1
|
Obaldía N, Da Silva Filho JL, Núñez M, Glass KA, Oulton T, Achcar F, Wirjanata G, Duraisingh M, Felgner P, Tetteh KK, Bozdech Z, Otto TD, Marti M. Sterile protection against P. vivax malaria by repeated blood stage infection in the Aotus monkey model. Life Sci Alliance 2024; 7:e202302524. [PMID: 38158220 PMCID: PMC10756917 DOI: 10.26508/lsa.202302524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
The malaria parasite Plasmodium vivax remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether P. vivax strain-transcendent immunity can be achieved by repeated infection in Aotus monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection. IgG levels based on P. vivax lysate ELISA and protein microarray increased with repeated infections and correlated with the level of homologous protection. Parasite transcriptional profiles provided no evidence of major antigenic switching upon homologous or heterologous challenge. However, we observed significant sequence diversity and transcriptional differences in the P. vivax core gene repertoire between the two strains used in the study, suggesting that partial protection upon heterologous challenge is due to molecular differences between strains rather than immune evasion by antigenic switching. Our study demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P. vivax malaria vaccines.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Marlon Núñez
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
| | - Katherine A Glass
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Philip Felgner
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Kevin Ka Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Matos ADS, Soares IF, Baptista BDO, de Souza HADS, Chaves LB, Perce-da-Silva DDS, Riccio EKP, Albrecht L, Totino PRR, Rodrigues-da-Silva RN, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Construction, Expression, and Evaluation of the Naturally Acquired Humoral Immune Response against Plasmodium vivax RMC-1, a Multistage Chimeric Protein. Int J Mol Sci 2023; 24:11571. [PMID: 37511330 PMCID: PMC10380678 DOI: 10.3390/ijms241411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Imunologia Básica e Aplicada, Centro Universitário Arthur Sá Earp Neto/Faculdade de Medicina de Petrópolis (UNIFASE/FMP), Petrópolis 25680-120, RJ, Brazil
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Curitiba 81350-010, PR, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
3
|
Pendyala G, Calvo‐Calle JM, Moreno A, Kane RS. A multivalent Plasmodium falciparum circumsporozoite protein-based nanoparticle malaria vaccine elicits a robust and durable antibody response against the junctional epitope and the major repeats. Bioeng Transl Med 2023; 8:e10514. [PMID: 37476056 PMCID: PMC10354751 DOI: 10.1002/btm2.10514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Plasmodium falciparum (Pf) malaria continues to cause considerable morbidity and mortality worldwide. The circumsporozoite protein (CSP) is a particularly attractive candidate for designing vaccines that target sporozoites-the first vertebrate stage in a malaria infection. Current PfCSP-based vaccines, however, do not include epitopes that have recently been shown to be the target of potent neutralizing antibodies. We report the design of a SpyCatcher-mi3-nanoparticle-based vaccine presenting multiple copies of a chimeric PfCSP (cPfCSP) antigen that incorporates these important "T1/junctional" epitopes as well as a reduced number of (NANP)n repeats. cPfCSP-SpyCatcher-mi3 was immunogenic in mice eliciting high and durable IgG antibody levels as well as a balanced antibody response against the T1/junctional region and the (NANP)n repeats. Notably, the antibody concentration elicited by immunization was significantly greater than the reported protective threshold defined in a murine challenge model. Refocusing the immune response toward functionally relevant subdominant epitopes to induce a more balanced and durable immune response may enable the design of a more effective second generation PfCSP-based vaccine.
