical agents including RAS inhibitors. Finally, we outline a care bundle for AKD patients based on important lessons learned from studies and registries and identify the need for clinical trials of RAS inhibitors or other novel agents to impede ensuing CKD development.
Collapse
Affiliation(s)
- Chin-Wei Kung
- Department of Internal Medicine, China Medical University Hospital, China Medical University College of Medicine, Taichung, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| |
Collapse
|
6
|
Yang G, Tan L, Yao H, Xiong Z, Wu J, Huang X. Long-Term Effects of Severe Burns on the Kidneys: Research Advances and Potential Therapeutic Approaches. J Inflamm Res 2023; 16:1905-1921. [PMID: 37152866 PMCID: PMC10162109 DOI: 10.2147/jir.s404983] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Burns are a seriously underestimated form of trauma that not only damage the skin system but also cause various complications, such as acute kidney injury (AKI). Recent clinical studies have shown that the proportion of chronic kidney diseases (CKD) in burn patients after discharge is significantly higher than that in the general population, but the mechanism behind this is controversial. The traditional view is that CKD is associated with hypoperfusion, AKI, sepsis, and drugs administered in the early stages of burns. However, recent studies have shown that burns can cause long-term immune dysfunction, which is a high-risk factor for CKD. This suggests that burns affect the kidneys more than previously recognized. In other words, severe burns are not only an acute injury but also a chronic disease. Neglecting to study long-term kidney function in burn patients also results in a lack of preventive and therapeutic methods being developed. Furthermore, stem cells and their exosomes have shown excellent comprehensive therapeutic properties in the prevention and treatment of CKD, making them increasingly the focus of research attention. Their engineering strategy further improved the therapeutic performance. This review will focus on the research advances in burns on the development of CKD, illustrating the possible mechanism of burn-induced CKD and introducing potential biological treatment options and their engineering strategies.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044006, People’s Republic of China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541004, People’s Republic of China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona, Venetia, 37134, Italy
| | - Xiaoyan Huang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
7
|
Martínez-Arias L, Fernández-Villabrille S, Alonso-Montes C, García-Navazo G, Ruíz-Torres MP, Alajarín R, Alvarez-Builla J, Gutiérrez-Calabres E, Vaquero-López JJ, Carrillo-López N, Rodríguez-Puyol D, Cannata-Andía JB, Panizo S, Naves-Díaz M. Effects of a Losartan-Antioxidant Hybrid (GGN1231) on Vascular and Cardiac Health in an Experimental Model of Chronic Renal Failure. Nutrients 2023; 15:nu15081820. [PMID: 37111038 PMCID: PMC10143556 DOI: 10.3390/nu15081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Drugs providing antihypertensive and protective cardiovascular actions are of clinical interest in controlling cardiovascular events and slowing the progression of kidney disease. We studied the effect of a hybrid compound, GGN1231 (derived from losartan in which a powerful antioxidant was attached), on the prevention of cardiovascular damage, cardiac hypertrophy, and fibrosis in a rat model of severe chronic renal failure (CRF). CRF by a 7/8 nephrectomy was carried out in male Wistar rats fed with a diet rich in phosphorous (0.9%) and normal calcium (0.6%) for a period of 12 weeks until sacrifice. In week 8, rats were randomized in five groups receiving different drugs including dihydrocaffeic acid as antioxidant (Aox), losartan (Los), dihydrocaffeic acid+losartan (Aox+Los) and GGN1231 as follows: Group 1 (CRF+vehicle group), Group 2 (CRF+Aox group), Group 3 (CRF+Los group), Group 4 (CRF+Aox+Los group), and Group 5 (CRF+GGN1231 group). Group 5, the CRF+GGN1231 group, displayed reduced proteinuria, aortic TNF-α, blood pressure, LV wall thickness, diameter of the cardiomyocytes, ATR1, cardiac TNF-α and fibrosis, cardiac collagen I, and TGF-β1 expression. A non-significant 20% reduction in the mortality was also observed. This study showed the possible advantages of GGN1231, which could help in the management of cardiovascular and inflammatory processes. Further research is needed to confirm and even expand the positive aspects of this compound.
Collapse
Affiliation(s)
- Laura Martínez-Arias
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Gonzalo García-Navazo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Spain
| | - María P Ruíz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Área 3-Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28871 Alcalá de Henares, Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Spain
| | - Julio Alvarez-Builla
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Spain
| | - Elena Gutiérrez-Calabres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Área 3-Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28871 Alcalá de Henares, Spain
| | - Juan José Vaquero-López
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Diego Rodríguez-Puyol
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Área 3-Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28871 Alcalá de Henares, Spain
- Departamento de Medicina, Universidad de Alcalá, Servicio de Nefrología, Hospital Universitario Príncipe de Asturias, 28871 Alcalá de Henares, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| |
Collapse
|
8
|
Endo K, Hayashi K, Hara Y, Miyake A, Takano K, Horikawa T, Yoshino K, Sakai M, Kitamura K, Ito S, Imai N, Fujitani S, Suzuki T. Impact of early initiation of renin-angiotensin blockade on renal function and clinical outcomes in patients with hypertensive emergency: a retrospective cohort study. BMC Nephrol 2023; 24:68. [PMID: 36949416 PMCID: PMC10035153 DOI: 10.1186/s12882-023-03117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Hypertensive emergency is a critical disease that causes multifaceted sequelae, including end-stage kidney disease and cardiovascular disease. Although the renin-angiotensin-aldosterone (RAA) system is enormously activated in this disease, there are few reports that attempt to characterize the effect of early use of RAA inhibitors (RASi) on the temporal course of kidney function. METHODS This retrospective cohort study was conducted to clarify whether the early use of RASi during hospitalization offered more favorable benefits on short-term renal function and long-term renal outcomes in patients with hypertensive emergencies. We enrolled a total of 49 patients who visited our medical center with acute severe hypertension and multiple organ dysfunction between April 2012 and August 2020. Upon admission, the patients were treated with intravenous followed by oral antihypertensive drugs, including RASi and Ca channel blockers (CCB). Kidney function as well as other laboratory and clinical parameters were compared between RASi-treated and CCB- treated group over 2 years. RESULTS Antihypertensive treatment effectively reduced blood pressure from 222 ± 28/142 ± 21 to 141 ± 18/87 ± 14 mmHg at 2 weeks and eGFR was gradually restored from 33.2 ± 23.3 to 40.4 ± 22.5 mL/min/1.73m2 at 1 year. The renal effect of antihypertensive drugs was particularly conspicuous when RASi was started in combination with other conventional antihypertensive drugs at the early period of hospitalization (2nd day [IQR: 1-5.5]) and even in patients with moderately to severely diminished eGFR (< 30 mL/min/1.73 m2) on admission. In contrast, CCB modestly restored eGFR during the observation period. Furthermore, renal survival probabilities were progressively deteriorated in patients who had manifested reduced eGFR (< 15 mL/min/1.73 m2) or massive proteinuria (urine protein/creatinine ≥ 3.5 g/gCr) on admission. Early use of RASi was associated with a favorable 2-year renal survival probability (0.90 [95%CI: 0.77-1.0] vs. 0.63 [95%CI: 0.34-0.92] for RASi ( +) and RASi (-), respectively, p = 0.036) whereas no apparent difference in renal survival was noted for CCB. CONCLUSIONS Early use of RASi contributes to the renal functional recovery from acute reduction in eGFR among patients with hypertensive emergencies. Furthermore, RASi offers more favorable effect on 2-year renal survival, compared with CCB.
