1
|
Silva-Hurtado TJ, Giua G, Lassalle O, Makrini-Maleville L, Strauss B, Wager-Miller J, Freyermuth JM, Mackie K, Valjent E, Manzoni OJ, Chavis P. Reelin Deficiency and Synaptic Impairment in the Adolescent Prefrontal Cortex Following Initial Synthetic Cannabinoid Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100426. [PMID: 39926699 PMCID: PMC11804564 DOI: 10.1016/j.bpsgos.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 02/11/2025] Open
Abstract
Background Adolescent cannabinoid exposure can have long-lasting effects on the brain, particularly in the prefrontal cortex, where the reelin protein plays a crucial role in neural organization. Chronic cannabinoid exposure leads to reelin deficiency and behavioral abnormalities, but the underlying mechanisms remain unclear. With the increasing use of synthetic cannabinoids (SCs) among young people, understanding these effects is crucial. Methods We examined the cellular and synaptic consequences of initial SC exposure in adolescent male mice 1 day after a single in vivo exposure to WIN 55,212-2. Our approach combined immunohistochemistry, Western blots, conditional CB1 receptor (CB1R) knockout mouse lines, quantitative polymerase chain reaction, and ex vivo electrophysiology to investigate the effects of SC on reelin expression and synaptic plasticity. Additionally, single-molecule fluorescent in situ hybridization profiling was used to identify cellular coexpression patterns of reelin and CB1Rs. Results Our findings indicate that a single exposure to SC decreased reelin expression in specific prefrontal cortex layers accompanied by disrupted proteolytic fragmentation but not changes in messenger RNA expression. Single-molecule fluorescent in situ hybridization profiling revealed a strong coexpression of CB1R and reelin. Furthermore, our pharmacological and genetic approaches demonstrated that CB1Rs in GABAergic (gamma-aminobutyric acidergic) neurons mediate the SC-induced decrease in reelin. This decrease in reelin results in a reduction in long-term potentiation, phenocopying reelin haploinsufficient mice. Notably, we restored long-term potentiation by infusing reelin bilaterally, establishing a functional link between reelin depletion and synaptic deficits. Conclusions These findings provide new insights into the neural consequences of adolescent cannabinoid consumption and highlight the critical role of reelin in the cellular mechanisms associated with SC initiation during adolescence.
Collapse
Affiliation(s)
- Thenzing J. Silva-Hurtado
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Gabriele Giua
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Olivier Lassalle
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Leila Makrini-Maleville
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Benjamin Strauss
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Jim Wager-Miller
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Ken Mackie
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Emmanuel Valjent
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Olivier J.J. Manzoni
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Pascale Chavis
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| |
Collapse
|
2
|
Joly-Amado A, Kulkarni N, Nash KR. Reelin Signaling in Neurodevelopmental Disorders and Neurodegenerative Diseases. Brain Sci 2023; 13:1479. [PMID: 37891846 PMCID: PMC10605156 DOI: 10.3390/brainsci13101479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Reelin is an extracellular matrix glycoprotein involved in neuronal migration during embryonic brain development and synaptic plasticity in the adult brain. The role of Reelin in the developing central nervous system has been extensively characterized. Indeed, a loss of Reelin or a disruption in its signaling cascade leads to neurodevelopmental defects and is associated with ataxia, intellectual disability, autism, and several psychiatric disorders. In the adult brain, Reelin is critically involved in neurogenesis and synaptic plasticity. Reelin's signaling potentiates glutamatergic and GABAergic neurotransmission, induces synaptic maturation, and increases AMPA and NMDA receptor subunits' expression and activity. As a result, there is a growing literature reporting that a loss of function and/or reduction of Reelin is implicated in numerous neurodegenerative diseases. The present review summarizes the current state of the literature regarding the implication of Reelin and Reelin-mediated signaling during aging and neurodegenerative disorders, highlighting Reelin as a possible target in the prevention or treatment of progressive neurodegeneration.
