1
|
Duroy PO, Seguin J, Ravel S, Rajendran R, Laboureau N, Salmon F, Delos JM, Pooggin M, Iskra-Caruana ML, Chabannes M. Endogenous viral elements are targeted by RNA silencing pathways in banana. THE NEW PHYTOLOGIST 2024; 244:1519-1536. [PMID: 39294885 DOI: 10.1111/nph.20112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Endogenous banana streak virus (eBSV) integrants derived from three distinct species, present in Musa balbisiana (B) but not Musa acuminata (A) banana genomes are able to reconstitute functional episomal viruses causing banana streak disease in interspecific triploid AAB banana hybrids but not in the diploid (BB) parent line, which harbours identical eBSV loci. Here, we investigated the regulation of these eBSV. In-depth characterization of siRNAs, transcripts and methylation derived from eBSV using Illumina and bisulfite sequencing were carried out on eBSV-free Musa acuminata AAA plants and BB or AAB banana plants with eBSV. eBSV loci produce low-abundance transcripts covering most of the viral sequence and generate predominantly 24-nt siRNAs. siRNA accumulation is restricted to duplicated and inverted viral sequences present in eBSV. Both siRNA-accumulating and nonaccumulating sequences of eBSV in BB plants are heavily methylated in all three CG, CHG and CHH contexts. Our data suggest that eBSVs are controlled at the epigenetic level in BB diploids. This regulation not only prevents their awakening and systemic infection of the plant but is also probably involved in the inherent resistance of the BB plants to mealybug-transmitted viral infection. These findings are thus of relevance to other plant resources hosting integrated viruses.
Collapse
Affiliation(s)
- Pierre-Olivier Duroy
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jonathan Seguin
- Department of Plant Physiology, Botanical Institute, Zürich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Sébastien Ravel
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Rajeswaran Rajendran
- Department of Plant Physiology, Botanical Institute, Zürich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Nathalie Laboureau
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Frédéric Salmon
- CIRAD, UMR AGAP Institut, Capesterre-Belle-Eau, Guadeloupe, F-97130, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, Guadeloupe, France
| | - Jean-Marie Delos
- CIRAD, UMR AGAP Institut, Capesterre-Belle-Eau, Guadeloupe, F-97130, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, Guadeloupe, France
| | - Mikhail Pooggin
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - Matthieu Chabannes
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
2
|
Akinmusola RY, Wilkins CA, Doughty J. DDM1-Mediated TE Silencing in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:437. [PMID: 36771522 PMCID: PMC9919755 DOI: 10.3390/plants12030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications are indispensable for regulating gene bodies and TE silencing. DECREASE IN DNA METHYLATION 1 (DDM1) is a chromatin remodeller involved in histone modifications and DNA methylation. Apart from maintaining the epigenome, DDM1 also maintains key plant traits such as flowering time and heterosis. The role of DDM1 in epigenetic regulation is best characterised in plants, especially arabidopsis, rice, maize and tomato. The epigenetic changes induced by DDM1 establish the stable inheritance of many plant traits for at least eight generations, yet DDM1 does not methylate protein-coding genes. The DDM1 TE silencing mechanism is distinct and has evolved independently of other silencing pathways. Unlike the RNA-directed DNA Methylation (RdDM) pathway, DDM1 does not depend on siRNAs to enforce the heterochromatic state of TEs. Here, we review DDM1 TE silencing activity in the RdDM and non-RdDM contexts. The DDM1 TE silencing machinery is strongly associated with the histone linker H1 and histone H2A.W. While the linker histone H1 excludes the RdDM factors from methylating the heterochromatin, the histone H2A.W variant prevents TE mobility. The DDM1-H2A.W strategy alone silences nearly all the mobile TEs in the arabidopsis genome. Thus, the DDM1-directed TE silencing essentially preserves heterochromatic features and abolishes mobile threats to genome stability.
