1
|
Wang S, Girardello M, Zhang W. Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics. J Genet Genomics 2024; 51:292-301. [PMID: 37302475 DOI: 10.1016/j.jgg.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Mountains are rich in biodiversity, and butterflies are species-rich and have a good ecological and evolutionary research foundation. This review addresses the potential and progress of studying mountain biodiversity using butterflies as a model. We discuss the uniqueness of mountain ecosystems, factors influencing the distribution of mountain butterflies, representative genetic and evolutionary models in butterfly research, and evolutionary studies of mountain biodiversity involving butterfly genetics and genomics. Finally, we demonstrate the necessity of studying mountain butterflies and propose future perspectives. This review provides insights for studying the biodiversity of mountain butterflies as well as a summary of research methods for reference.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Marco Girardello
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculdade de Ciências Agrárias e do Ambiente, Universidade dos Açores, 9700-042 Angra do Heroísmo, Terceira, Portugal
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Komata S, Yoda S, KonDo Y, Shinozaki S, Tamai K, Fujiwara H. Functional unit of supergene in female-limited Batesian mimicry of Papilio polytes. Genetics 2023; 223:iyac177. [PMID: 36454671 PMCID: PMC9910408 DOI: 10.1093/genetics/iyac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Supergenes are sets of genes and genetic elements that are inherited like a single gene and control complex adaptive traits, but their functional roles and units are poorly understood. In Papilio polytes, female-limited Batesian mimicry is thought to be regulated by a ∼130 kb inversion region (highly diversified region: HDR) containing 3 genes, UXT, U3X, and doublesex (dsx) which switches non-mimetic and mimetic types. To determine the functional unit, we here performed electroporation-mediated RNAi analyses (and further Crispr/Cas9 for UXT) of genes within and flanking the HDR in pupal hindwings. We first clarified that non-mimetic dsx-h had a function to form the non-mimetic trait in female and only dsx-H isoform 3 had an important function in the formation of mimetic traits. Next, we found that UXT was involved in making mimetic-type pale-yellow spots and adjacent gene sir2 in making red spots in hindwings, both of which refine more elaborate mimicry. Furthermore, downstream gene networks of dsx, U3X, and UXT screened by RNA sequencing showed that U3X upregulated dsx-H expression and repressed UXT expression. These findings demonstrate that a set of multiple genes, not only inside but also flanking HDR, can function as supergene members, which extends the definition of supergene unit than we considered before. Also, our results indicate that dsx functions as the switching gene and some other genes such as UXT and sir2 within the supergene unit work as the modifier gene.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinichi Yoda
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yûsuke KonDo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Souta Shinozaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kouki Tamai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
3
|
Sheikh SI, VanKuren NW, Kronforst MR. Butterfly mimicry rings run in circles. Proc Natl Acad Sci U S A 2023; 120:e2220680120. [PMID: 36649418 PMCID: PMC9942904 DOI: 10.1073/pnas.2220680120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Sofia I. Sheikh
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL60637
| | | | - Marcus R. Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL60637
| |
Collapse
|
4
|
Komata S, Kajitani R, Itoh T, Fujiwara H. Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic Papilio butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210198. [PMID: 35694751 PMCID: PMC9189499 DOI: 10.1098/rstb.2021.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
It has long been suggested that dimorphic female-limited Batesian mimicry of two closely related Papilio butterflies, Papilio memnon and Papilio polytes, is controlled by supergenes. Whole-genome sequencing, genome-wide association studies and functional analyses have recently identified mimicry supergenes, including the doublesex (dsx) gene. Although supergenes of both the species are composed of highly divergent regions between mimetic and non-mimetic alleles and are located at the same chromosomal locus, they show critical differences in genomic architecture, particularly with or without an inversion: P. polytes has an inversion, but P. memnon does not. This review introduces and compares the detailed genomic structure of mimicry supergenes in two Papilio species, including gene composition, repetitive sequence composition, breakpoint/boundary site structure, chromosomal inversion and linkage disequilibrium. Expression patterns and functional analyses of the respective genes within or flanking the supergene suggest that dsx and other genes are involved in mimetic traits. In addition, structural comparison of the corresponding region for the mimicry supergene among further Papilio species suggests three scenarios for the evolution of the mimicry supergene between the two Papilio species. The structural features revealed in the Papilio mimicry supergene provide insight into the formation, maintenance and evolution of supergenes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Komata S, Lin CP, Fujiwara H. doublesex Controls Both Hindwing and Abdominal Mimicry Traits in the Female-Limited Batesian Mimicry of Papilio memnon. FRONTIERS IN INSECT SCIENCE 2022; 2:929518. [PMID: 38468762 PMCID: PMC10926503 DOI: 10.3389/finsc.2022.929518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 03/13/2024]
