1
|
Chu S, Peng F, Wang J, Liu L, Zhao J, Han X, Ding W. Catestatin as a predictor for cardiac death in heart failure with mildly reduced and preserved ejection fraction. ESC Heart Fail 2025; 12:517-524. [PMID: 39359227 PMCID: PMC11769630 DOI: 10.1002/ehf2.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Endogenous catecholamine release-inhibitory peptide catestatin has been associated with heart failure (HF). This subgroup analysis of our cohort of HF compared the different effects of catestatin as a predictor for cardiac outcomes in patients with HF with reduced (HFrEF), mildly reduced (HFmrEF) or preserved (HFpEF) ejection fraction. METHODS Plasma catestatin was measured in the HF patient cohort of 228 cases with a whole spectrum of ejection fraction. The cardiac deaths were analysed according to prespecified subgroups. RESULTS Over a median follow-up of 52.5 months, the association between plasma catestatin and cardiac death was different in patients with HFrEF, HFmrEF or HFpEF [hazard ratio (HR) 1.53, 95% confidence interval (CI) 0.99-2.37 and HR 2.73, 95% CI 1.56-4.75, respectively; interaction P = 0.022]. Patients with HFmrEF/HFpEF were older and more likely to be female, with non-ischaemic cardiomyopathy and atrial fibrillation but lower levels of plasma B-type natriuretic peptide (BNP). Similar adverse cardiac events occurred in patients with HFmrEF/HFpEF as in HFrEF. Plasma catestatin was a better predictor for cardiovascular death in the HFmrEF/HFpEF patients [area under the receiver operating characteristic curve (AUC) = 0.72, 95% CI 0.45-0.74] than in the HFrEF patients (AUC = 0.59, 95% CI 0.587-0.849). The optimal cut point of plasma catestatin level of 0.86 ng/mL predicted a 2.80-fold elevated risk for cardiac death in HFmrEF/HFpEF. CONCLUSIONS Elevated plasma catestatin might be a more sensitive predictor for cardiac outcome in patients with HFmrEF/HFpEF than in HFrEF.
Collapse
Affiliation(s)
- Song‐Yun Chu
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Fen Peng
- Department of CardiologyPeking University First HospitalBeijingChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jie Wang
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Lin Liu
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Jing Zhao
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Xiao‐Ning Han
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Wen‐Hui Ding
- Department of CardiologyPeking University First HospitalBeijingChina
| |
Collapse
|
2
|
Ren J, Che Y, Li H, Gao H, Wang Y, Wang Y, Su H, Li Z, Li J, Qu P. SGK3 deficiency in macrophages suppresses angiotensin II-induced cardiac remodeling via regulating Ndufa13-mediated mitochondrial oxidative stress. Cell Mol Life Sci 2024; 81:359. [PMID: 39158709 PMCID: PMC11335188 DOI: 10.1007/s00018-024-05395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Infiltration of monocyte-derived macrophages plays a crucial role in cardiac remodeling and dysfunction. The serum and glucocorticoid-inducible protein kinase 3 (SGK3) is a downstream factor of PI3K signaling, regulating various biological processes via an AKT-independent signaling pathway. SGK3 has been implicated in cardiac remodeling. However, the contribution of macrophagic SGK3 to hypertensive cardiac remodeling remains unclear. A cardiac remodeling model was established by angiotensin II (Ang II) infusion in SGK3-Lyz2-CRE (f/f, +) and wild-type mice to assess the function of macrophagic SGK3. Additionally, a co-culture system of SGK3-deficient or wild-type macrophages and neonatal rat cardiomyocytes (CMs) or neonatal rat fibroblasts (CFs) was established to evaluate the effects of SGK3 and the underlying mechanisms. SGK3 levels were significantly elevated in both peripheral blood mononuclear cells and serum from patients with heart failure. Macrophage SGK3 deficiency attenuated Ang II-induced macrophage infiltration, myocardial hypertrophy, myocardial fibrosis, and mitochondrial oxidative stress. RNA sequencing suggested Ndufa13 as the candidate gene in the effect of SGK3 on Ang II-induced cardiac remolding. Downregulation of Ndufa13 in CMs and CFs prevented the suppression of cardiac remodeling caused by SGK3 deficiency in macrophages. Mechanistically, the absence of SGK3 led to a reduction in IL-1β secretion by inhibiting the NLRP3/Caspase-1/IL-1β pathway in macrophages, consequently suppressing upregulated Ndufa13 expression and mitochondrial oxidative stress in CMs and CFs. This study provides new evidence that SGK3 is a potent contributor to the pathogenesis of hypertensive cardiac remodeling, and targeting SGK3 in macrophages may serve as a potential therapy for cardiac remodeling.