Collapse
|
3
|
Rattan UK, Kumar S, Kumari R, Bharti M, Hallan V. Homeobox 27, a Homeodomain Transcription Factor, Confers Tolerances to CMV by Associating with Cucumber Mosaic Virus 2b Protein. Pathogens 2022; 11:pathogens11070788. [PMID: 35890032 PMCID: PMC9323240 DOI: 10.3390/pathogens11070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play an important role in plant development; however, their role during viral infection largely remains unknown. The present study was designed to uncover the role transcription factors play in Cucumber mosaic virus (CMV) infection. During the screening of an Arabidopsis thaliana (Col-0) transcription factor library, using the CMV 2b protein as bait in the yeast two-hybrid system, the 2b protein interacted with Homeobox protein 27 (HB27). HB27 belongs to the zinc finger homeodomain family and is known to have a regulatory role in flower development, and responses to biotic and abiotic stress. The interaction between CMV 2b and HB27 proteins was further validated using in planta (bimolecular fluorescence complementation assay) and in vitro far-Western blotting (FWB) methods. In the bimolecular fluorescence complementation assay, these proteins reconstituted YFP fluorescence in the nucleus and the cytoplasmic region as small fluorescent dots. In FWB, positive interaction was detected using bait anti-MYC antibody on the target HB27-HA protein. During CMV infection, upregulation (~3-fold) of the HB27 transcript was observed at 14 days post-infection (dpi) in A. thaliana plants, and expression declined to the same as healthy plants at 21 dpi. To understand the role of the HB27 protein during CMV infection, virus accumulation was determined in HB27-overexpressing (HB27 OE) and knockout mutants. In HB27-overexpressing lines, infected plants developed mild symptoms, accumulating a lower virus titer at 21 dpi compared to wild-type plants. Additionally, knockout HB27 mutants had more severe symptoms and a higher viral accumulation than wild-type plants. These results indicate that HB27 plays an important role in the regulation of plant defense against plant virus infection.
Collapse
Affiliation(s)
- Usha Kumari Rattan
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Kumar
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
| | - Reenu Kumari
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- College of Horticulture and Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Thunag, Mandi 175048, India
| | - Monika Bharti
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
| | - Vipin Hallan
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: ; Tel.: +91-1894-233338; Fax: +91-1894-230433
| |
Collapse
|
4
|
Kumari R, Kumar S, Leibman D, Abebie B, Shnaider Y, Ding S, Gal‐On A. Cucumber RDR1s and cucumber mosaic virus suppressor protein 2b association directs host defence in cucumber plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1317-1331. [PMID: 34355485 PMCID: PMC8518566 DOI: 10.1111/mpp.13112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/27/2023]
Abstract
RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.
Collapse
Affiliation(s)
- Reenu Kumari
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- College of Horticulture and ForestryDr YS Parmar University of Horticulture and ForestryMandiIndia
| | - Surender Kumar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- Plant Virology Lab, Biotechnology DivisionCSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Bekele Abebie
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Yulia Shnaider
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Shou‐Wei Ding
- Department of Plant Pathology and Microbiology & Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
5
|
Environmental RNAi pathways in the two-spotted spider mite. BMC Genomics 2021; 22:42. [PMID: 33421998 PMCID: PMC7796550 DOI: 10.1186/s12864-020-07322-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background RNA interference (RNAi) regulates gene expression in most multicellular organisms through binding of small RNA effectors to target transcripts. Exploiting this process is a popular strategy for genetic manipulation and has applications that includes arthropod pest control. RNAi technologies are dependent on delivery method with the most convenient likely being feeding, which is effective in some animals while others are insensitive. The two-spotted spider mite, Tetranychus urticae, is prime candidate for developing RNAi approaches due to frequent occurrence of conventional pesticide resistance. Using a sequencing-based approach, the fate of ingested RNAs was explored to identify features and conditions that affect small RNA biogenesis from external sources to better inform RNAi design. Results Biochemical and sequencing approaches in conjunction with extensive computational assessment were used to evaluate metabolism of ingested RNAs in T. urticae. This chelicerae arthropod shows only modest response to oral RNAi and has biogenesis pathways distinct from model organisms. Processing of synthetic and plant host RNAs ingested during feeding were evaluated to identify active substrates for spider mite RNAi pathways. Through cataloging characteristics of biochemically purified RNA from these sources, trans-acting small RNAs could be distinguished from degradation fragments and their origins documented. Conclusions Using a strategy that delineates small RNA processing, we found many transcripts have the potential to enter spider mite RNAi pathways, however, trans-acting RNAs appear very unstable and rare. This suggests potential RNAi pathway substrates from ingested materials are mostly degraded and infrequently converted into regulators of gene expression. Spider mites infest a variety of plants, and it would be maladaptive to generate diverse gene regulators from dietary RNAs. This study provides a framework for assessing RNAi technology in organisms where genetic and biochemical tools are absent and benefit rationale design of RNAi triggers for T.urticae.