Abstract
Papilio butterflies are known to possess female-limited Batesian mimicry polymorphisms. In Papilio memnon, females have mimetic and non-mimetic forms, whereas males are monomorphic and non-mimetic. Mimetic females are characterized by color patterns and tails in the hindwing and yellow abdomens. Recently, an analysis of whole-genome sequences has shown that an approximately 160 kb region of chromosome 25 is responsible for mimicry and has high diversity between mimetic (A) and non-mimetic (a) alleles (highly diversified region: HDR). The HDR includes three genes, UXT, doublesex (dsx), and Nach-like, but the functions of these genes are unknown. Here, we investigated the function of dsx, a gene involved in sexual differentiation, which is expected to be functionally important for hindwing and abdominal mimetic traits in P. memnon. Expression analysis by reverse transcription quantitative PCR (RT-qPCR) and RNA sequencing showed that mimetic dsx (dsx-A) was highly expressed in the hindwings in the early pupal stage. In the abdomen, both dsx-A and dsx-a were highly expressed during the early pupal stage. When dsx was knocked down using small interfering RNAs (siRNAs) designed in the common region of dsx-A and dsx-a, a male-like pattern appeared on the hindwings of mimetic and non-mimetic females. Similarly, when dsx was knocked down in the abdomen, the yellow scales characteristic of mimetic females changed to black. Furthermore, when dsx-a was specifically knocked down, the color pattern of the hindwings changed, as in the case of dsx knockdown in non-mimetic females but not mimetic females. These results suggest that dsx-a is involved in color pattern formation on the hindwings of non-mimetic females, whereas dsx-A is involved in hindwing and abdominal mimetic traits. dsx was involved in abdominal and hindwing mimetic traits, but dsx expression patterns in the hindwing and abdomen were different, suggesting that different regulatory mechanisms may exist. Our study is the first to show that the same gene (dsx) regulates both the hindwing and abdominal mimetic traits. This is the first functional analysis of abdominal mimicry in butterflies.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
6
|
Evolution of sexual development and sexual dimorphism in insects. Curr Opin Genet Dev 2021; 69:129-139. [PMID: 33848958 DOI: 10.1016/j.gde.2021.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Most animal species consist of two distinct sexes. At the morphological, physiological, and behavioral levels the differences between males and females are numerous and dramatic, yet at the genomic level they are often slight or absent. This disconnect is overcome because simple genetic differences or environmental signals are able to direct the sex-specific expression of a shared genome. A canonical picture of how this process works in insects emerged from decades of work on Drosophila. But recent years have seen an explosion of molecular-genetic and developmental work on a broad range of insects. Drawing these studies together, we describe the evolution of sexual dimorphism from a comparative perspective and argue that insect sex determination and differentiation systems are composites of rapidly evolving and highly conserved elements.
Collapse
|
7
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
8
|
Zhang X, Rayner JG, Blaxter M, Bailey NW. Rapid parallel adaptation despite gene flow in silent crickets. Nat Commun 2021; 12:50. [PMID: 33397914 PMCID: PMC7782688 DOI: 10.1038/s41467-020-20263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gene flow is predicted to impede parallel adaptation via de novo mutation, because it can introduce pre-existing adaptive alleles from population to population. We test this using Hawaiian crickets (Teleogryllus oceanicus) in which 'flatwing' males that lack sound-producing wing structures recently arose and spread under selection from an acoustically-orienting parasitoid. Morphometric and genetic comparisons identify distinct flatwing phenotypes in populations on three islands, localized to different loci. Nevertheless, we detect strong, recent and ongoing gene flow among the populations. Using genome scans and gene expression analysis we find that parallel evolution of flatwing on different islands is associated with shared genomic hotspots of adaptation that contain the gene doublesex, but the form of selection differs among islands and corresponds to known flatwing demographics in the wild. We thus show how parallel adaptation can occur on contemporary timescales despite gene flow, indicating that it could be less constrained than previously appreciated.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.