Collapse
Affiliation(s)
- Geetanjali Pendyala
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| | - J. Mauricio Calvo‐Calle
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts01655USA
| | - Alberto Moreno
- Emory Vaccine Center, Emory National Primate Research CenterEmory UniversityAtlantaGeorgia30329USA
- Division of Infectious Diseases, Department of MedicineEmory UniversityAtlantaGeorgia30303USA
| | - Ravi S. Kane
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| |
Collapse
|
4
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
5
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
6
|
Zolfaghari Emameh R, Barker HR, Turpeinen H, Parkkila S, Hytönen VP. A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention. Malar J 2022; 21:189. [PMID: 35706028 PMCID: PMC9199335 DOI: 10.1186/s12936-022-04186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
The use of a chimeric antigen for Plasmodium falciparum and P. vivax seroprevalence estimates from community surveys in Ethiopia and Costa Rica. PLoS One 2022; 17:e0263485. [PMID: 35613090 PMCID: PMC9132309 DOI: 10.1371/journal.pone.0263485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background In low-transmission settings, accurate estimates of malaria transmission are needed to inform elimination targets. Detection of antimalarial antibodies provides exposure history, but previous studies have mainly relied on species-specific antigens. The use of chimeric antigens that include epitopes from multiple species of malaria parasites in population-based serological surveys could provide data for exposure to multiple Plasmodium species circulating in an area. Here, the utility of P. vivax/P. falciparum chimeric antigen for assessing serological responses was evaluated in Ethiopia, an endemic country for all four human malarias, and Costa Rica, where P. falciparum has been eliminated with reports of sporadic P. vivax cases. Methods A multiplex bead-based assay was used to determine the seroprevalence of IgG antibodies against a chimeric malaria antigen (PvRMC-MSP1) from blood samples collected from household surveys in Ethiopia in 2015 (n = 7,077) and Costa Rica in 2015 (n = 851). Targets specific for P. falciparum (PfMSP1) and P. vivax (PvMSP1) were also included in the serological panel. Seroprevalence in the population and seroconversion rates were compared among the three IgG targets. Results Seroprevalence in Costa Rica was 3.6% for PfMSP1, 41.5% for PvMSP1 and 46.7% for PvRMC-MSP1. In Ethiopia, seroprevalence was 27.6% for PfMSP1, 21.4% for PvMSP1, and 32.6% for PvRMC-MSP1. IgG levels in seropositive individuals were consistently higher for PvRMC-MSP1 when compared to PvMSP1 in both studies. Seroconversion rates were 0.023 for PvMSP1 and 0.03 for PvRMC-MSP1 in Costa Rica. In Ethiopia, seroconversion rates were 0.050 for PfMSP1, 0.044 for PvMSP1 and 0.106 for PvRMC-MSP1. Conclusions Our data indicate that chimeric antigen PvRMC-MSP1 is able to capture antibodies to multiple epitopes from both prior P. falciparum and P. vivax infections, and suitable chimeric antigens can be considered for use in serosurveys with appropriate validation.
Collapse
|
8
|
McCaffery JN, Singh B, Nace D, Moreno A, Udhayakumar V, Rogier E. Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein. Malar J 2021; 20:86. [PMID: 33579292 PMCID: PMC7880512 DOI: 10.1186/s12936-021-03626-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND As malaria incidence and transmission in a region decreases, it becomes increasingly difficult to identify areas of active transmission. Improved methods for identifying and monitoring foci of active malaria transmission are needed in areas of low parasite prevalence in order to achieve malaria elimination. Serological assays can provide population-level infection history to inform elimination campaigns. METHODS A bead-based multiplex antibody detection assay was used to evaluate a chimeric Plasmodium vivax MSP1 protein (PvRMC-MSP1), designed to be broadly immunogenic for use in vaccine studies, to act as a pan-malaria serological tool based on its ability to capture IgG in plasma samples obtained from naturally exposed individuals. Samples from 236 US travellers with PCR confirmed infection status from all four major Plasmodium species infecting humans, Plasmodium falciparum (n = 181), Plasmodium vivax (n = 38), Plasmodium malariae (n = 4), and Plasmodium ovale (n = 13) were tested for IgG capture using PvRMC-MSP1 as well as the four recombinant MSP1-19 kD isoforms representative of these Plasmodium species. RESULTS Regardless of infecting Plasmodium species, a large proportion of plasma samples from infected US travellers provided a high assay signal to the PvRMC-MSP1 chimeric protein, with 115 high responders out of 236 samples assessed (48.7%). When grouped by active infection, 38.7% P. falciparum-, 92.1% of P. vivax-, 75.0% P. malariae-, and 53.4% of P. ovale-infected individuals displayed high assay signals in response to PvRMC-MSP1. It was also determined that plasma from P. vivax-infected individuals produced increased assay signals in response to the PvRMC-MSP1 chimera as compared to the recombinant PvMSP1 for 89.5% (34 out of 38) of individuals. PvRMC-MSP1 also showed improved ability to capture IgG antibodies from P. falciparum-infected individuals when compared to the capture by recombinant PvMSP1, with high assay signals observed for 38.7% of P. falciparum-infected travellers in response to PvRMC-MSP1 IgG capture compared to just 1.1% who were high responders to capture by the recombinant PvMSP1 protein. CONCLUSIONS These results support further study of designed antigens as an approach for increasing sensitivity or broadening binding capacity to improve existing serological tools for determining population-level exposure to Plasmodium species. Including both broad-reacting and Plasmodium species-specific antigen-coated beads in an assay panel could provide a nuanced view of population-level exposure histories, an extensive IgG profile, and detailed seroestimates. A more sensitive serological tool for detection of P. vivax exposure would aid malaria elimination campaigns in co-endemic areas and regions where P. vivax is the dominant parasite.