Collapse
Affiliation(s)
- Jiayu Ren
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Yilin Che
- The 1st Department of Thoracic Medical Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Heyu Li
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Haijun Gao
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Yue Wang
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Hongtong Su
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Zhihan Li
- The Department of Pathology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Li
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China.
| | - Peng Qu
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China.
- Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Liaoning, 116024, P.R. China.
| |
Collapse
|
3
|
Brand T, Lukannek AK, Jahns V, Jahns R, Lorenz K. From "contraindicated" to "first line" - Current mechanistic insights beyond canonical β-receptor signaling. Curr Opin Pharmacol 2024; 76:102458. [PMID: 38636195 DOI: 10.1016/j.coph.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
β-blockers are a solid pillar in the treatment of cardiovascular diseases. However, they are highly discussed regarding effectiveness for certain indications and side-effects. Even though there are up to 20 licensed compounds, only four are used for heart failure (HF) therapy. On the receptor level several key characteristics seem to influence the clinical outcome: subtype selectivity, antagonistic vs (inverse/biased) agonistic properties and -in particular- ancillary capacities. On a molecular level, divergent and novel signaling patterns are being identified and extra-cardiac effects on e.g. inflammation, metabolism and oxidative stress are highlighted. This review discusses different well-known and newly discovered characteristics that need to be considered for HF therapy and in the context of co-morbidities.
Collapse
Affiliation(s)
- Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | | | - Valérie Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Roland Jahns
- Interdisciplinary Bank of Biological Materials and Data Würzburg (ibdw), University Hospital Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Cardiovascular Pharmacology, Dortmund, Germany.
| |
Collapse
|
4
|
Chaffey LE, Roberti A, Bowman A, O'Brien CJ, Som L, Purvis GS, Greaves DR. Drug repurposing screen identifies novel anti-inflammatory activity of sunitinib in macrophages. Eur J Pharmacol 2024; 969:176437. [PMID: 38417608 DOI: 10.1016/j.ejphar.2024.176437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Laura E Chaffey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Amelia Bowman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Conan Jo O'Brien
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Liliana Som
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Gareth Sd Purvis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom.