Collapse
Affiliation(s)
- Keita Endo
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
- Department of Emergency and Critical Care Medicine, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Koichi Hayashi
- Department of Emergency and Critical Care Medicine, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuki Hara
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Akihiro Miyake
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Keisuke Takano
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Takehiro Horikawa
- Department of Emergency and Critical Care Medicine, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kaede Yoshino
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Masahiro Sakai
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Koichi Kitamura
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Shinsuke Ito
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Naohiko Imai
- Division of Nephrology and Hypertension, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Shigeki Fujitani
- Department of Emergency and Critical Care Medicine, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Toshihiko Suzuki
- Department of Nephrology, Diabetes and Endocrinology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| |
Collapse
|
9
|
Wang Z, Jian G, Chen T, Chen Y, Li J, Wang N. The Qi-Bang-Yi-Shen formula ameliorates renal dysfunction and fibrosis in rats with diabetic kidney disease <em>via</em> regulating PI3K/AKT, ERK and PPARγ signaling pathways. Eur J Histochem 2023; 67. [PMID: 36856315 DOI: 10.4081/ejh.2023.3648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and a growing public health problem worldwide. Losartan potassium (Los), an angiotensin II receptor blocker, has been used to treat DKD clinically. Recently, multi-herbal formula has been shown to exhibit therapeutic activities in DKD in China. Thus, we aimed to explore the protective effects of combination of Los and Qi-Bang-Yi-Shen formula (QBF) on DKD rats. Streptozotocin (STZ) injection was used to establish a rat model of DKD. Next, the bloodurea nitrogen (BUN), creatinine (CRE) and uric acid (UA) levels were detected in serum samples from DKD rats. Hematoxylin and eosin (H&E), periodic Acid Schiff (PAS) and Masson staining were performed to observe glomerular injury and glomerular fibrosis in DKD rats. In this study, we found that QBF or Los treatment could decrease serum BUN, CRE, UA levels and reduce urine albumin-to-creatinine ratio (ACR) in DKD rats. Additionally, QBF or Los treatment obviously inhibited glomerular mesangial expansion and glomerular fibrosis, attenuated glomerular injury in kidney tissues of DKD rats. Moreover, QBF or Los treatment significantly reduced PI3K, AKT and ERK1/2 protein expressions, but increased PPARγ level in kidney tissues of DKD rats. As expected, combined treatment of QBF and Los could exert enhanced reno-protective effects compared with the single treatment. Collectively, combination of QBF and Los could ameliorate renal injury and fibrosis in DKD rats via regulating PI3K/AKT, ERK and PPARγ signaling pathways. These findings highlight the therapeutic potential of QBF to prevent DKD progression.
Collapse
Affiliation(s)
- Zhi Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Guihua Jian
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Teng Chen
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Yiping Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Junhui Li
- Putuo People's Hospital, Tongji University, Shanghai.
| | - Niansong Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| |
Collapse
|
10
|
Stille K, Kribben A, Herget-Rosenthal S. Incidence, severity, risk factors and outcomes of acute kidney injury in older adults: systematic review and meta-analysis. J Nephrol 2022; 35:2237-2250. [PMID: 35932418 DOI: 10.1007/s40620-022-01381-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Old age was identified as a strong risk factor for acute kidney injury (AKI). Our objectives were to provide estimates of AKI, risk factors and outcomes in patients ≥ 75 years for whom data are scarce. METHODS Observational studies and randomized controlled trials between 2005 and 2021 with patients of mean or median age ≥ 75 years, reporting AKI according to current definitions. Data on AKI incidence, risk factors and mortality were analyzed separately in unselected (UC) and acute heart failure (AHF) cohorts. RESULTS Twenty-six observational studies and 4 randomized controlled trials with 51,111 UC and 25,414 AHF patients were included. Ages averaged 79.4 and 79.8 years, respectively. Pooled risk ratios (RRs) of AKI rates were 26.29% (95% confidence intervals (CI) 13.20-41.97) (UC) and 24.21% (95% CI 20.03-28.65) (AHF). In both cohorts, AKI was associated with decreased estimated glomerular filtration rate at baseline, chronic kidney disease (UC: RR 1.80 (95% CI 1.15-2.80), AHF: RR 1.51 (95% CI 1.26-1.95) and hypertension (UC: RR 1.30 (95% CI 1.09-1.56), AHF: RR 1.07 (95% CI 1.05-1.09). RRs of AKI in patients on renin-angiotensin-inhibitors were 0.87 (95% CI 0.78-0.97) and 0.88 (95% CI 0.78-0.98) in UC and AHF, respectively. AKI was consistently associated with increased risk of in-hospital mortality (UC: RR 3.15 (95% CI 2.28-4.35), AHF: RR 4.28 (95% CI 2.53-7.24). CONCLUSION AKI is frequent in patients ≥ 75 years. While reduced renal function at baseline, CKD and hypertension were associated with AKI development, renin-angiotensin-inhibitors may be protective. Older AKI patients showed higher short-term mortality rates.
Collapse
Affiliation(s)
- Kolja Stille
- Department of Medicine, Rotes Kreuz Krankenhaus, St. Pauli Deich 24, 28199, Bremen, Germany
| | - Andreas Kribben
- Department of Nephrology, Universitätsklinikum, Universität Duisburg-Essen, Essen, Germany
| | - Stefan Herget-Rosenthal
- Department of Medicine, Rotes Kreuz Krankenhaus, St. Pauli Deich 24, 28199, Bremen, Germany. .,Department of Nephrology, Universitätsklinikum, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
11
|
View of the Renin-Angiotensin System in Acute Kidney Injury Induced by Renal Ischemia-Reperfusion Injury. J Renin Angiotensin Aldosterone Syst 2022; 2022:9800838. [DOI: 10.1155/2022/9800838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a sequence of complicated events that is defined as a reduction of the blood supply followed by reperfusion. RIRI is the leading cause of acute kidney injury (AKI). Among the diverse mediators that take part in RIRI-induced AKI, the renin-angiotensin system (RAS) plays an important role via conventional (angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R)) and nonconventional (ACE2, Ang 1-7, Ang 1-9, AT2 receptor (AT2R), and Mas receptor (MasR)) axes. RIRI alters the balance of both axes so that RAS can affect RIRI-induced AKI. In overall, the alteration of Ang II/AT1R and AKI by RIRI is important to consider. This review has looked for the effects and interactions of RAS activities during RIRI conditions.