Collapse
Affiliation(s)
- Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Balwan Singh
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Douglas Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, 69 Jesse Hill, Jr. Drive, Atlanta, SEGA, 30303, USA
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
9
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
10
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
11
|
Almeida-de-Oliveira NK, Abreu-Fernandes R, Lavigne AR, Pina-Costa A, Perce-da-Silva DDS, Catanho M, Rossi ÁD, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Exploration of Plasmodium vivax merozoite surface proteins 1 and 7 genetic diversity in Brazilian Amazon and Rio de Janeiro Atlantic Forest. INFECTION GENETICS AND EVOLUTION 2020; 86:104592. [PMID: 33059085 DOI: 10.1016/j.meegid.2020.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Plasmodium vivax merozoite surface proteins (PvMSP) 1 and 7 are considered vaccine targets. Genetic diversity knowledge is crucial to assess their potential as immunogens and to provide insights about population structure in different epidemiological contexts. Here, we investigate the variability of pvmsp-142, pvmsp-7E, and pvmsp-7F genes in 227 samples from the Brazilian Amazon (BA) and Rio de Janeiro Atlantic Forest (AF). pvmsp-142 has 63 polymorphisms - 57 nonsynonymous - generating a nucleotide diversity of π = 0.009 in AF, and π = 0.018 in BA. In pvmsp-7E, 134 polymorphisms - 103 nonsynonymous - generate the nucleotide diversity of π = 0.027 in AF, and π = 0.042 in BA. The pvmsp-7F has only two SNPs - A610G and A1054T -, with nucleotide diversity of π = 0.0004 in AF, and π = 0.0007 in BA. The haplotype diversity of pvmsp-142, pvmsp-7E, and pvmsp-7F genes is 0.997, 1.00, and 0.649, respectively. None of the pvmsp-142 or pvmsp-7E sequences are identical to the Salvador 1 strain's sequence. Conversely, most of pvmsp-7F sequences (94/48%) are identical to Sal-1. We evaluated eight B-cell epitopes in pvmsp-7E, four of them showed higher nucleotide diversity compared to pvmsp-7E's epitopes. Positive selection was detected in pvmsp-142, pvmsp-7E central region, and pvmsp-7F with Tajima's D. In pvmsp-7E, the significant nucleotide and haplotype diversities with low genetic differentiation, could be indicative of balancing selection. The genetic differentiation of pvmsp-142 (0.315) and pvmsp-7F (0.354) genes between AF and BA regions is significant, which is not the case for pvmsp-7E (0.193). We conclude that pvmsp-142 and pvmsp-7E have great genetic diversity even in AF region, an enclosure area with deficient transmission levels of P. vivax zoonotic malaria. In both Brazilian regions, pvmsp-119, pvmsp-7E, and pvmsp-7F are conserved, most likely due to their roles in parasite survival, and could be considered potential targets for a "blood-stage vaccine".