| |
Collapse
|
5
|
Diego L, Jazmin F, Diana R, German‐Isauro G, Salvador F, Maria‐Elena H. Modulation of TNF-α, interleukin-6, and interleukin-10 by nebivolol-valsartan and nebivolol-lisinopril polytherapy in SHR rats. Pharmacol Res Perspect 2024; 12:e1189. [PMID: 38504425 PMCID: PMC10951418 DOI: 10.1002/prp2.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Antihypertensive drug therapies have demonstrated their capacity to modulate the inflammatory processes associated with hypertension, leading to improvements in disease progression. Given the prevalent use of polytherapy in treating most hypertensive patients, comprehending the time-dependent effects of combination treatments on inflammation becomes imperative. In this study, spontaneously hypertensive rats (SHR) were divided into seven groups (n = 6): (i) SHR + vehicle, (ii) SHR + nebivolol, (iii) SHR + valsartan, (iv) SHR + lisinopril, (v) SHR + nebivolol-valsartan, (vi) SHR + nebivolol-lisinopril, and (vii) WKY + vehicle. Blood pressure was measured using the tail-cuff method. Temporal alterations in inflammatory cytokines TNF-α, IL-6, and IL-10 were assessed in serum through ELISA and mRNA expression in aortic tissue via qPCR after 1, 2, and 4 weeks of treatment with nebivolol, lisinopril, valsartan, and their respective combinations. Histological alterations in the aorta were assessed. The findings indicated that combined treatments reduced systolic and diastolic blood pressure in SHR. The nebivolol and lisinopril combination demonstrated a significant decrease in IL-6 serum and mRNA expression at both 1 week and 4 weeks into the treatment. Additionally, TNF-α mRNA expression also showed a reduction with this combination at the same time points. Particularly, nebivolol-valsartan significantly decreased TNF-α serum and mRNA expression after one and four weeks of treatment. Furthermore, an elevation in serum IL-10 levels was observed with both combination treatments starting from the second week onwards. This study provides compelling evidence that concurrent administration of nebivolol with lisinopril or valsartan exerts time-dependent effects, reducing proinflammatory cytokines TNF-α and IL-6 while modifying IL-10 levels in an experimental hypertensive model.
Collapse
Affiliation(s)
- Lezama‐Martinez Diego
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Flores‐Monroy Jazmin
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Ramirez‐Hernandez Diana
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | | | - Fonseca‐Coronado Salvador
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Hernandez‐Campos Maria‐Elena
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de MedicinaInstituto Politecnico NacionalFederal DistrictMexicoMexico
| |
Collapse
|
6
|
Naeem AG, El-Naga RN, Michel HE. Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology 2022; 30:2197-2209. [PMID: 35948811 DOI: 10.1007/s10787-022-01045-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/23/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIM Multiple sclerosis (MS) is a demyelinating neurodegenerative inflammatory disease affecting mainly young adults. Microgliosis-derived neuroinflammation represents a key hallmark in MS pathology and progression. Nebivolol (Neb) demonstrated antioxidant, anti-inflammatory and neuroprotective properties in several brain pathologies. This study was conducted to investigate the potential neuroprotective effect of Neb in the cuprizone (Cup) model of MS. METHODS C57Bl/6 mice were fed 0.2% Cup mixed into rodent chow for 5 weeks. Neb (5 and 10 mg/kg/day) was administered by oral gavage during the last 2 weeks. RESULTS Neb prevented Cup-induced weight loss and motor deficits as evidenced by increased latency to fall in the rotarod test and enhanced locomotor activity as compared to Cup-intoxicated mice. Neb reversed Cup-induced demyelination as confirmed by Luxol fast blue staining and myelin basic protein western blotting. Administration of Neb modulated microglial activation status by suppressing M1 markers (Iba-1, CD86, iNOS, NO and TNF-α) and increasing M2 markers (Arg-1 and IL-10) as compared to Cup-fed mice. Furthermore, Neb hindered NLRP3/caspase-1/IL-18 inflammatory cascade and alleviated oxidative stress by reducing lipid peroxidation, as well as increasing catalase and superoxide dismutase activities. CONCLUSION These findings suggest the potential neuroprotective effect of Neb in the Cup-induced model of MS in mice, at least partially by virtue of shifting microglia towards M2 phenotype, mitigation of NLRP3 inflammasome activation and alleviation of oxidative stress.
