1
|
Yi EJ, Kim YI, Song JH, Ko HJ, Chang SY. Intranasal immunization with curdlan induce Th17 responses and enhance protection against enterovirus 71. Vaccine 2023; 41:2243-2252. [PMID: 36863926 DOI: 10.1016/j.vaccine.2023.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Mucosal surfaces are in contact with the external environment and protect the body from infection by various microbes. To prevent infectious diseases at the first line of defense, the establishment of pathogen-specific mucosal immunity by mucosal vaccine delivery is needed. Curdlan, a 1,3-β-glucan has a strong immunostimulatory effect when delivered as a vaccine adjuvant. Here, we investigated whether intranasal administration of curdlan and antigen (Ag) could induce sufficient mucosal immune responses and protect against viral infections. Intranasal co-administration of curdlan and OVA increased OVA-specific IgG and IgA Abs in both serum and mucosal secretions. In addition, intranasal co-administration of curdlan and OVA induced the differentiation of OVA-specific Th1/Th17 cells in the draining lymph nodes. To investigate the protective immunity of curdlan against viral infection, intranasal co-administration of curdlan with recombinant VP1 of EV71 C4a was administered and showed enhanced protection against enterovirus 71 in a passive serum transfer model using neonatal hSCARB2 mice, although intranasal administration of VP1 plus curdlan increased VP1-specific helper T cells responses but not mucosal IgA. Next, Mongolian gerbils were intranasally immunized with curdlan plus VP1, and they had effective protection against EV71 C4a infection, while decreasing viral infection and tissue damage by inducing Th17 responses. These results indicated that intranasal curdlan with Ag improved Ag-specific protective immunity by enhancing mucosal IgA and Th17 against viral infection. Our results suggest that curdlan is an advantageous candidate as a mucosal adjuvant and delivery vehicle for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea; AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea.
| |
Collapse
|
2
|
Yu R, Wang M, Liu L, Yan J, Fan J, Li X, Kang M, Xu J, Zhang X, Zhang S. The development and characterization of a stable Coxsackievirus A16 infectious clone with Nanoluc reporter gene. Front Microbiol 2023; 13:1101850. [PMID: 36704559 PMCID: PMC9871592 DOI: 10.3389/fmicb.2022.1101850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Coxsackievirus A16 (CA16) belongs to the Human Enterovirus A species, which is a common pathogen causing hand, foot, and mouth disease in children. Currently, specific vaccines and drugs against CA16 are unavailable, and there is an unmet need to further understand the virus and invent effective treatment. Constructing a CA16 infectious clone with a reporter gene will greatly facilitate its virological studies. Here, we first reported the construction of a CA16 infectious clone (rCA16) whose progeny is highly replicative and virulent in suckling mice. On the basis of rCA16, we further inserted a NanoLuc (Nluc) reporter gene and made the rCA16-Nluc clone. We found that the Nluc gene in rCA16-Nluc is stable during continuous growing in Vero cells and thus allowed detection of a steady luciferase signal in rCA16-Nluc-infected Vero cells over 10 passages. Its application in antivirals characterization and high-throughput screening is exemplified by measuring IC50, CC50, and selection index of guanidine hydrochloride, ribavirin, chloroquine, and ammonium chloride against CA16. Finally, we showed that rCA16-Nluc based assay greatly simplified the CA16 neutralizing antibody tests. Thus, these two CA16 infectious clones will be robust tools for future enterovirus studies and antivirals development.
