1
|
Novel Arginine- and Proline-Rich Candidacidal Peptides Obtained through a Bioinformatic Approach. Antibiotics (Basel) 2023; 12:antibiotics12030472. [PMID: 36978339 PMCID: PMC10044544 DOI: 10.3390/antibiotics12030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial resistance is a major public health concern worldwide. Albeit to a lesser extent than bacteria, fungi are also becoming increasingly resistant to antifungal drugs. Moreover, due to the small number of antifungal classes, therapy options are limited, complicating the clinical management of mycoses. In this view, antimicrobial peptides (AMPs) are a potential alternative to conventional drugs. Among these, Proline-rich antimicrobial peptides (PrAMPs), almost exclusively of animal origins, are of particular interest due to their peculiar mode of action. In this study, a search for new arginine- and proline-rich peptides from plants has been carried out with a bioinformatic approach by sequence alignment and antimicrobial prediction tools. Two peptide candidates were tested against planktonic cells and biofilms of Candida albicans and Candida glabrata strains, including resistant isolates. These peptides showed similar potent activity, with half-maximal effective concentration values in the micromolar range. In addition, some structural and functional features, revealing peculiar mechanistic behaviors, were investigated.
Collapse
|
2
|
Güzel E, Acar Çevik U, Evren AE, Bostancı HE, Gül ÜD, Kayış U, Özkay Y, Kaplancıklı ZA. Synthesis of Benzimidazole-1,2,4-triazole Derivatives as Potential Antifungal Agents Targeting 14α-Demethylase. ACS OMEGA 2023; 8:4369-4384. [PMID: 36743066 PMCID: PMC9893751 DOI: 10.1021/acsomega.2c07755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Invasive fungal infections (IFIs) are increasing as major infectious diseases around the world, and the limited efficacy of existing medications has resulted in substantial morbidity and death in patients due to the lack of effective antifungal agents and serious drug resistance. In this study, a series of benzimidazole-1,2,4-triazole derivatives (6a-6l) were synthesized and characterized by 1H NMR, 13C NMR, and HR-MS spectral analysis. All the target compounds were screened for their in vitro antifungal activity against four fungal strains, namely, C. albicans, C. glabrata, C. krusei, and C. parapsilopsis. The synthesized compounds exhibited significant antifungal potential, especially against C. glabrata. Three compounds (6b, 6i, and 6j) showed higher antifungal activity with their MIC values (0.97 μg/mL) compared with voriconazole and fluconazole. Molecular docking provided a possible binding mode of compounds 6b, 6i, and 6j in the 14α-demethylase active site. Our studies suggested that the benzimidazole-1,2,4-triazole derivatives can be used as a new fungicidal lead targeting 14α-demethylase for further structural optimization. In addition, their effects on the L929 cell line were also investigated to evaluate the cytotoxic effects of the compounds. SEM analyses were performed to examine the effects of compounds 6a, 6i, and 6j on C. glabrata cells under in vivo experimental conditions.
Collapse
Affiliation(s)
- Emir Güzel
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010 Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Asaf Evrim Evren
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11000 Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Sivas
Cumhuriyet University, Sivas 58140, Turkey
| | - Ülküye Dudu Gül
- Department
of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Uğur Kayış
- Pazaryeri
Vocational School, Program of Pharmacy Services, Bilecik Şey Edebali University, 11230 Bilecik, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
3
|
In Vitro Antifungal Activity of LL-37 Analogue Peptides against Candida spp. J Fungi (Basel) 2022; 8:jof8111173. [PMID: 36354940 PMCID: PMC9694450 DOI: 10.3390/jof8111173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal infections have increased in recent decades with considerable morbidity and mortality, mainly in immunosuppressed or admitted-to-the-ICU patients. The fungal resistance to conventional antifungal treatments has become a public health problem, especially with Candida that presents resistance to several antifungals. Therefore, generating new alternatives of antifungal therapy is fundamental. One of these possibilities is the use of antimicrobial peptides, such as LL-37, which acts on the disruption of the microorganism membrane and promotes immunomodulatory effects in the host. In this study, we evaluated the in vitro antifungal activity of the LL-37 analogue peptides (AC-1, LL37-1, AC-2, and D) against different Candida spp. and clinical isolates obtained from patients with vulvovaginal candidiasis. Our results suggest that the peptides with the best ranges of MICs were LL37-1 and AC-2 (0.07 µM) against the strains studied. This inhibitory effect was confirmed by analyzing the yeast growth curves that evidenced a significant decrease in the fungal growth after exposure to LL-37 peptides. By the XTT technique we observed a significant reduction in the biofilm formation process when compared to yeasts untreated with the analogue peptides. In conclusion, we suggest that LL-37 analogue peptides may play an important antimicrobial role against Candida spp.