Collapse
Affiliation(s)
- Antoinette G Naeem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Soliman GF, Abdel-Maksoud OM, Khalifa MM, Rashed LA, Ibrahim W, Morsi H, Abdallah H, Bastawy N. Effect of nebivolol on altered skeletal and cardiac muscles induced by dyslipidemia in rats: impact on oxidative and inflammatory machineries. Arch Physiol Biochem 2022; 128:463-473. [PMID: 31876193 DOI: 10.1080/13813455.2019.1693599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM High cholesterol diet is greatly linked to deleterious health consequences. In this work we tried to explore direct effects of high cholesterol diet on striated (skeletal and cardiac) muscle tissues and the mechanisms by which nebivolol could improve such harmful effects. METHODS The study included 24 healthy adult male albino rats weighing 200-220 grams that were assigned into four groups: control group, control drug group, high cholesterol diet fed groups; one untreated the other was treated with nebivolol. RESULTS In the cholesterol fed group, we found decreased blood HDL and NO with elevated total cholesterol, triglycerides, myoglobin, CK, LDH, ALP, in addition to elevated muscle tissue levels of HIF-1, NF-kB, MDA, and decreased expression of both eNOS, reduced GSH. Wire hanging test time was shorter in the high cholesterol group than control group rats, which was confirmed histologically by increased striated muscle fibre thickness and cytochrome area %. Nebivolol treatment ameliorated the effects of high cholesterol diet. CONCLUSION High cholesterol diet caused myopathic changes in rat striated muscle tissues mostly due to oxidative stress associated with enhanced NF-kB and HIF-1 expression. Nebivolol appears beneficial in the management of hypercholesterolaemia-induced striated muscle injury.
Collapse
Affiliation(s)
| | | | | | | | - Walaa Ibrahim
- Department of Medical Biochemistry, Cairo University, Cairo, Egypt
| | - Heba Morsi
- Department of Medical Biochemistry, Cairo University, Cairo, Egypt
| | - Hanan Abdallah
- Department of Medical Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen Bastawy
- Department of Medical Physiology, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Gu X, Wang Y, He Y, Zhao B, Zhang Q, Li S. MiR-1656 targets GPX4 to trigger pyroptosis in broilers kidney tissues by activating NLRP3 inflammasome under Se deficiency. J Nutr Biochem 2022; 105:109001. [PMID: 35346830 DOI: 10.1016/j.jnutbio.2022.109001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is a vital minor element for the organism. Se deficiency caused inflammation in kidney tissue and regulate the expression of selenoproteins and microRNAs (miRNAs). Pyroptosis involved in the inflammatory response, however, whether microRNA targets GPX4 to regulate Se-deficient kidney tissue pyroptosis is unclear. In this study, broilers were divided into two groups, Control group with 0.3mg/kg Se diet and Se-deficient group with 0.03mg/kg Se diet. The dual luciferase reporter assay system and quantitative real-time PCR (qRT-PCR) were used to screen the specificity of miR-1656 and its target protein in Se-deficient broilers. We tested the pyroptosis-related genes of Se-deficient broilers kidney and miR-1656-transfected primary broilers kidney by qRT-PCR, Western blot (WB) and immunofluorescence staining. Our research indicated that the GPX4 is one of the target genes of miR-1656, and Se deficiency leaded to the overexpression of miR-1656 and the increased expression of pyroptosis-related genes. The overexpression of miR-1656 can induce increased expression of pyroptosis-related genes including NLRP3, Caspase-1, IL-18, and IL-1β by inhibiting the release of GPX4. This study showed that miR-1656 could increase the release of ROS by targeting GPX4, activated the NLRP3 inflammasome, and release the inflammatory factors IL-1β and IL-18 to trigger pyroptosis in the kidney tissue of Se-deficient broilers. This finding may provide new research ideas for kidney injury and cell death due to Se deficiency.