Collapse
Affiliation(s)
- Rui Yu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lizhen Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingjing Yan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Fan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaohong Li
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Miaomiao Kang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Jianqing Xu, ✉
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Xiaoyan Zhang, ✉
| | - Shuye Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Shuye Zhang, ✉
| |
Collapse
|
3
|
Sun YS, Xia Y, Xu F, Lu HJ, Mao ZA, Gao M, Pan TY, Yao PP, Wang Z, Zhu HP. Development and evaluation of an inactivated Coxsackievirus A16 vaccine in gerbils. Emerg Microbes Infect 2022; 11:1994-2006. [PMID: 35787233 PMCID: PMC9377242 DOI: 10.1080/22221751.2022.2093132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coxsackievirus A16 (CVA16) is one of the major pathogens responsible for human hand, foot, and mouth disease (HFMD), which has threatened the health of young children, particularly in Asia-Pacific nations. Vaccination is an effective strategy for protecting children from CVA16 infection. However, there is currently no licensed CVA16 vaccine for use in humans. In this study, we isolated a high-growth CVA16 virus strain in MRC-5 cells and developed an MRC-5-adapted vaccine candidate strain termed CVA16-393 via two rounds of plaque purification. The CVA16-393 strain was grouped into the B1b subgenotype and grew to a titre of over 107 TCID50/ml in MRC-5 cells. The VP1 gene region of this strain, which contains the major neutralizing epitopes, displayed high stability during serial passages. The inactivated whole-virus vaccine produced by the CVA16-393 strain induced an effective neutralizing antibody response in Meriones unguiculatus (gerbils) after two doses of intraperitoneal inoculation. One week after the booster immunization, the geometric mean titres of the neutralizing antibodies for the 10246, 40812TXT, 11203SD, TJ-224 and CA16-194 strains from different regions of China were 137.8, 97.8, 113.4, 64.1 and 122.3, respectively. A CVA16 vaccine dose above 25 U was also able to provide 100% cross-protection against lethal challenges with these five clinical strains in gerbils. Immunization at a one-week interval could maintain a high level of neutralizing antibody titres for at least 8 weeks. Thus, the vaccine produced by this CVA16-393 strain might be promising.
Collapse
Affiliation(s)
- Yi-Sheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hang-Jing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zi-An Mao
- Zhejiang Pukang Biotechnology Co., LTD., China
| | - Meng Gao
- Zhejiang Pukang Biotechnology Co., LTD., China
| | - Tian-Yuan Pan
- Department of General Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ping-Ping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhen Wang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Han-Ping Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
4
|
Mongolia Gerbils Are Broadly Susceptible to Hepatitis E Virus. Viruses 2022; 14:v14061125. [PMID: 35746596 PMCID: PMC9229706 DOI: 10.3390/v14061125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV.
Collapse
|
5
|
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. A convenient small mammalian model for basic research and antiviral testing is still greatly needed. Although a small rodent, the Mongolian gerbil, was reported to be susceptible to swine genotype-4 HEV infection, whether the previous results were reliable and consistent needs to be validated by using biologically pure HEV stocks or infectious RNA. In this study, we revisited this gerbil infection model for human HEV of genotype 1, 3, or 4 (G1, G3, or G4) by HEV reverse genetics. Gerbils inoculated intrahepatically with capped G3 HEV RNA transcripts or intraperitoneally with infectious G3 cloned HEV produced robust infection, as evidenced by presence of HEV in livers, spleens, and feces for up to 7 weeks post inoculation, seroconversion, and pathological liver lesions. Furthermore, the value of the gerbil model in antiviral testing and type I IFN in host defense was assessed. We demonstrated the effectiveness of peg-IFNα-2a and ribavirin in inhibiting HEV replication in gerbils. By treatment with two molecule inhibitors of TBK1, we also revealed a role of RIG-I like receptor-interferon regulatory factor 3 in host anti-HEV innate immune sensing in this in vivo model. Finally, susceptibility of G4 HEV was demonstrated in intrahepatically inoculated gerbils with infectious HEV RNA transcripts, whereas no evidence for G1 HEV susceptibility was found. The availability of the convenient gerbil model will greatly facilitate HEV-specific antiviral development and assess the mechanism of host immune response during HEV infection. IMPORTANCE HEV infects >20 million people annually, causing acute viral hepatitis as well as chronic hepatitis, neurological diseases, and pregnancy-associated high mortality, which require therapeutic intervention. The HEV antiviral research is largely limited by the lack of a convenient small animal model. Here we revisit the Mongolian gerbil model for three genotypes of human HEV by infectious HEV clones and recognized standards of experimental procedures. Fecal virus shedding, seroconversion, and pathological liver lesions could be detected in HEV-inoculated gerbils. We demonstrate the effectiveness and usefulness of this model in testing antiviral drugs, and in assessing the mechanism of host innate immune response upon HEV infection. This conventional rodent model will aid in future antiviral development and delineating mechanism of host immune response.