Collapse
|
12
|
Ragab TIM, Ali NA, El Gendy ANG, Mohamed SH, Shalby AB, Farrag ARH, Shalaby ASG. Renoprotective and therapeutic effects of newly water, ethanol, and butanol ginseng fractions in hypertensive and chronic kidney disease with L-NAME. Biomed Pharmacother 2021; 142:111978. [PMID: 34411920 DOI: 10.1016/j.biopha.2021.111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the protective and treatment effects of different ginseng fractions against L-NAME-induced renal toxicity in rats. The data obtained demonstrated that L-NAME significantly increased creatinine, urea, KIM-1, and lipocalin-2 levels in serum; and also increased renal MDA and eNOS levels compared with the control group. Three bioactive fractions were newly extracted from ginseng, analyzed by GC-MS analysis, and were examined for antimicrobial, prebiotic, and histological activities. All ginseng fractions improved such histological changes, as reflected by significant reductions in creatinine, urea, KIM-1, and LCN-2 levels in serum, and renal MDA and eNOS contents in tissue homogenate. The water ginseng fraction (WGF) has the highest prebiotic index of 4.7 toward Lactobacillus reuteri, and can improve the renal functions more than butanol ginseng fraction (BGF) and ethanol ginseng fraction (EGF). These three ginseng fractions significantly reversed L-NAME-induced depletion in the TNF-α gene expression level. Interestingly, WGF was able to improve the renal functions more than BGF and EGF. L-NAME led to alterations in the histological structure and functions of renal tissue of rats and ginseng supplementation could offer greater protection against these changes. Moreover, the WGF exhibited superior renoprotection properties when compared with the other two fractions: BGF and EGF, and the reference drug losartan.
Collapse
Affiliation(s)
- Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Division, National Research Centre, El-Buhouth St., Dokki, Giza 12622, Egypt.
| | - Naglaa A Ali
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Abdel Nasser G El Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industry Division, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Safaa H Mohamed
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Aziza B Shalby
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Abdel-Razik H Farrag
- Departments of Pathology, Medical Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al Shimaa Gamal Shalaby
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Division, National Research Centre, El-Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
13
|
Chen JY, Tsai IJ, Pan HC, Liao HW, Neyra JA, Wu VC, Chueh JS. The Impact of Angiotensin-Converting Enzyme Inhibitors or Angiotensin II Receptor Blockers on Clinical Outcomes of Acute Kidney Disease Patients: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:665250. [PMID: 34354583 PMCID: PMC8329451 DOI: 10.3389/fphar.2021.665250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Acute kidney injury (AKI) may increase the risk of chronic kidney disease (CKD), development of end-stage renal disease (ESRD), and mortality. However, the impact of exposure to angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker (ACEi/ARB) in patients experiencing AKI/acute kidney disease (AKD) is still unclear. Methods: In this systematic review, we searched all relevant studies from PubMed, Embase, Cochrane, Medline, Collaboration Central Register of Controlled Clinical Trials, Cochrane Systematic Reviews, and ClinicalTrials.gov until July 21, 2020. We evaluated whether the exposure to ACEi/ARB after AKI onset alters recovery paths of AKD and impacts risks of all-cause mortality, recurrent AKI, or incident CKD. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. Results: A total of seven articles, involving 70,801 patients, were included in this meta-analysis. The overall patient mortality rate in this meta-analysis was 28.4%. Among AKI patients, all-cause mortality was lower in ACEi/ARB users than in ACEi/ARB nonusers (log odds ratio (OR) -0.37, 95% confidence interval (CI): -0.42--0.32, p < 0.01). The risk of recurrent adverse kidney events after AKI was lower in ACEi/ARB users than in nonusers (logOR -0.25, 95% CI: -0.33--0.18, p < 0.01). The risk of hyperkalemia was higher in ACEi/ARB users than in nonusers (logOR 0.43, 95% CI: 0.27-0.59, p < 0.01). Patients with continued use of ACEi/ARB after AKI also had lower mortality risk than those prior ACEi/ARB users but who did not resume ACEi/ARB during AKD (logOR -0.36, 95% CI: -0.4--0.31, p < 0.01). Conclusions: Exposure to ACEi/ARB after AKI is associated with lower risks of all-cause mortality, recurrent AKI, and progression to incident CKD. Patients with AKI may have a survival benefit by continued use of ACEi/ARB; however, a higher incidence of hyperkalemia associated with ACEi/ARB usage among these patients deserves close clinical monitoring.
Collapse
Affiliation(s)
- Jui-Yi Chen
- Division of Nephrology, Chi Mei Medical Center, Department of Internal Medicine, Tainan, Taiwan
| | - I-Jung Tsai
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children’s Hospital, Taipei, Taiwan
| | - Heng-Chih Pan
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Keelung Chang Gung Memorial Hospital, Department of Internal Medicine, Taipei, Taiwan
| | | | - Javier A. Neyra
- Division of Nephrology, Department of Internal Medicine, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY, United States
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- NSARF (National Taiwan University Hospital Study Group of ARF) and TAIPAI (Taiwan Primary Aldosteronism Investigators), Taipei, Taiwan
| | - Jeff S. Chueh
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Glickman Urological and Kidney Institute, Cleveland, OH, United States
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Katsoulis O, Georgiadou A, Cunnington AJ. Immunopathology of Acute Kidney Injury in Severe Malaria. Front Immunol 2021; 12:651739. [PMID: 33968051 PMCID: PMC8102819 DOI: 10.3389/fimmu.2021.651739] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a common feature of severe malaria, and an independent risk factor for death. Previous research has suggested that an overactivation of the host inflammatory response is at least partly involved in mediating the kidney damage observed in P. falciparum patients with AKI, however the exact pathophysiology of AKI in severe malaria remains unknown. The purpose of this mini-review is to describe how different aspects of malaria pathology, including parasite sequestration, microvascular obstruction and extensive intravascular hemolysis, may interact with each other and contribute to the development of AKI in severe malaria, by amplifying the damaging effects of the host inflammatory response. Here, we highlight the importance of considering how the systemic effects and multi-organ involvement of malaria are intertwined with the localized effects on the kidney.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Chou YH, Pan SY, Shao YH, Shih HM, Wei SY, Lai CF, Chiang WC, Schrimpf C, Yang KC, Lai LC, Chen YM, Chu TS, Lin SL. Methylation in pericytes after acute injury promotes chronic kidney disease. J Clin Invest 2021; 130:4845-4857. [PMID: 32749240 DOI: 10.1172/jci135773] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The origin and fate of renal myofibroblasts is not clear after acute kidney injury (AKI). Here, we demonstrate that myofibroblasts were activated from quiescent pericytes (qPericytes) and the cell numbers increased after ischemia/reperfusion injury-induced AKI (IRI-AKI). Myofibroblasts underwent apoptosis during renal recovery but one-fifth of them survived in the recovered kidneys on day 28 after IRI-AKI and their cell numbers increased again after day 56. Microarray data showed the distinctive gene expression patterns of qPericytes, activated pericytes (aPericytes, myofibroblasts), and inactivated pericytes (iPericytes) isolated from kidneys before, on day 7, and on day 28 after IRI-AKI. Hypermethylation of the Acta2 repressor Ybx2 during IRI-AKI resulted in epigenetic modification of iPericytes to promote the transition to chronic kidney disease (CKD) and aggravated fibrogenesis induced by a second AKI induced by adenine. Mechanistically, transforming growth factor-β1 decreased the binding of YBX2 to the promoter of Acta2 and induced Ybx2 hypermethylation, thereby increasing α-smooth muscle actin expression in aPericytes. Demethylation by 5-azacytidine recovered the microvascular stabilizing function of aPericytes, reversed the profibrotic property of iPericytes, prevented AKI-CKD transition, and attenuated fibrogenesis induced by a second adenine-AKI. In conclusion, intervention to erase hypermethylation of pericytes after AKI provides a strategy to stop the transition to CKD.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Han Shao
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Mou Shih
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-Fu Lai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Kai-Chien Yang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, and
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Angiotensin II type 1a receptor loss ameliorates chronic tubulointerstitial damage after renal ischemia reperfusion. Sci Rep 2021; 11:982. [PMID: 33441837 PMCID: PMC7806698 DOI: 10.1038/s41598-020-80209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
We investigate whether suppressing the activation of the angiotensin II type 1a receptor (AT1a) can ameliorate severe chronic tubulointerstitial damage (TID) after renal ischemia reperfusion (IR) using AT1a knockout homozygous (AT1a−/−) male mice. To induce severe chronic TID after renal IR, unilateral renal ischemia was performed via clamping of the right renal pedicle in both AT1a−/− and wild-type (AT1a+/+) mice for 45 min. While marked renal atrophy and severe TID at 70 days postischemia was induced in the AT1a+/+ mice, such a development was not provoked in the AT1a−/− mice. Although the AT1a+/+ mice were administered hydralazine to maintain the same systolic blood pressure (SBP) levels as the AT1a−/− mice with lower SBP levels, hydralazine did not reproduce the renoprotective effects observed in the AT1a−/− mice. Acute tubular injury at 3 days postischemia was similar between the AT1a−/− mice and the AT1a+/+ mice. From our investigations using IR kidneys at 3, 14, and 28 days postischemia, the multiple molecular mechanisms may be related to prevention of severe chronic TID postischemia in the AT1a−/− mice. In conclusion, inactivation of the AT1 receptor may be useful in preventing the transition of acute kidney injury to chronic kidney disease.