Collapse
Affiliation(s)
- Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (N.K.); (K.R.N.)
| | | | | |
Collapse
|
3
|
Bernabeu A, Bara A, Murphy Green MN, Manduca A, Wager-Miller J, Borsoi M, Lassalle O, Pelissier-Alicot AL, Chavis P, Mackie K, Manzoni OJ. Sexually Dimorphic Adolescent Trajectories of Prefrontal Endocannabinoid Synaptic Plasticity Equalize in Adulthood, Reflected by Endocannabinoid System Gene Expression. Cannabis Cannabinoid Res 2023; 8:749-767. [PMID: 37015060 PMCID: PMC10701511 DOI: 10.1089/can.2022.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Introduction: How sex influences prefrontal cortexes (PFCs) synaptic development through adolescence remains unclear. Materials and Methods: In this study we describe sex-specific cellular and synaptic trajectories in the rat PFC from adolescence to adulthood. Results: The excitability of PFC layer 5 pyramidal neurons was lower in adult females compared with other developmental stages. The developmental course of endocannabinoid-mediated long-term depression (eCB-LTD) was sexually dimorphic, unlike long-term potentiation or mGluR3-LTD. eCB-LTD was expressed in juvenile females but appeared only at puberty in males. Endovanilloid TRPV1R or eCB receptors were engaged during LTD in a sequential and sexually dimorphic manner. Gene expression of the eCB/vanilloid systems was sequential and sex specific. LTD-incompetent juvenile males had elevated expression levels of the CB1R-interacting inhibitory protein cannabinoid receptor interacting protein 1a and of the 2-arachidonoylglycerol-degrading enzyme ABHD6. Pharmacological inhibition of ABHD6 or MAGL enabled LTD in young males, whereas inhibition of anandamide degradation was ineffective. Conclusions: These results reveal sex differences in the maturational trajectories of the rat PFC.
Collapse
Affiliation(s)
- Axel Bernabeu
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Anissa Bara
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Michelle N. Murphy Green
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- The Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Antonia Manduca
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Jim Wager-Miller
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- The Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Milene Borsoi
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Anne-Laure Pelissier-Alicot
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- APHM, CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Ken Mackie
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- The Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Olivier J.J. Manzoni
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Guily P, Lassalle O, Chavis P, Manzoni OJ. Sex-specific divergent maturational trajectories in the postnatal rat basolateral amygdala. iScience 2022; 25:103815. [PMID: 35198880 PMCID: PMC8841815 DOI: 10.1016/j.isci.2022.103815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
In rodents and humans, the basolateral amygdala (BLA), essential for emotional behaviors, is profoundly reorganized during adolescence. We compared in both sexes the morphology, neuronal, and synaptic properties of BLA neurons in rats at puberty and adulthood. BLA neurons were more excitable in males than in females at adulthood. At pubescence, male action potentials were smaller and shorter than females’ while fast afterhyperpolarizations were larger in males. During postnatal maturation, spine length increased and decreased in females and males, respectively, while there was a reduction in spine head size in females. Excitatory synaptic properties, estimated from stimuli-response relationships, spontaneous post-synaptic currents, and AMPA/NMDA ratio also displayed sex-specific maturational differences. Finally, the developmental courses of long-term potentiation and depression were sexually dimorphic. These data reveal divergent maturational trajectories in the BLA of male and female rats and suggest sex-specific substrates to the BLA linked behaviors at adolescence and adulthood. The BLA is immature at puberty and its development toward adulthood is sex-specific At adulthood, neuronal excitability is lower in females than in males The maturation of spine morphology is more pronounced in females The developmental courses of LTP and LTD are sexually divergent
Collapse
Affiliation(s)
- Pauline Guily
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier Lassalle
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Pascale Chavis
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier J. Manzoni
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
- Corresponding author
| |
Collapse
|
5
|
Wiring of higher-order cortical areas: Spatiotemporal development of cortical hierarchy. Semin Cell Dev Biol 2021; 118:35-49. [PMID: 34034988 DOI: 10.1016/j.semcdb.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 01/04/2023]
Abstract
A hierarchical development of cortical areas was suggested over a century ago, but the diversity and complexity of cortical hierarchy properties have so far prevented a formal demonstration. The aim of this review is to clarify the similarities and differences in the developmental processes underlying cortical development of primary and higher-order areas. We start by recapitulating the historical and recent advances underlying the biological principle of cortical hierarchy in adults. We then revisit the arguments for a hierarchical maturation of cortical areas, and further integrate the principles of cortical areas specification during embryonic and postnatal development. We highlight how the dramatic expansion in cortical size might have contributed to the increased number of association areas sustaining cognitive complexification in evolution. Finally, we summarize the recent observations of an alteration of cortical hierarchy in neuropsychiatric disorders and discuss their potential developmental origins.