| | - Jack G Rayner
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Nathan W Bailey
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.
| |
Collapse
|
9
|
Sato Y, Tsurui‐Sato K, Katoh M, Kimura R, Tatsuta H, Tsuji K. Population genetic structure and evolution of Batesian mimicry in Papilio polytes from the Ryukyu Islands, Japan, analyzed by genotyping-by-sequencing. Ecol Evol 2021; 11:872-886. [PMID: 33520172 PMCID: PMC7820160 DOI: 10.1002/ece3.7092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
Batesian mimicry is a striking example of Darwinian evolution, in which a mimetic species resembles toxic or unpalatable model species, thereby receiving protection from predators. In some species exhibiting Batesian mimicry, nonmimetic individuals coexist as polymorphism in the same population despite the benefits of mimicry. In a previous study, we proposed that the abundance of mimics is limited by that of the models, leading to polymorphic Batesian mimicry in the swallowtail butterfly, Papilio polytes, on the Ryukyu Islands in Japan. We found that their mimic ratios (MRs), which varied among the Islands, were explained by the model abundance of each habitat, rather than isolation by distance or phylogenetic constraint based on the mitochondrial DNA (mtDNA) analysis. In the present study, this possibility was reexamined based on hundreds of nuclear single nucleotide polymorphisms (SNPs) of 93 P. polytes individuals from five Islands of the Ryukyus. We found that the population genetic and phylogenetic structures of P. polytes largely corresponded to the geographic arrangement of the habitat Islands, and the genetic distances among island populations show significant correlation with the geographic distances, which was not evident by the mtDNA-based analysis. A partial Mantel test controlling for the present SNP-based genetic distances revealed that the MRs of P. polytes were strongly correlated with the model abundance of each island, implying that negative frequency-dependent selection interacting with model species shaped and maintained the mimetic polymorphism. Taken together, our results support the possibility that predation pressure, not isolation by distance or other neutral factors, is a major driving force of evolution of the Batesian mimicry in P. polytes from the Ryukyus.
Collapse
Affiliation(s)
- Yukuto Sato
- Center for Strategic Research ProjectUniversity of the RyukyusOkinawaJapan
| | - Kaori Tsurui‐Sato
- Center for Strategic Research ProjectUniversity of the RyukyusOkinawaJapan
| | - Mitsuho Katoh
- Department of Agro‐Environmental SciencesFaculty of AgricultureUniversity of the RyukyusOkinawaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Ryosuke Kimura
- Department of Human Biology and AnatomyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Haruki Tatsuta
- Department of Agro‐Environmental SciencesFaculty of AgricultureUniversity of the RyukyusOkinawaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Kazuki Tsuji
- Department of Agro‐Environmental SciencesFaculty of AgricultureUniversity of the RyukyusOkinawaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
10
|
Katoh M, Tatsuta H, Tsuji K. Mimicry genes reduce pre-adult survival rate in Papilio polytes: A possible new mechanism for maintaining female-limited polymorphism in Batesian mimicry. J Evol Biol 2020; 33:1487-1494. [PMID: 32841468 DOI: 10.1111/jeb.13686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Batesian mimicry, in which harmless organisms resemble unpalatable or harmful species, is a well-studied adaptation for predation avoidance. The females of some Batesian mimic species comprise mimetic and nonmimetic individuals. Mimetic females of such polymorphic species clearly have a selective advantage due to decreased predation pressure, but the selective forces that maintain nonmimetic females in a population remain unclear. In the swallowtail butterfly, Papilio polytes, female polymorphism is controlled by the H (mimetic) and h (nonmimetic) alleles at a single autosomal locus. Here, we examined whether the dominant H allele has a deleterious effect on the pre-adult survival rate (egg-to-adult emergence rate). We repeated an assortative mating-like treatment-that is breeding of males and females whose mothers had the same phenotype (mimetic or nonmimetic)-for three consecutive generations, while avoiding inbreeding. Results showed that pre-adult survival rate decreased over generations only in lines derived from mothers with the mimetic phenotype (hereafter, mimetic-assorted lines). This lowered survival was due to an increased mortality at the final instar larval stage and the pupal stages. Interestingly, the pre-adult mortality in the mimetic-assorted lines seemed to be associated with a male-biased sex ratio at adult emergence. These results suggest that the dominant H allele displays a mildly deleterious effect that is expressed more strongly in females and homozygous individuals than in heterozygous individuals. We propose that this cost of mimicry in larval and pupal stages contributes to the maintenance of female-limited polymorphism in P. polytes.