Collapse
|
17
|
Wu R, Wei F, Qu L, Bai L, Li J, Li F, Yan W, Wang Q, Wei J. Effects of Keluoxin capsule combined with losartan potassium on diabetic kidney disease: study protocol for a randomized double-blind placebo-controlled multicenter clinical trial. Trials 2020; 21:951. [PMID: 33228726 PMCID: PMC7682004 DOI: 10.1186/s13063-020-04852-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is one of the most important microvascular complications of diabetes, and its prevalence has increased dramatically in the past few decades. DKD is responsible for considerable morbidity and mortality of patients with diabetes. Keluoxin capsule (KLX) is a Chinese patent medicine that has been used in the clinic to control DKD for years. Previous studies have shown that KLX appears to reduce proteinuria, but the study protocols as well as the primary outcome need to be improved. Thus, we aim to evaluate whether losartan potassium combined with KLX is more effective than losartan potassium in DKD treatment and to provide validated evidence for the application of KLX in the treatment of DKD. Methods We will conduct a randomized double-blind placebo-controlled multicenter clinical trial. A total of 252 participants diagnosed with DKD recruited from 18 institutions will be randomly allocated to either a losartan potassium plus KLX (n = 126) or a losartan potassium plus placebo group (n = 126). The participants will be administered KLX or placebo in addition to losartan potassium for 24 weeks. The primary outcome measure will be the decline in estimated glomerular filtration rate (eGFR) (ml/min/1.73 m2/year) from baseline within 24 weeks, and the secondary outcomes will be the incidence of serum creatinine doubling, the incidence of end-stage renal disease (ESRD), the proportion of subjects with a progressive decline in eGFR > 30%, the percent change in 24 h urinary total protein (UTP), the change in the urinary albumin/creatinine ratio (UACR), and the total effective rate of the traditional Chinese medicine (TCM) syndrome scale scores. Comparison of the differences in the variables between groups will be performed according to the data revealed by independent t tests, chi-squared tests, Fisher’s exact tests, or Wilcoxon’s tests. All statistical tests will be two-sided, and significance will be considered for p values < 0.05. Discussion This study will be the first randomized clinical trial to evaluate the efficacy and safety of KLX versus the placebo for the treatment of patients with DKD. The outcome of this trial will provide a basis for prescribing KLX to patients with DKD. Trial registration Chinese Clinical Trial Registry (www.chictr.org.cn) ChiCTR1900021113. Registered on January 29, 2019.
Collapse
Affiliation(s)
- Rui Wu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China
| | - Fan Wei
- Dermatological Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China
| | - Lianlian Qu
- Department of Endocrinology, Penglai Traditional Chinese Medicine Hospital, Penglai, 265600, Shandong, China
| | - Litao Bai
- Department of Integrated Chinese and Western Medicine, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400010, China
| | - Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China
| | - Fei Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xichen District, Beijing, 100053, China.
| |
Collapse
|
18
|
Greite R, Derlin K, Hensen B, Thorenz A, Rong S, Chen R, Hellms S, Jang MS, Bräsen JH, Meier M, Willenberg I, Immenschuh S, Haller H, Luft FC, Panigrahy D, Hwang SH, Hammock BD, Schebb NH, Gueler F. Early antihypertensive treatment and ischemia-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F563-F570. [PMID: 32799675 DOI: 10.1152/ajprenal.00078.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) frequently complicates major surgery and can be associated with hypertension and progress to chronic kidney disease, but reports on blood pressure normalization in AKI are conflicting. In the present study, we investigated the effects of an angiotensin-converting enzyme inhibitor, enalapril, and a soluble epoxide hydrolase inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), on renal inflammation, fibrosis, and glomerulosclerosis in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. Male CD1 mice underwent unilateral IRI for 35 min. Blood pressure was measured by tail cuff, and mesangial matrix expansion was quantified on methenamine silver-stained sections. Renal perfusion was assessed by functional MRI in vehicle- and TPPU-treated mice. Immunohistochemistry was performed to study the severity of AKI and inflammation. Leukocyte subsets were analyzed by flow cytometry, and proinflammatory cytokines were analyzed by quantitative PCR. Plasma and tissue levels of TPPU and lipid mediators were analyzed by liquid chromatography mass spectrometry. IRI resulted in a blood pressure increase of 20 mmHg in the vehicle-treated group. TPPU and enalapril normalized blood pressure and reduced mesangial matrix expansion. However, inflammation and progressive renal fibrosis were severe in all groups. TPPU further reduced renal perfusion on days 1 and 14. In conclusion, early antihypertensive treatment worsened renal outcome after AKI by further reducing renal perfusion despite reduced glomerulosclerosis.
Collapse
Affiliation(s)
- Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bennet Hensen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Susanne Hellms
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | - Ina Willenberg
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | | | - Friedrich C Luft
- Experimental and Clinical Research Center, Max-Delbrück Center/Charité, Berlin, Germany
| | - Dipak Panigrahy
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Hsu WH, Hua KF, Tuan LH, Tsai YL, Chu LJ, Lee YC, Wong WT, Lee SL, Lai JH, Chu CL, Ho LJ, Chiu HW, Hsu YJ, Chen CH, Ka SM, Chen A. Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions. Nephrol Dial Transplant 2020; 35:74-85. [PMID: 31065699 DOI: 10.1093/ndt/gfz073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. METHODS Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. RESULTS Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-β-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. CONCLUSIONS The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.