Collapse
|
6
|
A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proc Natl Acad Sci U S A 2021; 118:2103079118. [PMID: 33975959 PMCID: PMC8157952 DOI: 10.1073/pnas.2103079118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.
Collapse
|
7
|
Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:359-379. [DOI: 10.1016/j.nano.2019.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
8
|
Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front Behav Neurosci 2019; 13:23. [PMID: 30890922 PMCID: PMC6411818 DOI: 10.3389/fnbeh.2019.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood.
Collapse
Affiliation(s)
- Milene Borsoi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Antonia Manduca
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anissa Bara
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Olivier Lassalle
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Conception, Service de Psychiatrie, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Olivier J Manzoni
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| |
Collapse
|
9
|
Bara A, Manduca A, Bernabeu A, Borsoi M, Serviado M, Lassalle O, Murphy M, Wager-Miller J, Mackie K, Pelissier-Alicot AL, Trezza V, Manzoni OJ. Sex-dependent effects of in utero cannabinoid exposure on cortical function. eLife 2018; 7:e36234. [PMID: 30201092 PMCID: PMC6162091 DOI: 10.7554/elife.36234] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Cannabinoids can cross the placenta, thus may interfere with fetal endocannabinoid signaling during neurodevelopment, causing long-lasting deficits. Despite increasing reports of cannabis consumption during pregnancy, the protracted consequences of prenatal cannabinoid exposure (PCE) remain incompletely understood. Here, we report sex-specific differences in behavioral and neuronal deficits in the adult progeny of rat dams exposed to low doses of cannabinoids during gestation. In males, PCE reduced social interaction, ablated endocannabinoid long-term depression (LTD) and heightened excitability of prefrontal cortex pyramidal neurons, while females were spared. Group 1 mGluR and endocannabinoid signaling regulate emotional behavior and synaptic plasticity. Notably, sex-differences following PCE included levels of mGluR1/5 and TRPV1R mRNA. Finally, positive allosteric modulation of mGlu5 and enhancement of anandamide levels restored LTD and social interaction in PCE adult males. Together, these results highlight marked sexual differences in the effects of PCE and introduce strategies for reversing detrimental effects of PCE.
Collapse
Affiliation(s)
- Anissa Bara
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| | - Antonia Manduca
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Section of Biomedical Sciences and Technologies, Department of ScienceUniversity Roma TreRomeItaly
| | - Axel Bernabeu
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- APHMCHU Conception, Service de PsychiatrieMarseilleFrance
| | - Milene Borsoi
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| | - Michela Serviado
- Section of Biomedical Sciences and Technologies, Department of ScienceUniversity Roma TreRomeItaly
| | - Olivier Lassalle
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| | - Michelle Murphy
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
- Gill CentreIndiana UniversityBloomingtonUnited States
| | - Jim Wager-Miller
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
- Gill CentreIndiana UniversityBloomingtonUnited States
| | - Ken Mackie
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
- Gill CentreIndiana UniversityBloomingtonUnited States
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- APHMCHU Conception, Service de PsychiatrieMarseilleFrance
- APHMCHU Timone Adultes, Service de Médecine LégaleMarseilleFrance
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of ScienceUniversity Roma TreRomeItaly
| | - Olivier J Manzoni
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| |
Collapse
|
10
|
Konstantoudaki X, Chalkiadaki K, Vasileiou E, Kalemaki K, Karagogeos D, Sidiropoulou K. Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice. J Neurophysiol 2018; 119:822-833. [DOI: 10.1152/jn.00189.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABAA receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced synaptic plasticity in the upper layers of the prefrontal cortex as a cellular correlate of this weakened cognitive function. This decreased synaptic plasticity is due to reduced N-methyl-d-aspartate receptor expression but not due to dampened intrinsic excitability or enhanced GABAergic signaling during adolescence.