Collapse
|
6
|
Sanan-Mishra N, Abdul Kader Jailani A, Mandal B, Mukherjee SK. Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology. FRONTIERS IN PLANT SCIENCE 2021; 12:610283. [PMID: 33737942 PMCID: PMC7960677 DOI: 10.3389/fpls.2021.610283] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The major components of RNA silencing include both transitive and systemic small RNAs, which are technically called secondary sRNAs. Double-stranded RNAs trigger systemic silencing pathways to negatively regulate gene expression. The secondary siRNAs generated as a result of transitive silencing also play a substantial role in gene silencing especially in antiviral defense. In this review, we first describe the discovery and pathways of transitivity with emphasis on RNA-dependent RNA polymerases followed by description on the short range and systemic spread of silencing. We also provide an in-depth view on the various size classes of secondary siRNAs and their different roles in RNA silencing including their categorization based on their biogenesis. The other regulatory roles of secondary siRNAs in transgene silencing, virus-induced gene silencing, transitivity, and trans-species transfer have also been detailed. The possible implications and applications of systemic silencing and the different gene silencing tools developed are also described. The details on mobility and roles of secondary siRNAs derived from viral genome in plant defense against the respective viruses are presented. This entails the description of other compatible plant-virus interactions and the corresponding small RNAs that determine recovery from disease symptoms, exclusion of viruses from shoot meristems, and natural resistance. The last section presents an overview on the usefulness of RNA silencing for management of viral infections in crop plants.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - A. Abdul Kader Jailani
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Mukherjee
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sunil K. Mukherjee,
| |
Collapse
|
7
|
Jin Y, Zhao JH, Guo HS. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr Opin Virol 2020; 46:65-72. [PMID: 33360834 DOI: 10.1016/j.coviro.2020.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Molecular plant-virus interactions provide an excellent model to understanding host antiviral immunity and viral counter-defense mechanisms. The primary antiviral defense is triggered inside the infected plant cell by virus-derived small-interfering RNAs, which guide homology-dependent RNA interference (RNAi) and/or RNA-directed DNA methylation (RdDM) to target RNA and DNA viruses. In counter-defense, plant viruses have independently evolved viral suppressors of RNAi (VSRs) to specifically antagonize antiviral RNAi. Recent studies have shown that plant antiviral responses are regulated by endogenous small silencing RNAs, RNA decay and autophagy and that some known VSRs of plant RNA and DNA viruses also target these newly recognized defense responses to promote infection. This review focuses on these recent advances that have revealed multilayered regulation of plant-virus interactions.
Collapse
Affiliation(s)
- Yun Jin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Epigenetic Variation at a Genomic Locus Affecting Biomass Accumulation under Low Nitrogen in Arabidopsis thaliana. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitrogen (N) is a macronutrient determining crop yield. The application of N fertilisers can substantially increase the yield, but excess use also causes the nitrate pollution of water resources and increases production costs. Increasing N use efficiency (NUE) in crop plants is an important step to implement low-input agricultural systems. We used Arabidopsis thaliana as model system to investigate the natural genetic diversity in traits related to NUE. Natural variation was used to study adaptive growth patterns and changes in gene expression associated with limited nitrate availability. A genome-wide association study revealed an association of eight SNP markers on Chromosome 1 with shoot growth under limited N. The identified linkage disequilibrium (LD) interval includes the DNA sequences of three cysteine/histidine-rich C1 domain proteins in tandem orientation. These genes differ in promoter structure, methylation pattern and expression level among accessions, correlating with growth performance under N deficiency. Our results suggest the involvement of epigenetic regulation in the expression of NUE-related traits.