Collapse
Affiliation(s)
- Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Rebecca Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Aline Rosa Lavigne
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Anielle Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil; Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil; Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil; Laboratório de Imunologia Básica e Aplicada, Faculdade de Medicina de Petrópolis - FMP/FASE, Petrópolis, RJ, Brazil
| | - Marcos Catanho
- Laboratório de Genética Molecular de Microrganismos, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Átila Duque Rossi
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil; Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Dobrescu I, de Camargo TM, Gimenez AM, Murillo O, Amorim KNDS, Marinho CRF, Soares IS, Boscardin SB, Bargieri DY. Protective Immunity in Mice Immunized With P. vivax MSP1 19-Based Formulations and Challenged With P. berghei Expressing PvMSP1 19. Front Immunol 2020; 11:28. [PMID: 32153555 PMCID: PMC7045055 DOI: 10.3389/fimmu.2020.00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The lack of continuous in vitro cultures has been an obstacle delaying pre-clinical testing of Plasmodium vivax vaccine formulations based on known antigens. In this study, we generated a model to test available formulations based on the P. vivax MSP119 antigen. The Plasmodium berghei strains ANKA and NK65 were modified to express PvMSP119 instead of the endogenous PbMSP119. The hybrid parasites were used to challenge C57BL/6 or BALB/c mice immunized with PvMSP119-based vaccine formulations. The PvMSP119 was correctly expressed in the P. berghei hybrid mutant lines as confirmed by immunofluorescence using anti-PvMSP119 monoclonal antibodies and by Western blot. Replacement of the PbMSP119 by the PvMSP119 had no impact on asexual growth in vivo. High titers of specific antibodies to PvMSP119 were not sufficient to control initial parasitemia in the immunized mice, but late parasitemia control and a balanced inflammatory process protected these mice from dying, suggesting that an established immune response to PvMSP119 in this model can help immunity mounted later during infection.
Collapse
Affiliation(s)
- Irina Dobrescu
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tarsila Mendes de Camargo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Irene Silva Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Kale S, Yadav CP, Rao PN, Shalini S, Eapen A, Srivasatava HC, Sharma SK, Pande V, Carlton JM, Singh OP, Mallick PK. Antibody responses within two leading Plasmodium vivax vaccine candidate antigens in three geographically diverse malaria-endemic regions of India. Malar J 2019; 18:425. [PMID: 31842894 PMCID: PMC6916228 DOI: 10.1186/s12936-019-3066-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/08/2019] [Indexed: 01/28/2023] Open
Abstract
Background Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. Methods A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. Results The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. Conclusion These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.
Collapse
Affiliation(s)
- Sonal Kale
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Chander P Yadav
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pavitra N Rao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Sneh Shalini
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Alex Eapen
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Harish C Srivasatava
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Surya K Sharma
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Om P Singh
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| | - Prashant K Mallick
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| |
Collapse
|
14
|
Razzaqi M, Rasaee MJ, Paknejad M. A critical challenge in the development of antibody: Selecting the appropriate fragment of the target protein as an antigen based on various epitopes or similar structure. Mol Immunol 2019; 111:128-135. [PMID: 31054406 DOI: 10.1016/j.molimm.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/03/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
The main challenge in the development of antibody is to select the appropriate antigen particularly when a truncated protein is used for immunization or as vaccine antigen. In previous studies, fragment selection was mainly based on epitopes and less often on the structure. Fewer studies have paid attention to the prediction of the truncated protein 3D structure and retained its similarity in the native and truncated proteins. Here we used in silico analysis to select two fragments of Pyruvate Kinase M2 (PKM2), as a tumor marker. One fragment, M-tPKM2, had a shorter sequence with one epitope although the predicted 3D structure was similar to the native PKM2. The other fragment, R-tPKM2, had a longer sequence and thus more epitopes, but had a different structure from the native PKM2. Recombinant truncated proteins were expressed in E. coli and purified via affinity chromatography. Secondary structure elements in purified proteins were determined by Circular Dichroism, then they were utilized to develop antibodies in mice. Both antigens could elicit high immune response against themselves (OD450 = 3.326 ± 0.562 for M-tPKM2; OD450 = 3.562 ± 0.110 for R-tPKM2). However, significantly higher response against PKM2 was observed among the mice immunized with M-tPKM2 (p < 0.0001 by One way ANOVA followed by Tukey's post hoc comparison). Also, the monoclonal antibody produced against the M-tPKM2 could recognize the native PKM2 in the MCF7 cells. Our finding suggested that for the purpose of designing an antigen with the ability to produce a potent antibody against the target protein, it is better to select sequences which have a similar structure in truncated and native proteins, even at the cost of having shorter sequences and fewer epitopes.