Collapse
|
6
|
A hSCARB2-transgenic mouse model for Coxsackievirus A16 pathogenesis. Virol J 2021; 18:84. [PMID: 33882964 PMCID: PMC8061046 DOI: 10.1186/s12985-021-01557-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/14/2021] [Indexed: 11/11/2022] Open
Abstract
Background Coxsackievirus A16 (CA16) is one of the neurotropic pathogen that has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD), but its pathogenesis is not yet clear. The limited host range of CA16 make the establishment of a suitable animal model that can recapitulate the neurological pathology observed in human HFMD more difficult. Because the human scavenger receptor class B, member 2 (hSCARB2) is a cellular receptor for CA16, we used transgenic mice bearing human SCARB2 and nasally infected them with CA16 to study the pathogenicity of the virus. Methods Coxsackievirus A16 was administered by intranasal instillation to groups of hSCARB2 transgenic mice and clinical signs were observed. Sampled at different time-points to document and characterize the mode of viral dissemination, pathological change and immune response of CA16 infection. Results Weight loss and virus replication in lung and brain were observed in hSCARB2 mice infected with CA16, indicating that these animals could model the neural infection process. Viral antigens were observed in the alveolar epithelia and brainstem cells. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes into the alveolar interstitial in lung and diffuse punctate hemorrhages in the capillaries of the brainstem. In addition, we detected the expression levels of inflammatory cytokines and detected high levels of interleukin IL-1β, IL-6, IL-18, and IFN-γ in nasal mucosa, lungs and brain tissues. Conclusions The hSCARB2-transgenic mice can be productively infected with CA16 via respiratory route and exhibited a clear tropism to lung and brain tissues, which can serve as a model to investigate the pathogenesis of CA16 associated respiratory and neurological disease.
Collapse
|
7
|
Kim YG, Lee Y, Kim JH, Chang SY, Jung JW, Chung WJ, Jin HE. Self-Assembled Multi-Epitope Peptide Amphiphiles Enhance the Immune Response against Enterovirus 71. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2342. [PMID: 33255791 PMCID: PMC7760352 DOI: 10.3390/nano10122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Subunit vaccines consist of non-genetic material, such as peptides or proteins. They are considered safe because they have fewer side effects; however, they have low immunogenicity when used alone. We aimed to enhance the immune response of peptide-based vaccines by using self-assembled multimeric peptide amphiphiles (PAs). We designed two epitope PAs by conjugating epitope peptides from Enterovirus 71 (EV71) virus particle (VP) 1 and VP3 capsid proteins with different fatty acid chain lengths (VP1PA and VP3PA). These PAs self-assembled into supramolecular structures at a physiological pH, and the resulting structures were characterized using atomic force microscopy. Multi-epitope PAs (m-PAs) consisted of a 1:1 mixture of VP1PA and VP3PA solutions. To evaluate immunogenicity, m-PA constructs were injected with adjuvant subcutaneously into female Balb/c mice. Levels of antigen-specific immunoglobulin G (IgG) and IgG1 in m-PA-injected mice serum samples were analyzed using ELISA and Western blotting. Additionally, cytokine production stimulated by each antigen was measured in splenocytes cultured from immunized mice groups. We found that m-PA showed improved humoral and cellular immune responses compared to the control and peptide groups. The sera from m-PA immunized mice group could neutralize EV71 infection and protect host cells. Thus, self-assembled m-PAs can promote a protective immune response and can be developed as a potential platform technology to produce peptide vaccines against infectious viral diseases.