Collapse
|
4
|
In Silico Predicted Antifungal Peptides: In Vitro and In Vivo Anti- Candida Activity. J Fungi (Basel) 2021; 7:jof7060439. [PMID: 34072802 PMCID: PMC8227935 DOI: 10.3390/jof7060439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.
Collapse
|
5
|
Ciociola T, Pertinhez TA, De Simone T, Magliani W, Ferrari E, Belletti S, D’Adda T, Conti S, Giovati L. In Vitro and In Vivo Anti- Candida Activity and Structural Analysis of Killer Peptide (KP)-Derivatives. J Fungi (Basel) 2021; 7:129. [PMID: 33578728 PMCID: PMC7916522 DOI: 10.3390/jof7020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
The previously described decapeptide AKVTMTCSAS (killer peptide, KP), derived from the variable region of a recombinant yeast killer toxin-like anti-idiotypic antibody, proved to exert a variety of antimicrobial, antiviral, and immunomodulatory activities. It also showed a peculiar self-assembly ability, likely responsible for the therapeutic effect in animal models of systemic and mucosal candidiasis. The present study analyzed the biological and structural properties of peptides derived from KP by substitution or deletion of the first residue, leaving unchanged the remaining amino acids. The investigated peptides proved to exert differential in vitro and/or in vivo anti-Candida activity without showing toxic effects on mammalian cells. The change of the first residue in KP amino acidic sequence affected the conformation of the resulting peptides in solution, as assessed by circular dichroism spectroscopy. KP-derivatives, except one, were able to induce apoptosis in yeast cells, like KP itself. ROS production and changes in mitochondrial transmembrane potential were also observed. Confocal and transmission electron microscopy studies allowed to establish that selected peptides could penetrate within C. albicans cells and cause gross morphological alterations. Overall, the physical and chemical properties of the first residue were found to be important for peptide conformation, candidacidal activity and possible mechanism of action. Small antimicrobial peptides could be exploited for the development of a new generation of antifungal drugs, given their relative low cost and ease of production as well as the possibility of devising novel delivery systems.
Collapse
Affiliation(s)
- Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Tiziano De Simone
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Tiziana D’Adda
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (T.A.P.); (T.D.S.); (W.M.); (E.F.); (S.B.); (T.D.); (L.G.)
| |
Collapse
|
6
|
Ciociola T, Giovati L, Conti S, Magliani W. Anti-Infective Antibody-Derived Peptides Active against Endogenous and Exogenous Fungi. Microorganisms 2021; 9:microorganisms9010143. [PMID: 33435157 PMCID: PMC7827253 DOI: 10.3390/microorganisms9010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Mycoses still represent relevant opportunistic infections worldwide, although overshadowed in recent years by other severe and more widespread infections. Moreover, deep-seated mycoses are often accompanied by unacceptably high mortality rates. Etiologic agents include endogenous components of the mycobiota, Candida and Malassezia species above all, and exogenous species, both yeasts and filamentous fungi. Old and new fungal pathogens are increasingly characterized by resistance to the existing antifungal agents, making imperative the search for effective and safe new therapeutics. Among the candidate molecules proposed in recent decades, synthetic peptides derived from the complementarity determining and constant regions of diverse antibodies (Abs), as well as the translated products of Ab-encoding genes, have proved of considerable interest. Their anti-infective activities, regardless of the specificity and isotype of the originating Ab, will be briefly presented and discussed in the light of their different mechanisms of action. Intriguing suggestions on the possible function of Abs after their half-life will be presented, following the recent detection, in human serum, of an antimicrobial Ab-derived peptide. Overall, Abs could represent a source of biologically active, highly flexible peptides, devoid of detectable toxicity, which can be easily synthesized and manipulated to be used, alone or in association with already available drugs, for new anti-infective strategies.
Collapse
|
7
|
Ciociola T, Zanello PP, D’Adda T, Galati S, Conti S, Magliani W, Giovati L. A Peptide Found in Human Serum, Derived from the C-Terminus of Albumin, Shows Antifungal Activity In Vitro and In Vivo. Microorganisms 2020; 8:E1627. [PMID: 33096923 PMCID: PMC7588913 DOI: 10.3390/microorganisms8101627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023] Open
Abstract
The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597-609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.