Collapse
Affiliation(s)
- Mahboubeh Razzaqi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maliheh Paknejad
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
McCaffery JN, Fonseca JA, Singh B, Cabrera-Mora M, Bohannon C, Jacob J, Arévalo-Herrera M, Moreno A. A Multi-Stage Plasmodium vivax Malaria Vaccine Candidate Able to Induce Long-Lived Antibody Responses Against Blood Stage Parasites and Robust Transmission-Blocking Activity. Front Cell Infect Microbiol 2019; 9:135. [PMID: 31119106 PMCID: PMC6504793 DOI: 10.3389/fcimb.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Malaria control and interventions including long-lasting insecticide-treated nets, indoor residual spraying, and intermittent preventative treatment in pregnancy have resulted in a significant reduction in the number of Plasmodium falciparum cases. Considerable efforts have been devoted to P. falciparum vaccines development with much less to P. vivax. Transmission-blocking vaccines, which can elicit antibodies targeting Plasmodium antigens expressed during sexual stage development and interrupt transmission, offer an alternative strategy to achieve malaria control. The post-fertilization antigen P25 mediates several functions essential to ookinete survival but is poorly immunogenic in humans. Previous clinical trials targeting this antigen have suggested that conjugation to a carrier protein could improve the immunogenicity of P25. Here we report the production, and characterization of a vaccine candidate composed of a chimeric P. vivax Merozoite Surface Protein 1 (cPvMSP1) genetically fused to P. vivax P25 (Pvs25) designed to enhance CD4+ T cell responses and its assessment in a murine model. We demonstrate that antibodies elicited by immunization with this chimeric protein recognize both the erythrocytic and sexual stages and are able to block the transmission of P. vivax field isolates in direct membrane-feeding assays. These findings provide support for the continued development of multi-stage transmission blocking vaccines targeting the life-cycle stage responsible for clinical disease and the sexual-stage development accountable for disease transmission simultaneously.
Collapse
Affiliation(s)
- Jessica N. McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jairo A. Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Caitlin Bohannon
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
16
|
Gogoi D, Biswas D, Borkakoty B, Mahanta J. Exposure to Plasmodium vivax is associated with the increased expression of exhaustion markers on γδ T lymphocytes. Parasite Immunol 2018; 40:e12594. [PMID: 30276843 DOI: 10.1111/pim.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Gamma delta (γδ) T cells exhibit potent anti-Plasmodium activity but are also implicated in the immunopathology of malaria. It is currently poorly understood how γδ T cells are affected in human suffering from Plasmodium vivax infection or in symptomless individuals living in an endemic region. We examined both the percentages and expression of markers associated with immune exhaustion in γδ T cells in individuals living in a P. vivax endemic region by flow cytometry. The percentage of γδ T cells in the blood was significantly higher both in acute P. vivax-positive patients and in individuals from an endemic region in comparison with control uninfected adults. The frequency of the expression of the exhaustion markers-Tim-3, Lag-3, CTLA-4 and PD-1 was higher in γδ and total T cells from P. vivax-infected patients than in those populations from control uninfected adults. Individuals from a P. vivax endemic region showed elevated percentages of Tim-3-, Lag-3- and CTLA-4-positive γδ T cells and an increased percentage of Tim-3-positive total T cells. The phenotypic exhaustion of these cells might be a protective mechanism preventing the immunopathology associated with activated T cells and may provide a rationale for targeted manipulation of this process in diseases such as malaria.