Collapse
Affiliation(s)
- Yu-Gyeong Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Yunsu Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Jong-Wha Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
8
|
Sun YS, Xu F, An Q, Chen C, Yang ZN, Lu HJ, Chen JC, Yao PP, Jiang JM, Zhu HP. A SARS-CoV-2 variant with the 12-bp deletion at E gene. Emerg Microbes Infect 2020; 9:2361-2367. [PMID: 33118859 PMCID: PMC7598948 DOI: 10.1080/22221751.2020.1837017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing and has become an important public health threat. This disease is caused by a new coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, and so far, little is known about this virus. In this study, by using plaque purification, we purified two SARS-CoV-2 virus strains from the same specimen, one named F8 containing a 12-bp deletion in the E gene and the other named 8X containing the wild-type E gene. There was no significant difference in the viral titer and infectivity of these two strains. The S protein content of the F8 viral culture was 0.39 μg/ml, much higher than that of 8X. An inactivated vaccine made from the F8 strain could trigger high levels of the IgG titer and neutralizing antibody titer, which could last for at least 6 weeks and were significantly higher than those from the 8X strain at 1 and 3 weeks post vaccination, respectively. In conclusion, we reported that both the E gene mutant and wild-type SARS-CoV-2 strains were isolated from the same clinical sample by plaque purification. A 12-bp deletion in the E gene was important for SARS-CoV-2 replication and immunogenicity.
Collapse
Affiliation(s)
- Yi-Sheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Qi An
- Shanghai King-cell biotechnology Co., Ltd., Shanghai, People's Republic of China
| | - Chen Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Zhang-Nv Yang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Hang-Jing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Jian-Cai Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Ping-Ping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Jian-Min Jiang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Han-Ping Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
From Monovalent to Multivalent Vaccines, the Exploration for Potential Preventive Strategies Against Hand, Foot, and Mouth Disease (HFMD). Virol Sin 2020; 36:167-175. [PMID: 32997323 PMCID: PMC7525078 DOI: 10.1007/s12250-020-00294-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) recently emerged as a global public threat. The licensure of inactivated enterovirus A71 (EV-A71) vaccine was the first step in using a vaccine to control HFMD. New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage. The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines. The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes. The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a cross-protective antibody response.
Collapse
|
10
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. J Transl Med 2020; 100:1262-1275. [PMID: 32601355 DOI: 10.1038/s41374-020-0456-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Chen C, Xia Y, Zhu S, Xu F, Sun Y, Lu H, Gao M, Yang Z, Mao Z, Ge Q, Miao Z, Zhu H, Yao P. Muscle destruction caused by coxsackievirus A10 in gerbils: Construction of a novel animal model for antiviral evaluation. Virus Res 2020; 286:198067. [PMID: 32553610 DOI: 10.1016/j.virusres.2020.198067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
The morbidity and mortality of coxsackievirus A10 (CVA10)-associated hand, foot, and mouth disease (HFMD) have been increasing in recent years, while few studies on the vaccine and animal model of CVA10 have been reported. Here, we first established a CVA10-infected gerbil model and employed it to evaluate the immunoprotective effect of an inactivated CVA10 vaccine. The results showed that gerbils up to the age of 14 days were fully susceptible to CVA10, and all died within five days post-infection by intraperitoneal inoculation. Lethargy, wasting, hind-limb paralysis, and even death could be observed in the CVA10-infected gerbils. Pathological examination suggested that CVA10 has a strong tropism toward muscle tissue, and muscle bundle fracture and muscular fibers necrosis were observed in the limb muscles. Additionally, active immunization results showed that gerbils immunized with the inactivated CVA10 vaccine were 100 % protected from lethal CVA10 challenge. The antisera from vaccinated gerbils also showed high neutralizing titers against CVA10. Based on these results, the CVA10-infected gerbil model was a suitable tool for analyzing the pathogenesis of CVA10 and assessing the protective efficacy of CVA10 candidate vaccines.