Collapse
Affiliation(s)
- Xuedie Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qing Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
9
|
Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci 2022; 23:963. [PMID: 35055149 PMCID: PMC8778078 DOI: 10.3390/ijms23020963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other pathologies that induce vascular damage. There is a known and confirmed connection between inflammation and atherosclerosis. However, it has taken a long time to prove the beneficial effects of anti-inflammatory drugs on cardiovascular events. Diabetes can be both a product of inflammation and a cofactor implicated in the progression of vascular disease. When diabetes and inflammation are accompanied by obesity, this ominous trifecta leads to an increased incidence of atherothrombotic events. Research into earlier stages of vascular disease, and documentation of vulnerability to premature vascular disease, might be the key to success in preventing clinical events. Modulation of inflammation, combined with strict control of classical cardiovascular risk factors, seems to be the winning recipe. Identification of population subsets with a successful vascular aging (supernormal vascular aging-SUPERNOVA) pattern could also bring forth novel therapeutic interventions.
Collapse
Affiliation(s)
| | - Mihaela-Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | - Andreea-Catarina Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | | |
Collapse
|
10
|
Abstract
Nebivolol is a novel β-adrenergic receptor (β-AR) blocker with anti-inflammatory and antioxidant properties. The NLRP3 inflammasome plays a pivotal role in the pathogenesis of obesity-induced vascular dysfunction. Our study aimed to explore the effect of nebivolol on the NLRP3 inflammasome and vascular remodeling in diet-induced obese rats. Eight-week-old Sprague-Dawley male rats were fed with either a standard chow diet or a high-fat diet (HFD) for 8 weeks. Next, the obese rats were subdivided into 3 groups as follows: (1) HFD control group, (2) HFD with low doses of nebivolol (5 mg/kg·d), and (3) HFD with high doses of nebivolol (10 mg/kg·d). A 4-week treatment with nebivolol improved acetylcholine-induced vascular relaxation in accordance with an increased aortic endothelial nitric oxide synthase. Nebivolol attenuated NLRP3 inflammasome activation and suppressed autophagy. In parallel, nebivolol enhanced the levels of phase-II detoxifying enzymes, including superoxide dismutase and catalase. These effects were associated with an increased β3-AR level. Moreover, nebivolol treatment significantly increased Adenosine 5'-monophosphate (AMP)-activated protein kinase activity and decreased phosphorylation of the mammalian target of rapamycin. These results demonstrated that nebivolol improves obesity-induced vascular remodeling by attenuating NLRP3 inflammasome activation and restoring the antioxidant defense.
Collapse
|
11
|
De Munck DG, De Meyer GR, Martinet W. Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opin Ther Targets 2020; 24:131-145. [PMID: 31985292 DOI: 10.1080/14728222.2020.1723079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The incidence of age-related vascular diseases such as arterial stiffness, hypertension and atherosclerosis, is rising dramatically and is substantially impacting healthcare systems. Mounting evidence suggests that there is an important role for autophagy in maintaining (cardio)vascular health. Impaired vascular autophagy has been linked to arterial aging and the initiation of vascular disease.Areas covered: The function and implications of autophagy in vascular smooth muscle cells and endothelial cells are discussed in healthy blood vessels and arterial disease. Furthermore, we discuss current treatment options for vascular disease and their links with autophagy. A literature search was conducted in PubMed up to October 2019.Expert opinion: Although the therapeutic potential of inducing autophagy in age-related vascular pathologies is considerable, several issues should be addressed before autophagy induction can be clinically used to treat vascular disease. These issues include uncertainty regarding the most effective drug target as well as the lack of potency and selectivity of autophagy inducing drugs. Moreover, drug tolerance or autophagy mediated cell death have been reported as possible adverse effects. Special attention is required for determining the cause of autophagy deficiency to optimize the treatment strategy.