Collapse
Affiliation(s)
- Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Li-Heng Tuan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Jenn-Haung Lai
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Liu KD, Forni LG, Heung M, Wu VC, Kellum JA, Mehta RL, Ronco C, Kashani K, Rosner MH, Haase M, Koyner JL. Quality of Care for Acute Kidney Disease: Current Knowledge Gaps and Future Directions. Kidney Int Rep 2020; 5:1634-1642. [PMID: 33102955 PMCID: PMC7569680 DOI: 10.1016/j.ekir.2020.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) and acute kidney disease (AKD) are common complications in hospitalized patients and are associated with adverse outcomes. Although consensus guidelines have improved the care of patients with AKI and AKD, guidance regarding quality metrics in the care of patients after an episode of AKI or AKD is limited. For example, few patients receive follow-up laboratory testing of kidney function or post-AKI or AKD care through nephrology or other providers. Recently, the Acute Disease Quality Initiative developed a consensus statement regarding quality improvement goals for patients with AKI or AKD specifically highlighting efforts regarding quality and safety of care after hospital discharge after an episode of AKI or AKD. The goal is to use these measures to identify opportunities for improvement that will positively affect outcomes. We recommend that health care systems quantitate the proportion of patients who need and actually receive follow-up care after the index AKI or AKD hospitalization. The intensity and appropriateness of follow-up care should depend on patient characteristics, severity, duration, and course of AKI of AKD, and should evolve as evidence-based guidelines emerge. Quality indicators for discharged patients with dialysis requiring AKI or AKD should be distinct from end-stage renal disease measures. Besides, there should be specific quality indicators for those still requiring dialysis in the outpatient setting after AKI or AKD. Given the limited preexisting data guiding the care of patients after an episode of AKI or AKD, there is ample opportunity to establish quality measures and potentially improve patient care and outcomes. This review will provide specific evidence-based and expert opinion–based guidance for the care of patients with AKI or AKD after hospital discharge.
Collapse
Affiliation(s)
- Kathleen D Liu
- Division of Nephrology, Departments of Medicine and Anesthesia, University of California, San Francisco, California, USA
- Division of Critical Care Medicine, Departments of Medicine and Anesthesia, University of California, San Francisco, California, USA
| | - Lui G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey, UK
| | - Michael Heung
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California, San Diego Medical Center, San Diego, San Diego, California, USA
| | - Claudio Ronco
- Department of Medicine (DIMED), University of Padova, Padova, Italy
- Department of Nephrology, Dialysis and Transplantation, and International Renal Research Institute, San Bortolo Hospital, Vicenza, Italy
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael Haase
- Medical Faculty, Otto-von-Guericke University Magdeburg and Diaverum MVZ, Potsdam, Germany
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Ullah MM, Basile DP. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Semin Nephrol 2020; 39:567-580. [PMID: 31836039 DOI: 10.1016/j.semnephrol.2019.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN
| | - David P Basile
- Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, IN.
| |
Collapse
|
22
|
Ogbadu J, Singh G, Gupta K, Mehra K, Sen P. Ageing reduces angiotensin II type 1 receptor antagonism mediated pre-conditioning effects in ischemic kidneys by inducing oxidative and inflammatory stress. Exp Gerontol 2020; 135:110892. [DOI: 10.1016/j.exger.2020.110892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/02/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022]
|
23
|
Hsu CY, Liu KD, Yang J, Glidden DV, Tan TC, Pravoverov L, Zheng S, Go AS. Renin-Angiotensin System Blockade after Acute Kidney Injury (AKI) and Risk of Recurrent AKI. Clin J Am Soc Nephrol 2019; 15:26-34. [PMID: 31843974 PMCID: PMC6946085 DOI: 10.2215/cjn.05800519] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES How to best medically manage patients who survived hospitalized AKI is unclear. Use of renin-angiotensin system blockers in this setting may increase risk of recurrent AKI. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This is a cohort study of 10,242 members of an integrated health care delivery system in Northern California who experienced AKI and survived a hospitalization between January 1, 2006 and December 31, 2013. All study participants did not have prior heart failure or use of angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs) up to 5 years prior. New receipt and time-updated exposure of ACE-Is/ARBs was identified on the basis of dispensed prescriptions found in outpatient health plan pharmacy databases. The main outcome of interest was subsequent episode of hospitalized AKI after discharge from an initial index hospitalization complicated by AKI. Recurrent AKI episode was defined using acute changes in serum creatinine concentrations. Marginal structural models were used to adjust for baseline and potential time-dependent confounders. RESULTS Forty-seven percent of the study population had a documented eGFR<60 ml/min per 1.73 m2 or documented proteinuria before hospitalization. With a median of 3 (interquartile range, 1-5) years of follow-up, 1853 (18%) patients initiated use of ACE-Is/ARBs and 2124 (21%) patients experienced recurrent AKI. Crude rate of recurrent AKI was 6.1 (95% confidence interval [95% CI], 5.9 to 6.4) per 100 person-years off ACE-Is/ARBs and 5.7 (95% CI, 4.9 to 6.5) per 100 person-years on ACE-Is/ARBs. In marginal structural causal inference models that adjusted for baseline and potential time-dependent confounders, exposure to ACE-I/ARB use was not associated with higher incidence of recurrent AKI (adjusted odds ratio, 0.71; 95% CI, 0.45 to 1.12). CONCLUSIONS In this study of AKI survivors without heart failure, new use of ACE-I/ARB therapy was not independently associated with increased risk of recurrent hospitalized AKI.