Collapse
Affiliation(s)
- Chen Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shuirong Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yisheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hangjing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Meng Gao
- Zhejiang Pukang Biotechnology Co., LTD., Hangzhou, China
| | - Zhangnv Yang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zian Mao
- Zhejiang Pukang Biotechnology Co., LTD., Hangzhou, China
| | - Qiong Ge
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ziping Miao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - HanPing Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Pingping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
12
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. Coxsackievirus A16 in a 1-Day-Old Mouse Model of Central Nervous System Infection Shows Lower Neurovirulence than Enterovirus A71. J Comp Pathol 2020; 176:19-32. [PMID: 32359633 DOI: 10.1016/j.jcpa.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are the major causes of hand, foot and mouth disease in young children. Although less so with CV-A16, both viruses are associated with serious neurological syndromes, but the differences between their central nervous system infections remain unclear. We conducted a comparative infection study using clinically-isolated CV-A16 and EV-A71 strains in a 1-day-old mouse model to better understand the neuropathology and neurovirulence of the viruses. New serotype-specific probes for in situ hybridization were developed and validated to detect CV-A16 and EV-A71 RNA in infected tissues. Demonstration of CV-A16 virus antigens/RNA, mainly in the brainstem and spinal cord neurons, confirmed neurovirulence, but showed lower densities than in EV-A71 infected animals. A higher lethal dose50 for CV-A16 suggested that CV-A16 is less neurovirulent. Focal virus antigens/RNA in the anterior horn white matter and adjacent efferent motor nerves suggested that neuroinvasion is possibly via retrograde axonal transport in peripheral motor nerves.
Collapse
Affiliation(s)
- Y T Hooi
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - K C Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - D Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - K T Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Sun YS, Yang ZN, Xu F, Chen C, Lu HJ, Jiang JM, Zhang YJ, Zhu HP, Yao PP. Global Gene Expression Analysis of the Brainstem in EV71- and CVA16-Infected Gerbils. Viruses 2019; 12:v12010046. [PMID: 31906004 PMCID: PMC7019476 DOI: 10.3390/v12010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two most important pathogens of hand, foot, and mouth disease (HFMD). However, the neuropathogenesis of EV71 and CVA16 has not been elucidated. In our previous study, we established gerbils as a useful model for both EV71 and CVA16 infection. In this work, we used RNA-seq technology to analyze the global gene expression of the brainstem of EV71- and CVA16-infected gerbils. We found that 3434 genes were upregulated while 916 genes were downregulated in EV71-infected gerbils. In CVA16-infected gerbils, 1039 genes were upregulated, and 299 genes were downregulated. We also found significant dysregulation of cytokines, such as IP-10 and CXCL9, in the brainstem of gerbils. The expression levels of 10 of the most upregulated genes were confirmed by real-time RT-PCR, and the upregulated tendency of most genes was in accordance with the differential gene expression (DGE) results. Our work provided global gene expression analysis of virus-infected gerbils and laid a solid foundation for elucidating the neuropathogenesis mechanisms of EV71 and CVA16.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Han-Ping Zhu
- Correspondence: (H.-P.Z.); (P.-P.Y.); Tel.: +86-571-8711-5316 (H.-P.Z.); +86-571-8711-5312 (P.-P.Y.)
| | - Ping-Ping Yao
- Correspondence: (H.-P.Z.); (P.-P.Y.); Tel.: +86-571-8711-5316 (H.-P.Z.); +86-571-8711-5312 (P.-P.Y.)