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido Ry De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Abuelezz SA. Nebivolol attenuates oxidative stress and inflammation in a guinea pig model of ovalbumin-induced asthma: a possible mechanism for its favorable respiratory effects. Can J Physiol Pharmacol 2018; 96:258-265. [PMID: 29319332 DOI: 10.1139/cjpp-2017-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An experimental model of ovalbumin (OVA) induced asthma was used to assess the effects of nebivolol, the third-generation selective β1-adrenergic receptor blocker, on airway reactivity, lung inflammation, and oxidative stress markers. The asthma induction protocol was done by OVA sensitization and challenge. Guinea pigs were classified into control, asthmatic, or asthmatic receiving nebivolol either 7.5 or 15 mg·kg-1·day-1 orally. At the end of the study respiratory, the anti-inflammatory and antioxidative effects of nebivolol were assessed. The asthmatic group exhibited a significant increase in early and late airway resistance, airway hyperreactivity to histamine, total and absolute leucocytic count, tumor necrosis factor-α, and interleukin-6 in bronchoalveolar lavage fluid and lung lipid peroxidation and a significant decrease in superoxide dismutase and glutathione compared to the control group. Additionally, there was a significant decrease in lung endothelial nitric oxide synthase (eNOS) and a significant increase in inducible nitric oxide synthase (iNOS) mRNA expression compared to the control group. The high dose of nebivolol counteracted the increased airway resistance induced by OVA, whereas it had no effect on airway hyperresponsiveness. Moreover, nebivolol exhibited significant anti-inflammatory and antioxidant effects and restored the altered levels of eNOS and iNOS compared to the asthmatic group. Collectively, these results suggest a beneficial effect of nebivolol in asthma.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt.,Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
13
|
Li Z, Liu B, Zhao D, Wang B, Liu Y, Zhang Y, Tian F, Li B. Protective effects of Nebivolol against interleukin-1β (IL-1β)-induced type II collagen destruction mediated by matrix metalloproteinase-13 (MMP-13). Cell Stress Chaperones 2017; 22:767-774. [PMID: 28512729 PMCID: PMC5655365 DOI: 10.1007/s12192-017-0805-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023] Open
Abstract
The pathological progression of osteoarthritis (OA) involves degradation of articular cartilage matrix. Type II collagen is the main component of cartilage matrix, which is degraded by pro-inflammatory cytokines such as IL-1β mediated by MMP-13. Nebivolol, a licensed drug used for the treatment of hypertension in clinics, displays its anti-inflammatory capacity in various conditions. However, whether Nebivolol has a protective effect on cartilage matrix degradation has not been reported before. In this study, we investigated the effects of Nebivolol on regulating the expression of MMP-13 and degradation of type II collagen. Our results indicate that Nebivolol alleviated the increase in gene expression, protein expression, and activity of MMP-13 induced by IL-1β. Importantly, IL-1β strikingly reduced the levels of type II collagen in cell culture supernatants, which was reversed by treatment with Nebivolol in a dose-dependent manner. Mechanistically, Nebivolol was found to alleviate the increased levels of phosphorylated IκBα and reduced levels of total IκBα induced by IL-1β, which subsequently mitigated p65 nuclear translocation and the transcriptional activity of NF-κB. Furthermore, our results indicated that IL-1β treatment resulted in a significant increase in expression of the transcriptional factor interferon regulatory factor-1 (IRF-1) at both the mRNA and protein levels, which was significantly ameliorated by treatment with Nebivolol. The combination of these findings suggests that Nebivolol can potentially be applied in human OA treatment.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Baoyi Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China.
| | - BenJie Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Yupeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Yao Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Fengde Tian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| | - Borui Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 116001, People's Republic of China
| |
Collapse
|
14
|
Wang S, Gu J, Xu Z, Zhang Z, Bai T, Xu J, Cai J, Barnes G, Liu QJ, Freedman JH, Wang Y, Liu Q, Zheng Y, Cai L. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway. J Cell Mol Med 2017; 21:1182-1192. [PMID: 28158919 PMCID: PMC5431126 DOI: 10.1111/jcmm.13050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Junlian Gu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Zhiguo Zhang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Bai
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianxiang Xu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA.,Autism Center, University of Louisville, Louisville, KY, USA
| | - Qiu-Ju Liu
- Department of Hematology Disorders, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Yonggang Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Quan Liu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|