Collapse
Affiliation(s)
| | | | | | - Katerina Kalemaki
- Division of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Domna Karagogeos
- Division of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | | |
Collapse
|
11
|
Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Mol Psychiatry 2017; 22:961-971. [PMID: 27843148 DOI: 10.1038/mp.2016.193] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Overconsumption of high-fat diets (HFDs) can critically affect synaptic and cognitive functions within telencephalic structures such as the medial prefrontal cortex (mPFC). The underlying mechanisms, however, remain largely unknown. Here we show that adolescence is a sensitive period for the emergence of prefrontal cognitive deficits in response to HFD. We establish that the synaptic modulator reelin (RELN) is a critical mediator of this vulnerability because (1) periadolescent HFD (pHFD) selectively downregulates prefrontal RELN+ cells and (2) augmenting mPFC RELN levels using transgenesis or prefrontal pharmacology prevents the pHFD-induced prefrontal cognitive deficits. We further identify N-methyl-d-aspartate-dependent long-term depression (NMDA-LTD) at prefrontal excitatory synapses as a synaptic signature of this association because pHFD abolishes NMDA-LTD, a function that is restored by RELN overexpression. We believe this study provides the first mechanistic insight into the vulnerability of the adolescent mPFC towards nutritional stress, such as HFDs. Our findings have primary relevance to obese individuals who are at an increased risk of developing neurological cognitive comorbidities, and may extend to multiple neuropsychiatric and neurological disorders in which RELN deficiency is a common feature.
Collapse
|
12
|
Bouamrane L, Scheyer AF, Lassalle O, Iafrati J, Thomazeau A, Chavis P. Reelin-Haploinsufficiency Disrupts the Developmental Trajectory of the E/I Balance in the Prefrontal Cortex. Front Cell Neurosci 2017; 10:308. [PMID: 28127276 PMCID: PMC5226963 DOI: 10.3389/fncel.2016.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
The reelin gene is a strong candidate in the etiology of several psychiatric disorders such as schizophrenia, major depression, bipolar disorders, and autism spectrum disorders. Most of these diseases are accompanied by cognitive and executive-function deficits associated with prefrontal dysfunctions. Mammalian prefrontal cortex (PFC) development is characterized by a protracted postnatal maturation constituting a period of enhanced vulnerability to psychiatric insults. The identification of the molecular components underlying this prolonged postnatal development is necessary to understand the synaptic properties of defective circuits participating in these psychiatric disorders. We have recently shown that reelin plays a key role in the maturation of glutamatergic functions in the postnatal PFC, but no data are available regarding the GABAergic circuits. Here, we undertook a cross-sectional analysis of GABAergic function in deep layer pyramidal neurons of the medial PFC of wild-type and haploinsufficient heterozygous reeler mice. Using electrophysiological approaches, we showed that decreased reelin levels impair the maturation of GABAergic synaptic transmission without affecting the inhibitory nature of GABA. This phenotype consequently impacted the developmental sequence of the synaptic excitation/inhibition (E/I) balance. These data indicate that reelin is necessary for the correct maturation and refinement of GABAergic synaptic circuits in the postnatal PFC and therefore provide a mechanism for altered E/I balance of prefrontal circuits associated with psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavis
- INMED, Aix-Marseille University, INSERM Marseille, France
| |
Collapse
|