Collapse
Affiliation(s)
- Mitsuho Katoh
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Haruki Tatsuta
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Shi MR, Yu H, Xu J. The complete mitochondrial genome of the Papilio memno ( Lepidoptera:Papilionidae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1768955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| |
Collapse
|
12
|
Palmer DH, Kronforst MR. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat Commun 2020; 11:6. [PMID: 31900419 PMCID: PMC6941989 DOI: 10.1038/s41467-019-13859-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry in Papilio swallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene, doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option of dsx as a mimicry locus, and that evolutionary turnover of dsx alleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages.
Collapse
Affiliation(s)
- Daniela H Palmer
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA. .,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA. .,Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Marcus R Kronforst
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
13
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
14
|
Komata S, Lin CP, Sota T. Do juvenile developmental and adult body characteristics differ among genotypes at the doublesex locus that controls female-limited Batesian mimicry polymorphism in Papilio memnon?: A test for the "cost of mimicry" hypothesis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:1-6. [PMID: 29408297 DOI: 10.1016/j.jinsphys.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/07/2023]
Abstract
Female-limited Batesian mimicry may have evolved because of stronger predation pressure on females than on males, but some physiological costs of mimicry may also hinder the evolution of mimicry in males. In Papilio memnon, which possesses a female-limited Batesian mimicry polymorphism, two alleles at the doublesex (dsx) locus strictly control female phenotypes. To examine whether there are physiological costs associated with mimetic genotypes in the juvenile stage, we compered mortality, juvenile growth and development, and the resultant adult characteristics among three dsx genotypes (HH, Hh, hh) at a constant temperature (25 °C) and two differing day lengths (LD 14:10 and LD 12:12; the latter might induce pupal diapause) by crossing individuals heterozygous (Hh) for the dsx allele. All pupae emerged directly without diapause irrespective of day length. The genotype frequencies of the emerged individuals were consistent with the expected 1:2:1 ratio of HH:Hh:hh. The sex ratio was significantly male-biased in one of two families, but not in the other. We found no effect of genotype on any developmental or adult characteristic, although there were sex differences in most traits. The larval development time was longer and growth rate higher in females than in males; pupal weight, forewing length, and total dry mass of the thorax and abdomen were greater in females, whereas the thoracic mass/abdominal mass ratio was greater in males. We also found that the growth rate was higher and pupal period longer with a short day than with a long day. Overall, we found no evidence for physiological costs associated with the mimetic genotypes. However, it is too early to conclude that no physiological cost of mimicry affects the evolution and maintenance of this female-limited Batesian mimicry polymorphism because we have not studied the adults of different genotypes.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Iijima T, Kajitani R, Komata S, Lin CP, Sota T, Itoh T, Fujiwara H. Parallel evolution of Batesian mimicry supergene in two Papilio butterflies, P. polytes and P. memnon. SCIENCE ADVANCES 2018; 4:eaao5416. [PMID: 29675466 PMCID: PMC5906075 DOI: 10.1126/sciadv.aao5416] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/06/2018] [Indexed: 05/06/2023]
Abstract
Batesian mimicry protects animals from predators when mimics resemble distasteful models. The female-limited Batesian mimicry in Papilio butterflies is controlled by a supergene locus switching mimetic and nonmimetic forms. In Papilio polytes, recent studies revealed that a highly diversified region (HDR) containing doublesex (dsx-HDR) constitutes the supergene with dimorphic alleles and is likely maintained by a chromosomal inversion. In the closely related Papilio memnon, which exhibits a similar mimicry polymorphism, we performed whole-genome sequence analyses in 11 butterflies, which revealed a nearly identical dsx-HDR containing three genes (dsx, Nach-like, and UXT) with dimorphic sequences strictly associated with the mimetic/nonmimetic phenotypes. In addition, expression of these genes, except that of Nach-like in female hind wings, showed differences correlated with phenotype. The dimorphic dsx-HDR in P. memnon is maintained without a chromosomal inversion, suggesting that a separate mechanism causes and maintains allelic divergence in these genes. More abundant accumulation of transposable elements and repetitive sequences in the dsx-HDR than in other genomic regions may contribute to the suppression of chromosomal recombination. Gene trees for Dsx, Nach-like, and UXT indicated that mimetic alleles evolved independently in the two Papilio species. These results suggest that the genomic region involving the above three genes has repeatedly diverged so that two allelic sequences of this region function as developmental switches for mimicry polymorphism in the two Papilio species. The supergene structures revealed here suggest that independent evolutionary processes with different genetic mechanisms have led to parallel evolution of similar female-limited polymorphisms underlying Batesian mimicry in Papilio butterflies.