Collapse
Affiliation(s)
- Dimpu Gogoi
- Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, 786001, India
| | - Dipankar Biswas
- Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, 786001, India
| | - Biswajyoti Borkakoty
- Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, 786001, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, 786001, India
| |
Collapse
|
17
|
Fonseca JA, McCaffery JN, Caceres J, Kashentseva E, Singh B, Dmitriev IP, Curiel DT, Moreno A. Inclusion of the murine IgGκ signal peptide increases the cellular immunogenicity of a simian adenoviral vectored Plasmodium vivax multistage vaccine. Vaccine 2018; 36:2799-2808. [PMID: 29657070 DOI: 10.1016/j.vaccine.2018.03.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cellular and humoral immune responses are both involved in protection against Plasmodium infections. The only malaria vaccine available, RTS,S, primarily induces short-lived antibodies and targets only a pre-erythrocytic stage antigen. Inclusion of erythrocytic stage targets and enhancing cellular immunogenicity are likely necessary for developing an effective second-generation malaria vaccine. Adenovirus vectors have been used to improve the immunogenicity of protein-based vaccines. However, the clinical assessment of adenoviral-vectored malaria vaccines candidates has shown the induction of robust Plasmodium-specific CD8+ but not CD4+ T cells. Signal peptides (SP) have been used to enhance the immunogenicity of DNA vaccines, but have not been tested in viral vector vaccine platforms. OBJECTIVES The objective of this study was to determine if the addition of the SP derived from the murine IgGκ light chain within a recombinant adenovirus vector encoding a multistage P. vivax vaccine candidate could improve the CD4+ T cell response. METHODS In this proof-of-concept study, we immunized CB6F1/J mice with either the recombinant simian adenovirus 36 vector containing the SP (SP-SAd36) upstream from a transgene encoding a chimeric P. vivax multistage protein or the same SAd36 vector without the SP. Mice were subsequently boosted twice with the corresponding recombinant proteins emulsified in Montanide ISA 51 VG. Immunogenicity was assessed by measurement of antibody quantity and quality, and cytokine production by T cells after the final immunization. RESULTS The SP-SAd36 immunization regimen induced significantly higher antibody avidity against the chimeric P. vivax proteins tested and higher frequencies of IFN-γ and IL-2 CD4+ and CD8+ secreting T cells, when compared to the unmodified SAd36 vector. CONCLUSIONS The addition of the murine IgGκ signal peptide significantly enhances the immunogenicity of a SAd36 vectored P. vivax multi-stage vaccine candidate in mice. The potential of this approach to improve upon existing viral vector vaccine platforms warrants further investigation.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States
| | - Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Juan Caceres
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Igor P Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States.
| |
Collapse
|
18
|
Stabilization of a chimeric malaria antigen in separation and purification through efficient inhibition of protease activity by imidazole. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Man S, Fu Y, Guan Y, Feng M, Qiao K, Li X, Gao H, Cheng X. Evaluation of a Major Surface Antigen of Babesia microti Merozoites as a Vaccine Candidate against Babesia Infection. Front Microbiol 2017; 8:2545. [PMID: 29312230 PMCID: PMC5742146 DOI: 10.3389/fmicb.2017.02545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023] Open
Abstract
Babesia species are tick-borne intraerythrocytic protozoa that cause babesiosis in humans worldwide. No vaccine has yet proven effective against Babesia infection. Surface antigens of merozoites are involved in the invasion of erythrocytes by Babesia. Surface antigens may be presented by both babesial sporozoites and merozoites and provide a general target for antibody-mediated inhibition of erythrocyte invasion. Here we evaluated a major surface antigen of B. microti merozoites, BMSA, as a potential vaccine to prevent babesiosis. Our data indicated that bmsa is transcribed during different phases, including ring form, amoeboid form, and merozoites, and that its expression is significantly increased in mature merozoites. The protein was found to be located in the membrane of B. microti and in the cytoplasm of infected erythrocytes. The immune response induced by BMSA had a significant inhibitory effect on parasite invasion of the host erythrocytes (83.3% inhibition of invasion) and parasite growth in vivo. The levels of parasitemia significantly decreased after BMSA vaccination when mice were infected with babesia parasite. Importantly, protective immunity was significantly related to the upregulation of the Th17 cytokine interleukin-17, the Th1 cytokine interleukin-12p70 and the Th2 cytokines, such as interleukin-4, -6, and -10. Ingenuity Pathway Analysis indicated that interleukin-17 facilitated the secretion of Th2 cytokines, such as interleukin-10, -4, and -6, thereby inducing a predominately Th2 protective immune response and promoting the expression a high level of special IgG1 against Babesia infection. Further, an anti-BMSA monoclonal antibody successfully protected NOD/SCID mice from a challenge with B. microti. Taken together, our results indicated that BMSA induces a protective immune response against Babesia infection and may serve as a potential vaccine.
Collapse
Affiliation(s)
- Suqin Man
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Guan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ke Qiao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueping Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongjian Gao
- Department of Electron Microscopy, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria. Molecules 2017; 22:molecules22111837. [PMID: 29104210 PMCID: PMC6150380 DOI: 10.3390/molecules22111837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 12/04/2022] Open
Abstract
Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.
Collapse
|