Collapse
Affiliation(s)
- Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Pier Paolo Zanello
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Tiziana D’Adda
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| |
Collapse
|
8
|
Muñoz JE, Rossi DCP, Jabes DL, Barbosa DA, Cunha FFM, Nunes LR, Arruda DC, Pelleschi Taborda C. In Vitro and In Vivo Inhibitory Activity of Limonene against Different Isolates of Candida spp. J Fungi (Basel) 2020; 6:E183. [PMID: 32971732 PMCID: PMC7559214 DOI: 10.3390/jof6030183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Commensal yeast from the genus Candida is part of the healthy human microbiota. In some cases, Candida spp. dysbiosis can result in candidiasis, the symptoms of which may vary from mild localized rashes to severe disseminated infections. The most prevalent treatments against candidiasis involve fluconazole, itraconazole, miconazole, and caspofungin. Moreover, amphotericin B associated with prolonged azole administration is utilized to control severe cases. Currently, numerous guidelines recommend echinocandins to treat invasive candidiasis. However, resistance to these antifungal drugs has increased dramatically over recent years. Considering this situation, new therapeutic alternatives should be studied to control candidiasis, which has become a major medical concern. Limonene belongs to the group of terpene molecules, known for their pharmacological properties. In this study, we evaluated in vitro the limonene concentration capable of inhibiting the growth of yeast from the genus Candida susceptible or resistant to antifungal drugs and its capacity to induce fungal damage. In addition, intravaginal fungal infection assays using a murine model infected by Candida albicans were carried out and the fungal burden, histopathology, and scanning electron microscopy were evaluated. All of our results suggest that limonene may play a protective role against the infection process by yeast from the genus Candida.
Collapse
Affiliation(s)
- Julián E. Muñoz
- Studies in Translational Microbiology and Emerging Diseases Research Group (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C 111221, Colombia;
| | - Diego C. P. Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-060, Brazil;
| | - Daniela L. Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - David Aciole Barbosa
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - Fernanda F. M. Cunha
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - Luiz R. Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09210-580, Brazil;
| | - Denise C. Arruda
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes-SP 08780-911, Brazil; (D.L.J.); (D.A.B.); (F.F.M.C.); (D.C.A.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-060, Brazil;
- Laboratory of Medical Mycology, Institute of Tropical Medicine of São Paulo-LIM53/Medical School, University of São Paulo (USP), São Paulo 05403-000, Brazil
| |
Collapse
|
9
|
do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, da Glória da Silva M, Eaton P, de Souza de Almeida Leite JR, Nicola AM, Albuquerque P, Silva-Pereira I. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep 2020; 10:10327. [PMID: 32587287 PMCID: PMC7316759 DOI: 10.1038/s41598-020-67041-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Calliandra de Souza Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | - Jessica Maria Teles Souza
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Wanessa Felix Cabral
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Maria da Glória da Silva
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | | | | | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
10
|
Sala A, Ardizzoni A, Ciociola T, Magliani W, Conti S, Blasi E, Cermelli C. Antiviral Activity of Synthetic Peptides Derived from Physiological Proteins. Intervirology 2019; 61:166-173. [PMID: 30654366 DOI: 10.1159/000494354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS New antivirals are needed to supplement or replace currently used drugs. The aim of this study was to evaluate the antiviral activity of synthetic peptides derived from physiological proteins. METHODS Vero cell monolayers were infected with herpes simplex virus 1, vesicular stomatitis virus, adenovirus, and coxsackievirus B5 strains in the presence of different concentrations of the selected peptides and viral yield was determined by plaque reduction assays to evaluate the antiviral activity of the peptides. Virucidal activity was evaluated by determining the residual infectivity of viral suspensions treated for 1 h with the peptides at the same concentrations as in the viral yield assays. RESULTS Among the investigated peptides, the killer peptide proved to exert a considerable antiviral activity against herpes simplex virus, attributable to a direct effect on virus particles, while its derivative K10S showed to be effective against the four investigated virus strains only at the highest concentration tested, yet, the inhibitory effects were only partial. CONCLUSION Overall, initial evidence is provided on the antiviral activity of several peptides, as well as of their derivatives. Further investigation is warranted to ascertain the mechanism of action in order to develop new potential antiviral drugs.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisabetta Blasi
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Cermelli
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy,
| |
Collapse
|
11
|
Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M, Cabras T. Cryptides: latent peptides everywhere. Crit Rev Biochem Mol Biol 2018; 53:246-263. [PMID: 29564928 DOI: 10.1080/10409238.2018.1447543] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Proteomic surveys with top-down platforms are today revealing thousands of naturally occurring fragments of bigger proteins. Some of them have not functional meaning because they derive from pathways responsible for protein degradation, but many have specific functions, often completely different from that one of the parent proteins. These peptides encrypted in the protein sequence are nowadays called cryptides. They are frequent in the animal and plant kingdoms and represent a new interesting -omic field of investigation. To point out how much widespread is their presence, we describe here the most studied cryptides from very common sources such as serum albumin, immunoglobulins, hemoglobin, and from saliva and milk proteins. Given its vastness, it is unfeasible to cover the topic exhaustively, therefore only several selected examples of cryptides from other sources are thereafter reported. Demanding is the development of new -omic platforms for the functional screening of new cryptides, which could provide suggestion for peptides and peptido-mimetics with variegate fields of application.