Collapse
Affiliation(s)
- Takuro Iijima
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
| | - Rei Kajitani
- Department of Biological Information, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Shinya Komata
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takehiko Itoh
- Department of Biological Information, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
16
|
Rice G, Barmina O, Hu K, Kopp A. Evolving doublesex expression correlates with the origin and diversification of male sexual ornaments in the Drosophila immigrans species group. Evol Dev 2018; 20:78-88. [PMID: 29372584 DOI: 10.1111/ede.12249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Male ornaments and other sex-specific traits present some of the most dramatic examples of evolutionary innovations. Comparative studies of similar but independently evolved traits are particularly important for identifying repeated patterns in the evolution of these traits. Male-specific modifications of the front legs have evolved repeatedly in Drosophilidae and other Diptera. The best understood of these novel structures is the sex comb of Drosophila melanogaster and its close relatives. Here, we examine the evolution of another male foreleg modification, the sex brush, found in the distantly related Drosophila immigrans species group. Similar to the sex comb, we find that the origin of the sex brush correlates with novel, spatially restricted expression of the doublesex (dsx) transcription factor, the primary effector of the Drosophila sex determination pathway. The diversity of Dsx expression patterns in the immigrans species group closely reflects the differences in the presence, position, and size of the sex brush. Together with previous work on sex comb evolution, these observations suggest that tissue-specific activation of dsx expression may be a common mechanism responsible for the evolution of sexual dimorphism and particularly for the origin of novel male-specific ornaments.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Evolution and Ecology, University of California-Davis, Davis, California.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Kevin Hu
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| |
Collapse
|
17
|
Komata S, Lin CP, Sota T. Temporal dynamics of the mimetic allele frequency at the doublesex locus, which controls polymorphic Batesian mimicry in Papilio memnon butterflies. Sci Rep 2017; 7:12926. [PMID: 29018221 PMCID: PMC5635110 DOI: 10.1038/s41598-017-13419-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Tracking allele frequencies is essential for understanding how polymorphisms of adaptive traits are maintained. In Papilio memnon butterflies, which exhibit a female-limited Batesian mimicry polymorphism (wing-pattern polymorphism), two alleles at the doublesex (dsx) locus correspond to mimetic and non-mimetic forms in females; males carry both dsx alleles but display only the non-mimetic form. This polymorphism is thought to be maintained by a negative frequency-dependent selection. By tracking dsx allele frequencies in both sexes at a Taiwanese site over four years, we found that the mimetic allele persists at intermediate frequencies even when the unpalatable model papilionid butterflies (Pachliopta and Atrophaneura species) were very rare or absent. The rates of male mate choice did not differ between the two female forms; neither did insemination number nor age composition, suggesting equivalent reproductive performance of the two forms over time. Our results characterised the temporal dynamics of the mimetic allele frequency in the field for the first time and give insights into underlying processes involved in the persistence of the female-limited Batesian mimicry polymorphism.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28913870 DOI: 10.1002/wdev.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
Abstract