Collapse
Affiliation(s)
- Chi-Yuan Hsu
- Division of Nephrology, Department of Medicine, and .,Division of Research, Kaiser Permanente Northern California, Oakland, California
| | | | - Jingrong Yang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Thida C Tan
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | | | - Sijie Zheng
- Division of Research, Kaiser Permanente Northern California, Oakland, California.,Kaiser Permanente Oakland Medical Center, Oakland, California; and
| | - Alan S Go
- Division of Nephrology, Department of Medicine, and.,Division of Research, Kaiser Permanente Northern California, Oakland, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Departments of Medicine (Nephrology), Health Research and Policy, Stanford University, Palo Alto, California
| |
Collapse
|
24
|
Ogbadu J, Singh G, Aggarwal D. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Eur J Pharmacol 2019; 865:172711. [DOI: 10.1016/j.ejphar.2019.172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|
25
|
Chou YH, Huang TM, Wu VC, Chen WS, Wang CH, Chou NK, Chiang WC, Chu TS, Lin SL. Associations between preoperative continuation of renin-angiotensin system inhibitor and cardiac surgery-associated acute kidney injury: a propensity score-matching analysis. J Nephrol 2019; 32:957-966. [PMID: 31595420 DOI: 10.1007/s40620-019-00657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cardiac surgery-associated acute kidney injury (CSA-AKI) is associated with high risk for complications and mortality. Whether renin-angiotensin system (RAS) inhibitor should be continued or withdrawn in patients with long-term use before cardiac surgery has been lack of consensus. METHODS We performed this prospective observational cohort study and recruited cardiac surgery patients in the surgical intensive care units between 2000 and 2011. These patients were divided into users and non-users of RAS inhibitor. Propensity score matching and multivariable models were performed to investigate the association between renal outcome, mortality, and preoperative use of RAS inhibitor. RESULTS Preoperative use of RAS inhibitor was identified as the independent protective factor for AKI development (OR 0.41, 95% CI 0.23, 0.63), AKI severity (stage 3 vs. stage 1, OR 0.35, 95% CI 0.18, 0.69), and renal recovery (OR 3.41, 95% CI 1.84, 5.36). Nevertheless, there was no significant protective effect of RAS inhibitor on in-hospital dialysis, in-hospital mortality, and ensuing development of chronic kidney disease (CKD) after AKI. We created a prediction model of CSA-AKI and indicated that preoperative use of RAS inhibitor provided more protective effect in low-risk than high-risk population. CONCLUSION Preoperative use of RAS inhibitor was associated with less AKI development and severity, and higher renal recovery. Although more risk reduction of AKI development was shown in low-risk group by our prediction model, continued use of RAS inhibitor before cardiac surgery could provide protective effect in all patients.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tao-Min Huang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Vin-Cent Wu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Wei-Shan Chen
- Cardiovascular Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Kuan Chou
- Cardiovascular Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,The Center for Law, Technology and Ethics, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
26
|
Sharifi F, Reisi P, Malek M. Angiotensin 1 receptor antagonist attenuates acute kidney injury-induced cognitive impairment and synaptic plasticity via modulating hippocampal oxidative stress. Life Sci 2019; 234:116775. [DOI: 10.1016/j.lfs.2019.116775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/13/2023]
|
27
|
Moeini M, Talebi A, Nematbakhsh M. Protective Role of Angiotensin Type 1 Receptor Blockade in 4/6 Nephrectomized Male and Female Rats. Int J Prev Med 2019; 10:64. [PMID: 31198499 PMCID: PMC6547779 DOI: 10.4103/ijpvm.ijpvm_278_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 11/04/2022] Open
Abstract
Background Chronic kidney disease associated with serious morbidity and mortality rate while it is affected by renin-angiotensin system. The effects of losartan as angiotensin II Type 1 receptor antagonist on renal functional in 4/6 nephrectomized rats was evaluated. Methods Twenty-six male and female Wistar rats underwent 4/6 nephrectomy, and the animals from each gender were randomly divided into two groups which treated with vehicle and losartan (10 mg/kg/day for 1 week). The parameters related to kidney function were measured. Results Creatinine (Cr) clearance and urine flow were improved in losartan-treated group significantly (P < 0.05). The serum level of blood urea nitrogen and Cr and kidney tissue damage score and sodium urinary output (UNaV) did not alter. However, losartan decreased percentage of sodium excretion (ENa%) in both genders insignificantly. Conclusions Losartan may improve renal function in 4/6 nephrectomized male rats.
Collapse
Affiliation(s)
- Maryam Moeini
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| |
Collapse
|
28
|
Wei SY, Pan SY, Li B, Chen YM, Lin SL. Rejuvenation: Turning back the clock of aging kidney. J Formos Med Assoc 2019; 119:898-906. [PMID: 31202499 DOI: 10.1016/j.jfma.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Aging is inevitable in life. It is defined as impaired adaptive capacity to environmental or internal stresses with growing rates of disease and death. Aging is also an important risk factor for various kidney diseases such as acute kidney injury and chronic kidney disease. Patients older than 65 years have nearly 28% risk of failing recovery of kidney function when suffering from acute kidney injury. It is reported that more than a third of population aged 65 years and older have chronic kidney disease in Taiwan, and the occurrence of multiple age-related disorders is predicted to increase in parallel. Renal aging is a complex, multifactorial process characterized by many anatomical and functional changes. Several factors are involved in renal aging, such as loss of telomeres, cell cycle arrest, chronic inflammation, activation of renin-angiotensin system, decreased klotho expression, and development of tertiary lymphoid tissues. These changes can also be observed in many other different types of renal injury. Recent studies suggested that young blood may rejuvenate aged organs, including the kidneys. In order to develop new therapeutic strategies for renal aging, the mechanisms underlying renal aging and by which young blood can halt or reverse aging process warrants further study.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Szu-Yu Pan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bing Li
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Rat mRNA expression profiles associated with inhibition of ischemic acute kidney injury by losartan. Biosci Rep 2019; 39:BSR20181774. [PMID: 30877184 PMCID: PMC6454018 DOI: 10.1042/bsr20181774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Losartan was reported to inhibit the progression of acute kidney injury (AKI), but little is known about the underlying pharmacological mechanisms. In the present study, the mRNA expression profiles in ischemic AKI rat kidney altered by losartan treatment were analyzed by next-generation deep sequencing technology.Methods: Ischemia and reperfusion treatment was applied to induce AKI in Sprague-Dawley (SD) rats. The urea and creatinine contents in rat blood were measured. H&E staining was performed to evaluate the histological alteration of rat kidney tissues under a microscope. The TUNEL method was applied to analyze apoptosis in rat kidney tissues. The mRNA profiles in rat kidney were analyzed using next-generation deep sequencing. Differential gene expression was confirmed by quantitative qRT-PCR.Results: The rat model of AKI induced by ischemia and reperfusion showed significant increases in urea and creatinine levels, accompanied by a disrupted kidney tubular structure and renal cell apoptosis. Losartan treatment effectively inhibited the changes in urea and creatinine, tubular structure, and apoptosis in AKI rat kidney. A large number of mRNAs were found to be differentially expressed in the kidneys of AKI rats treated with losartan, which are involved in multiple processes and signaling pathways. The expression of nine differentially expressed genes such as monocyte chemoattractant protein-1 (CCL2) and suppressor of cytokine signaling 3 (SOCS3) was confirmed by qRT-PCR and Western blot.Conclusion: Losartan caused significant alterations in the gene expression profile in AKI rat kidney, which mediated its anti-AKI effects.
Collapse
|
30
|
Fang M, Liu S, Zhou Y, Deng Y, Yin Q, Hu L, Ouyang X, Hou Y, Chen C. Circular RNA involved in the protective effect of losartan on ischemia and reperfusion induced acute kidney injury in rat model. Am J Transl Res 2019; 11:1129-1144. [PMID: 30899412 PMCID: PMC6413261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Although losartan has inhibitory effects on acute kidney injury (AKI), the underlying molecular mechanisms have remained largely unclear. The expressional alteration of circular RNAs (circRNAs) was investigated in the present study to understand the therapeutic effects of losartan against AKI. AKI rat models were established by ischemia and reperfusion (I/R) treatment. Urea and creatinine levels were determined and histological features of kidney tissues examined following hematoxylin and eosin staining. Cell apoptosis was assessed by TUNEL. CircRNA profiles were obtained by RNA-Seq followed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Expression of circRNAs was validated by quantitative RT-PCR. I/R treatment induced an increase in plasma urea and creatinine levels, abnormal kidney tubular structure, and cell apoptosis in Sprague-Dawley (SD) rats, which were effectively inhibited by pre-treatment with losartan. Further RNA-Seq analysis revealed a wide range of differentially expressed circRNAs in I/R rat kidneys, which were reversed by losartan pre-treatment. GO and KEGG analyses revealed that the circRNAs are associated with various biological processes, including the PI3K-Akt signaling pathway. Specifically, circ-Dnmt3a, circ-Akt3, circ-Plekha7, and circ-Me1 were down-regulated in AKI rats and restored by losartan. The current study provides an overview of circRNAs expression profiles based on the inhibitory effects of losartan in ischemic AKI rats.