| |
Collapse
|
14
|
Yao PP, Miao ZP, Xu F, Lu HJ, Sun YS, Xia Y, Chen C, Yang ZN, Xia SC, Jiang JM, Hu CG, Mao ZA, Gao M, Xu ZY, Ying HN, Yao CH, Zhu ZY, Zhu HP, Xiang HQ. An adult gerbil model for evaluating potential coxsackievirus A16 vaccine candidates. Vaccine 2019; 37:5341-5349. [PMID: 31351798 DOI: 10.1016/j.vaccine.2019.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
A suitable animal model of CVA16 infection is crucial in order to understand its pathogenesis and to help develop antiviral vaccines or screen therapeutic drugs. The neonatal mouse model has a short sensitivity period to CA16 infection, which is a major limitation. In this study, we demonstrate that adult (60-day-old) gerbils are susceptible to CVA16 infection at high doses (108.0 TCID50). A clinical isolate strain of CVA16 was inoculated intraperitoneally into adult gerbils, which subsequently developed significant clinical symptoms, including hind limb weakness, paralysis of one or both hind limbs, tremors, and eventual death from neurological disorders. Real-time RT-PCR revealed that viral loads in the spinal cord and brainstem were higher than those in other organs/tissues. Histopathological changes, such as neuronal degeneration, neuronal loss, and neuronophagia, were observed in the spinal cord, brainstem, and heart muscle, along with necrotizing myositis. Gerbils receiving both prime and boost immunizations of alum adjuvant inactivated vaccine exhibited no clinical signs of disease or mortality following challenge by CVA16, whereas 80% of control animals showed obvious clinical signs, including slowness, paralysis of one or both hind limbs, and eventual death, suggesting that the CVA16 vaccine can fully protect gerbils against CVA16 challenge. These results demonstrate that an adult gerbil model provides us with a useful tool for studying the pathogenesis and evaluating antiviral reagents of CVA16 infection. The development of this animal model would also be conducive to screening promising CVA16 vaccine candidates as well as further vaccination evaluation.
Collapse
Affiliation(s)
- Ping-Ping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zi-Ping Miao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hang-Jing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yi-Sheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chen Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhang-Nv Yang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shi-Chang Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jian-Min Jiang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chong-Gao Hu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zi-An Mao
- Zhejiang Pukang Biotechnology Co.,LTD., China
| | - Meng Gao
- Zhejiang Pukang Biotechnology Co.,LTD., China
| | | | | | | | - Zhi-Yong Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Han-Ping Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Hai-Qing Xiang
- Health Service Development Center of Hangzhou, Hangzhou, China.
| |
Collapse
|
15
|
Li CX, Zhang B, Feng Y, Xu CP, Jiang JM, Lu YY. Establishment and characterization of an oral gerbil model for a non-mouse-adapted enterovirus 71 strain. Virus Res 2018; 255:117-126. [PMID: 30030018 DOI: 10.1016/j.virusres.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease (HFMD) with neurological and systemic complications worldwide, and it is mostly discovered in infants and young children. It is of great significance to establish suitable animal models of EV71 infection on research of distribution and pathogenesis of the virus. In this study, we established a successful infection of a non-mouse-adapted isolate of EV71 via oral route in 7-day-old Mongolian gerbil (Meriones unguiculatus), all of which were paralyzed and died within 10 days post infection. Analysis of virus loads in twelve tissues showed that virus was first detected in intestine, blood, heart, lung, and muscle one day post-infection, and then in the rest of the tissues/organs within the next few days, among which thymus, spleen, spinal cord and muscles had the highest virus titer at 5 days post infection. Pathological examination showed that severe necrosis was observed in skeletal muscle and spinal cord, and edema was observed in both heart and lung. Comparisons of host gene expression of various tissues from infected and non-infected gerbils revealed a general up-regulation of genes related to anti-viral response and a viral receptor gene (sialic acid-linked glycans), as well as a tissue(gut)-specific up-regulation of genes related to neuronal communication. Collectively, our results showed that EV71 could induce severe neurological complications as well as massive tissue damage all over the body, which indicates that oral infection of 7-day gerbils can be a suitable animal model to study the infection of EV71 in human.