Butterfly wing patterns are key adaptations that are controlled by remarkable developmental and genetic mechanisms that facilitate rapid evolutionary change. With swift advancements in the fields of genomics and genetic manipulations, identifying the regulators of wing development and mimetic wing patterns has become feasible even in nonmodel organisms such as butterflies. Recent mapping and gene expression studies have identified single switch loci of major effects such as transcription factors and supergenes as the main drivers of adaptive evolution of mimetic and polymorphic butterfly wing patterns. We highlight several of these examples, with emphasis on doublesex, optix, WntA and other dynamic, yet essential, master regulators that control critical color variation and sex-specific traits. Co-option emerges as a predominant theme, where typically embryonic and other early-stage developmental genes and networks have been rewired to regulate polymorphic and sex-limited mimetic wing patterns in iconic butterfly adaptations. Drawing comparisons from our knowledge of wing development in Drosophila, we illustrate the functional space of genes that have been recruited to regulate butterfly wing patterns. We also propose a developmental pathway that potentially results in dorsoventral mismatch in butterfly wing patterns. Such dorsoventrally mismatched color patterns modulate signal components of butterfly wings that are used in intra- and inter-specific communication. Recent advances-fuelled by RNAi-mediated knockdowns and CRISPR/Cas9-based genomic edits-in the developmental genetics of butterfly wing patterns, and the underlying biological diversity and complexity of wing coloration, are pushing butterflies as an emerging model system in ecological genetics and evolutionary developmental biology. WIREs Dev Biol 2018, 7:e291. doi: 10.1002/wdev.291 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties.
Collapse
Affiliation(s)
| | - Saurav Baral
- National Centre for Biological Sciences, Bengaluru, India
| | - A Gandhimathi
- National Centre for Biological Sciences, Bengaluru, India
| | | | | |
Collapse
|
19
|
Llaurens V, Whibley A, Joron M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol 2017; 26:2430-2448. [PMID: 28173627 DOI: 10.1111/mec.14051] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
Abstract
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems.
Collapse
Affiliation(s)
- Violaine Llaurens
- Institut de Systématique Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle - CP50, 45 rue Buffon, 75005, Paris, France
| | - Annabel Whibley
- Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS, Université de Montpellier, Université Paul Valéry Montpellier, EPHE), 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|
20
|
Timmermans MJTN, Thompson MJ, Collins S, Vogler AP. Independent evolution of sexual dimorphism and female-limited mimicry in swallowtail butterflies (Papilio dardanus and Papilio phorcas). Mol Ecol 2017; 26:1273-1284. [PMID: 28100020 DOI: 10.1111/mec.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 11/29/2022]
Abstract
Several species of swallowtail butterflies (genus Papilio) are Batesian mimics that express multiple mimetic female forms, while the males are monomorphic and nonmimetic. The evolution of such sex-limited mimicry may involve sexual dimorphism arising first and mimicry subsequently. Such a stepwise scenario through a nonmimetic, sexually dimorphic stage has been proposed for two closely related sexually dimorphic species: Papilio phorcas, a nonmimetic species with two female forms, and Papilio dardanus, a female-limited polymorphic mimetic species. Their close relationship indicates that female-limited polymorphism could be a shared derived character of the two species. Here, we present a phylogenomic analysis of the dardanus group using 3964 nuclear loci and whole mitochondrial genomes, showing that they are not sister species and thus that the sexually dimorphic state has arisen independently in the two species. Nonhomology of the female polymorphism in both species is supported by population genetic analysis of engrailed, the presumed mimicry switch locus in P. dardanus. McDonald-Kreitman tests performed on SNPs in engrailed showed the signature of balancing selection in a polymorphic population of P. dardanus, but not in monomorphic populations, nor in the nonmimetic P. phorcas. Hence, the wing polymorphism does not balance polymorphisms in engrailed in P. phorcas. Equally, unlike in P. dardanus, none of the SNPs in P. phorcas engrailed were associated with either female morph. We conclude that sexual dimorphism due to female polymorphism evolved independently in both species from monomorphic, nonmimetic states. While sexual selection may drive male-female dimorphism in nonmimetic species, in mimetic Papilios, natural selection for protection from predators in females is an alternative route to sexual dimorphism.
Collapse
Affiliation(s)
- M J T N Timmermans
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - M J Thompson
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK
| | - S Collins
- ABRI, PO Box 14308, Westlands, 0800, Nairobi, Kenya
| | - A P Vogler
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| |
Collapse
|