Collapse
Affiliation(s)
- Miaoxian Fang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences96 Dongchuan Road, Guangzhou 510080, Guangdong Province, PR China
| | - Siyi Liu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences96 Dongchuan Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yanhe Zhou
- Forevergen Biosciences CenterGuangzhou 510080, Guangdong Province, PR China
| | - Yujun Deng
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Qi Yin
- Forevergen Biosciences CenterGuangzhou 510080, Guangdong Province, PR China
| | - Linhui Hu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences96 Dongchuan Road, Guangzhou 510080, Guangdong Province, PR China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences96 Dongchuan Road, Guangzhou 510080, Guangdong Province, PR China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yating Hou
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences96 Dongchuan Road, Guangzhou 510080, Guangdong Province, PR China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences96 Dongchuan Road, Guangzhou 510080, Guangdong Province, PR China
| |
Collapse
|
31
|
Chou YH, Chu TS, Lin SL. Role of renin-angiotensin system in acute kidney injury-chronic kidney disease transition. Nephrology (Carlton) 2019; 23 Suppl 4:121-125. [PMID: 30298669 DOI: 10.1111/nep.13467] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2018] [Indexed: 12/23/2022]
Abstract
Acute kidney injury (AKI) can increase the risk of developing incident chronic kidney disease (CKD). The severity, frequency and duration of AKI are crucial predictors of poor renal outcome. A repair process after AKI can be adaptive and kidney recovers completely after a mild injury. However, severe injury will lead to a maladaptive repair, which frequently progresses to nephron loss, vascular rarefaction, chronic inflammation and fibrosis. Although different mechanisms underlying AKI-CKD transition have been extensively discussed, no definite intervention has been proved effective to block or to retard the transition until recently. In CKD, renin-angiotensin system (RAS) inhibitor has been proved effective to slow down disease progression. Furthermore, RAS needs to be highlighted again in AKI-CKD transition because recent animal studies have shown the activation of intra-renal RAS after AKI, and RAS blockade can reduce the ensuing CKD and mortality. In patients with the complete renal recovery after AKI, administration of RAS inhibitor is associated with reduced risk of subsequent CKD as well. In this article, we will demonstrate the role of RAS in AKI-CKD transition comprehensively. We will then emphasize the promising effect of RAS inhibitor on CKD prevention in patients recovering from AKI based on evidence from the bench to clinical research. All of these discussions will contribute to the establishment of reliable monitoring and therapeutic strategies for patients with functional recovery from AKI who can be most easily ignored.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Chou YH, Liao FL, Chen YT, Yeh PY, Liu CH, Shih HM, Chang FC, Chiang WC, Chu TS, Lin SL. Erythropoietin modulates macrophages but not post-ischemic acute kidney injury in mice. J Formos Med Assoc 2019; 118:494-503. [DOI: 10.1016/j.jfma.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023] Open
|
33
|
Urinary angiotensinogen predicts progressive chronic kidney disease after an episode of experimental acute kidney injury. Clin Sci (Lond) 2018; 132:2121-2133. [PMID: 30224346 DOI: 10.1042/cs20180758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022]
Abstract
One of the major obstacles to prevent AKI-CKD transition is the lack of effective methods to follow and predict the ongoing kidney injury after an AKI episode. In the present study, we test the utility of urinary angiotensinogen (UAGT) for dynamically evaluating renal structural changes and predicting AKI-CKD progression by using both mild and severe bilateral renal ischemia/reperfusion injury mice. UAGT returns to pre-ischemic levels 14 days after mild AKI followed by kidney architecture restoration, whereas sustained increase in UAGT accompanies by ongoing renal fibrosis after severe AKI. UAGT at day 14-42 correlates with renal fibrosis 84 days after AKI. For predicting fibrosis at day 84, the area under receiver operating characteristics curve of UAGT at day 14 is 0.81. Persistent elevation in UAGT correlates with sustained activation of intrarenal renin-angiotensin system (RAS) during AKI-CKD transition. Abrogating RAS activation post AKI markedly reduced renal fibrosis, with early RAS intervention (from 14 days after IRI) more beneficial than late intervention (from 42 days after IRI) in alleviating fibrosis. Importantly, UAGT decreases after RAS intervention, and its level at day 14-28 correlates with the extent of renal fibrosis at day 42 post RAS blockade. A pilot study conducted in patients with acute tubular necrosis finds that compared with those recovered, patients with AKI-CKD progression exhibits elevated UAGT during the 3-month follow-up after biopsy. Our study suggests that UAGT enables the dynamical monitoring of renal structural recovery after an AKI episode and may serve as an early predictor for AKI-CKD progression and treatment response.
Collapse
|
34
|
Silva LS, Peruchetti DB, Silva-Aguiar RP, Abreu TP, Dal-Cheri BKA, Takiya CM, Souza MC, Henriques MG, Pinheiro AAS, Caruso-Neves C. The angiotensin II/AT1 receptor pathway mediates malaria-induced acute kidney injury. PLoS One 2018; 13:e0203836. [PMID: 30204779 PMCID: PMC6133374 DOI: 10.1371/journal.pone.0203836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Malaria-induced acute kidney injury (MAKI) is a life-threatening complication of severe malaria. Here, we investigated the potential role of the angiotensin II (Ang II)/AT1 receptor pathway in the development of MAKI. We used C57BL/6 mice infected by Plasmodium berghei ANKA (PbA-infected mice), a well-known murine model of severe malaria. The animals were treated with 20 mg/kg/day losartan, an antagonist of AT1 receptor, or captopril, an angiotensin-converting enzyme inhibitor. We observed an increase in the levels of plasma creatinine and blood urea nitrogen associated with a significant decrease in creatinine clearance, a marker of glomerular flow rate, and glomerular hypercellularity, indicating glomerular injury. PbA-infected mice also presented proteinuria and a high level of urinary γ-glutamyltransferase activity associated with an increase in collagen deposition and interstitial space, showing tubule-interstitial injury. PbA-infected mice were also found to have increased fractional excretion of sodium (FENa+) coupled with decreased cortical (Na++K+)ATPase activity. These injuries were associated with an increase in pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, interleukin-17, and interferon gamma, in the renal cortex of PbA-infected mice. All modifications of these structural, biochemical, and functional parameters observed in PbA-infected mice were avoided with simultaneous treatment with losartan or captopril. Our data allow us to postulate that the Ang II/AT1 receptor pathway mediates an increase in renal pro-inflammatory cytokines, which in turn leads to the glomerular and tubular injuries observed in MAKI.