Collapse
Affiliation(s)
- Ci-Xiu Li
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China; School of Basic Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Feng
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chang-Ping Xu
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian-Min Jiang
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yi-Yu Lu
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Lim H, In HJ, Lee JA, Sik Yoo J, Lee SW, Chung GT, Choi YK, Chung JK, Cho SJ, Lee JW. The immunogenicity and protection effect of an inactivated coxsackievirus A6, A10, and A16 vaccine against hand, foot, and mouth disease. Vaccine 2018; 36:3445-3452. [DOI: 10.1016/j.vaccine.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 01/17/2023]
|
17
|
Abstract
Tunable metasurfaces have emerged as an efficient approach to manipulate the wave propagation. Different from previous work concentrating on electrically tunable mechanisms, here we demonstrate a magnetically tunable metasurface composed of ferrite rods and metallic foils. By tuning the thickness of ferrite rods, metasurfaces with different rod thickness gradients are obtained. The incident wave can propagate through the metasurfaces due to the extraordinary transmission. The deflection angle of the transmission wave is not only influenced by the rod thickness gradient, but also tuned by the applied magnetic field. This approach opens a way for the design of tunable metasurfaces.
Collapse
|
18
|
Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. ACTA ACUST UNITED AC 2017; 4:39-53. [PMID: 28616244 PMCID: PMC5469729 DOI: 10.1002/reg2.77] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
This review provides a concise summary of the changing phenotypes of macrophages and fibroblastic cells during the local inflammatory response, the onset of tissue repair, and the resolution of inflammation which follow injury to an organ. Both cell populations respond directly to damage and present coordinated sequences of activation states which determine the reparative outcome, ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent work with mammalian models of organ regeneration, including regeneration of full‐thickness skin, hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells in these systems are discussed. New investigations of the early phase of amphibian limb and tail regeneration, including the effects of pro‐inflammatory and anti‐inflammatory agents, are then briefly discussed, focusing on the transition from the normally covert inflammatory response to the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes for limb patterning.
Collapse
Affiliation(s)
- Anthony L Mescher
- Department of Anatomy and Cell Biology, Indiana University School of Medicine - Bloomington Indiana University Center for Developmental and Regenerative Biology Bloomington IN 47405 USA
| |
Collapse
|
19
|
Patel MC, Wang W, Pletneva LM, Rajagopala SV, Tan Y, Hartert TV, Boukhvalova MS, Vogel SN, Das SR, Blanco JCG. Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus). PLoS One 2016; 11:e0166336. [PMID: 27814404 PMCID: PMC5096705 DOI: 10.1371/journal.pone.0166336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a significant increase in detection of Enterovirus D-68 (EV-D68) among patients with severe respiratory infections worldwide. EV-D68 is now recognized as a re-emerging pathogen; however, due to lack of a permissive animal model for EV-D68, a comprehensive understanding of the pathogenesis and immune response against EV-D68 has been hampered. Recently, it was shown that EV-D68 has a strong affinity for α2,6-linked sialic acids (SAs) and we have shown previously that α2,6-linked SAs are abundantly present in the respiratory tract of cotton rats (Sigmodon hispidus). Thus, we hypothesized that cotton rats could be a potential model for EV-D68 infection. Here, we evaluated the ability of two recently isolated EV-D68 strains (VANBT/1 and MO/14/49), along with the historical prototype Fermon strain (ATCC), to infect cotton rats. We found that cotton rats are permissive to EV-D68 infection without virus adaptation. The different strains of EV-D68 showed variable infection profiles and the ability to produce neutralizing antibody (NA) upon intranasal infection or intramuscular immunization. Infection with the VANBT/1 resulted in significant induction of pulmonary cytokine gene expression and lung pathology. Intramuscular immunization with live VANBT/1 or MO/14/49 induced strong homologous antibody responses, but a moderate heterologous NA response. We showed that passive prophylactic administration of serum with high content of NA against VANBT/1 resulted in an efficient antiviral therapy. VANBT/1-immunized animals showed complete protection from VANBT/1 challenge, but induced strong pulmonary Th1 and Th2 cytokine responses and enhanced lung pathology, indicating the generation of exacerbated immune response by immunization. In conclusion, our data illustrate that the cotton rat is a powerful animal model that provides an experimental platform to investigate pathogenesis, immune response, anti-viral therapies and vaccines against EV-D68 infection.
Collapse
Affiliation(s)
- Mira C. Patel
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Wei Wang
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Seesandra V. Rajagopala
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Suman R. Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| | - Jorge C. G. Blanco
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| |
Collapse
|