Collapse
Affiliation(s)
- Federica Iavarone
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy
| | - Claudia Desiderio
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Alberto Vitali
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Irene Messana
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Claudia Martelli
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy
| | - Massimo Castagnola
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy.,b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Tiziana Cabras
- c Dipartimento di Scienze della Vita e dell'Ambiente , Università di Cagliari , Cagliari , Italy
| |
Collapse
|
12
|
Polonelli L, Ciociola T, Sperindè M, Giovati L, D'Adda T, Galati S, Travassos LR, Magliani W, Conti S. Fungicidal activity of peptides encoded by immunoglobulin genes. Sci Rep 2017; 7:10896. [PMID: 28883642 PMCID: PMC5589769 DOI: 10.1038/s41598-017-11396-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activities. Synthetic peptides representing the translated products of J lambda and J heavy genes proved to act in vitro against pathogenic fungi, entering yeast cells and causing their death, and exerted a therapeutic effect in a Galleria mellonella model of infection by Candida albicans. No haemolytic, cytotoxic and genotoxic effects were observed on mammalian cells. These findings raise the hypothesis that antibodies could be the evolutionary result of the adaptive combination of gene products ancestrally devoted to innate antimicrobial immunity.
Collapse
Affiliation(s)
- Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Sperindè
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tiziana D'Adda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luiz R Travassos
- Experimental Oncology Unit, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
13
|
Paulone S, Ardizzoni A, Tavanti A, Piccinelli S, Rizzato C, Lupetti A, Colombari B, Pericolini E, Polonelli L, Magliani W, Conti S, Posteraro B, Cermelli C, Blasi E, Peppoloni S. The synthetic killer peptide KP impairs Candida albicans biofilm in vitro. PLoS One 2017; 12:e0181278. [PMID: 28704490 PMCID: PMC5509322 DOI: 10.1371/journal.pone.0181278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is a commensal organism, commonly inhabiting mucosal surfaces of healthy individuals, as a part of the resident microbiota. However, in susceptible hosts, especially hospitalized and/or immunocompromised patients, it may cause a wide range of infections. The presence of abiotic substrates, such as central venous or urinary catheters, provides an additional niche for Candida attachment and persistence, particularly via biofilm development. Furthermore, Candida biofilm is poorly susceptible to most antifungals, including azoles. Here we investigated the effects of a synthetic killer peptide (KP), known to be active in vitro, ex vivo and/or in vivo against different pathogens, on C. albicans biofilm. Together with a scrambled peptide used as a negative control, KP was tested against Candida biofilm at different stages of development. A reference strain, two fluconazole-resistant and two fluconazole-susceptible C. albicans clinical isolates were used. KP-induced C. albicans oxidative stress response and membrane permeability were also analysed. Moreover, the effect of KP on transcriptional profiles of C. albicans genes involved in different stages of biofilm development, such as cell adhesion, hyphal development and extracellular matrix production, was evaluated. Our results clearly show that the treatment with KP strongly affected the capacity of C. albicans to form biofilm and significantly impairs preformed mature biofilm. KP treatment resulted in an increase in C. albicans oxidative stress response and membrane permeability; also, biofilm-related genes expression was significantly reduced. Comparable inhibitory effects were observed in all the strains employed, irrespective of their resistance or susceptibility to fluconazole. Finally, KP-mediated inhibitory effects were observed also against a catheter-associated C. albicans biofilm. This study provides the first evidence on the KP effectiveness against C. albicans biofilm, suggesting that KP may be considered as a potential novel tool for treatment and prevention of biofilm-related C. albicans infections.
Collapse
Affiliation(s)
- Simona Paulone
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Serena Piccinelli
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Bruna Colombari
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Eva Pericolini
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Brunella Posteraro
- Institute of Public Health, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Cermelli
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Blasi
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| | - Samuele Peppoloni
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Goulart LR, da S. Ribeiro V, Costa-Cruz JM. Anti-parasitic Antibodies from Phage Display. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:155-171. [DOI: 10.1007/978-3-319-72077-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|