Collapse
Affiliation(s)
- Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago P. Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz K. A. Dal-Cheri
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana C. Souza
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria G. Henriques
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
35
|
Jönsson S, Melville JM, Becirovic-Agic M, Hultström M. Losartan does not decrease renal oxygenation and norepinephrine effects in rats after resuscitated hemorrhage. Am J Physiol Renal Physiol 2018; 315:F241-F246. [PMID: 29667909 DOI: 10.1152/ajprenal.00095.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renin-angiotensin-system blockers are thought to increase the risk of acute kidney injury after surgery and hemorrhage. We found that losartan does not cause renal cortical hypoxia after hemorrhage in rats because of decreased renal vascular resistance, but we did not evaluate resuscitation. We aimed to study losartan's effect on renal cortical and medullary oxygenation, as well as norepinephrine's vasopressor effect in a model of resuscitated hemorrhage. After 7 days of losartan (60 mg·kg-1·day-1) or control treatment, male Wistar rats were hemorrhaged 20% of their blood volume and resuscitated with Ringer's acetate. Mean arterial pressure, renal blood flow, and kidney tissue oxygenation were measured at baseline and after resuscitation. Finally, the effect of norepinephrine on mean arterial pressure and renal blood flow was investigated. As expected, losartan lowered mean arterial pressure but not renal blood flow. Losartan did not affect renal oxygen consumption and oxygen tension. Mean arterial pressure and renal blood flow were lower after resuscitated hemorrhage. A smaller increase of renal vascular resistance in the losartan group translated to a smaller decrease in cortical oxygen tension, but no significant difference was seen in medullary oxygen tension, either between groups or after hemorrhage. The effect of norepinephrine on mean arterial pressure and renal blood flow was similar in control- and losartan-treated rats. Losartan does not decrease renal oxygenation after resuscitated hemorrhage because of a smaller increase in renal vascular resistance. Further, losartan does not decrease the efficiency of norepinephrine as a vasopressor, indicating that blood pressure may be managed effectively during losartan treatment.
Collapse
Affiliation(s)
- Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Jacqueline M Melville
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anesthesia and Intensive Care, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| |
Collapse
|
36
|
Protective Effect of Sex Hormone-Binding Globulin against Metabolic Syndrome: In Vitro Evidence Showing Anti-Inflammatory and Lipolytic Effects on Adipocytes and Macrophages. Mediators Inflamm 2018; 2018:3062319. [PMID: 30046278 PMCID: PMC6036814 DOI: 10.1155/2018/3062319] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Sex hormone-binding globulin (SHBG) is a serum protein released mainly by the liver, and a low serum level correlates with a risk for metabolic syndrome including diabetes, obesity, and cardiovascular events. However, the underlying molecular mechanism(s) linking SHBG and metabolic syndrome remains unknown. In this study, using adipocytes and macrophages, we focused on the in vitro effects of SHBG on inflammation as well as lipid metabolism. Incubation with 20 nM SHBG markedly suppressed lipopolysaccharide- (LPS-) induced inflammatory cytokines, such as MCP-1, TNFα, and IL-6 in adipocytes and macrophages, along with phosphorylations of JNK and ERK. Anti-inflammatory effects were also observed in 3T3-L1 adipocytes cocultured with LPS-stimulated macrophages. In addition, SHBG treatment for 18 hrs or longer significantly induced the lipid degradation of differentiated 3T3-L1 cells, with alterations in its corresponding gene and protein levels. Notably, these effects of SHBG were not altered by coaddition of large amounts of testosterone or estradiol. In conclusion, SHBG suppresses inflammation and lipid accumulation in macrophages and adipocytes, which might be among the mechanisms underlying the protective effect of SHBG, that is, its actions which reduce the incidence of metabolic syndrome.
Collapse
|
37
|
Gayat E, Hollinger A, Cariou A, Deye N, Vieillard-Baron A, Jaber S, Chousterman BG, Lu Q, Laterre PF, Monnet X, Darmon M, Leone M, Guidet B, Sonneville R, Lefrant JY, Fournier MC, Resche-Rigon M, Mebazaa A, Legrand M. Impact of angiotensin-converting enzyme inhibitors or receptor blockers on post-ICU discharge outcome in patients with acute kidney injury. Intensive Care Med 2018; 44:598-605. [DOI: 10.1007/s00134-018-5160-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
38
|
|
39
|
Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system. J Formos Med Assoc 2017; 116:652-659. [PMID: 28615146 DOI: 10.1016/j.jfma.2017.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is an independent risk factor for chronic kidney disease (CKD). If injury is mild, a repair process can be adaptive and lead to complete renal recovery. However, severe injury will be accompanied by a maladaptive repair which usually leads to nephron loss, fibrosis, vascular rarefaction, and chronic inflammation. Although various mechanisms underlying AKI-CKD transition have been explored, no intervention has been proved effective to block the transition until very recently. A lack of consensus for monitoring renal function and defining renal recovery after AKI should be the reasons for the slow advance in the discovery of a timely pharmacologic treatment to block AKI-CKD transition. Recently, animal studies have shown the activation of renin-angiotensin system (RAS) after AKI. In patients with complete renal recovery after AKI defined as the decrease of serum creatinine level to within 0.3 mg/dL above the baseline, administration of RAS inhibitor can prevent the ensuing CKD. In this review, we will discuss the renal recovery after AKI and the mechanisms underlying AKI-CKD transition. We will then highlight the promising effect of RAS inhibitor on CKD prevention in patients with complete renal recovery from AKI based on the recent clinical evidence.
Collapse
|
40
|
Chou YH, Huang TM, Pan SY, Chang CH, Lai CF, Wu VC, Wu MS, Wu KD, Chu TS, Lin SL. Renin-Angiotensin System Inhibitor is Associated with Lower Risk of Ensuing Chronic Kidney Disease after Functional Recovery from Acute Kidney Injury. Sci Rep 2017; 7:46518. [PMID: 28406186 PMCID: PMC5390249 DOI: 10.1038/srep46518] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Acute kidney injury (AKI) is an independent risk factor for ensuing chronic kidney disease (CKD). Animal studies have demonstrated that renin-angiotensin system (RAS) inhibitor can reduce ensuing CKD after functional recovery from AKI. Here we study the association between ensuing CKD and use of RAS inhibitor including angiotensin converting enzyme inhibitor or angiotensin II type 1a receptor blocker starting after renal functional recovery in our prospectively collected observational AKI cohort. Adult patients who had cardiac surgery-associated AKI (CSA-AKI) are studied. Patients with CKD, unrecovered AKI, and use of RAS inhibitor before surgery are excluded. Among 587 eligible patients, 94 patients are users of RAS inhibitor which is started and continued after complete renal recovery during median follow-up period of 2.99 years. The users of RAS inhibitor show significantly lower rate of ensuing CKD (users vs. non-users, 26.6% vs. 42.2%) and longer median CKD-free survival time (users vs. non-users, 1079 days vs. 520 days). Multivariate Cox regression analyses further demonstrate that use of RAS inhibitor is independently associated with lower risk of ensuing CKD (hazard ratio = 0.46, P < 0.001). We conclude that use of RAS inhibitor in CSA-AKI patients after renal functional recovery is associated with lower risk of ensuing CKD development.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tao-Min Huang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Fu Lai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiou Wu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kwan-Dun Wu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics &Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Zhang J, Zheng L, Yuan X, Liu C, Yuan Q, Xie F, Qiu S, Peng Z, Tang Y, Meng J, Qin J, Hu G, Tao L. Mefunidone ameliorates renal inflammation and tubulointerstitial fibrosis via suppression of IKKβ phosphorylation. Int J Biochem Cell Biol 2016; 80:109-118. [DOI: 10.1016/j.biocel.2016.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
|