Collapse
|
9
|
Zhang W, Wang N, Yang J, Guo H, Liu Z, Zheng X, Li S, Xiang F. The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110326. [PMID: 31928665 DOI: 10.1016/j.plantsci.2019.110326] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
Transcription factor activation and DNA methylation are important plant responses to abiotic stress. Here, we established that the salinity stress-induced expression of the soybean (Glycine max) transcription factor-encoding gene GmMYB84 relies on DNA methylation. The level of DNA methylation at sequences 690 nt to 950 nt upstream of the GmMYB84 transcription initiation codon was markedly reduced in plants exposed to salinity stress, resulting in a higher abundance of transcripts. When challenged with salinity stress, plants constitutively expressing GmMYB84 outperformed untransformed plants with respect to their germination rate, primary root elongation, proline accumulation, antioxidant enzyme activity, membrane integrity, and K+ levels. Arabidopsis thaliana plants heterologously expressing GmMYB84 were more tolerant to salt stress and exhibited higher germination rates than the wild type. Electrophoretic mobility shift assays revealed that GmMYB84 binds to the cis-regulatory sequences of GmAKT1, the homolog of ARABIDOPSIS K+ TRANSPORTER 1 (AKT1). Thus, DNA methylation modulates the salinity stress-induced expression of the soybean transcription factor-encoding gene GmMYB84 and thereby confers salinity stress tolerance.
Collapse
Affiliation(s)
- Wenxiao Zhang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Nan Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Jingting Yang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Hui Guo
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhenhua Liu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaojian Zheng
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Shuo Li
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
| | - Fengning Xiang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
10
|
Diezma‐Navas L, Pérez‐González A, Artaza H, Alonso L, Caro E, Llave C, Ruiz‐Ferrer V. Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:1439-1452. [PMID: 31274236 PMCID: PMC6792132 DOI: 10.1111/mpp.12850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA methylation is an important epigenetic mechanism for controlling innate immunity against microbial pathogens in plants. Little is known, however, about the manner in which viral infections interact with DNA methylation pathways. Here we investigate the crosstalk between epigenetic silencing and viral infections in Arabidopsis inflorescences. We found that tobacco rattle virus (TRV) causes changes in the expression of key transcriptional gene silencing factors with RNA-directed DNA methylation activities that coincide with changes in methylation at the whole genome level. Viral susceptibility/resistance was altered in DNA (de)methylation-deficient mutants, suggesting that DNA methylation is an important regulatory system controlling TRV proliferation. We further show that several transposable elements (TEs) underwent transcriptional activation during TRV infection, and that TE regulation likely involved both DNA methylation-dependent and -independent mechanisms. We identified a cluster of disease resistance genes regulated by DNA methylation in infected plants that were enriched for TEs in their promoters. Interestingly, TEs and nearby resistance genes were co-regulated in TRV-infected DNA (de)methylation mutants. Our study shows that DNA methylation contributes to modulate the outcome of viral infections in Arabidopsis, and opens up new possibilities for exploring the role of TE regulation in antiviral defence.
Collapse
Affiliation(s)
- Laura Diezma‐Navas
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9MadridSpain
- Doctorado en Biotecnología y Recursos Genéticos de Plantas y Microorganismos AsociadosETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid28040MadridSpain
| | - Ana Pérez‐González
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de Alarcón, MadridSpain
| | - Haydeé Artaza
- Bionformatic and Statistic Service, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 928040MadridSpain
- Present address:
Department of Clinical ScienceUniversity of Bergen5020BergenNorway
| | - Lola Alonso
- Bionformatic and Statistic Service, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 928040MadridSpain
- Present address:
Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO)MadridSpain
| | - Elena Caro
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de Alarcón, MadridSpain
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9MadridSpain
| | - Virginia Ruiz‐Ferrer
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9MadridSpain
- Present address:
Department of Plant Physiology, Plant Biotechnology and Molecular Biology Group. Environmental Sciences and Biochemistry SchoolCastilla‐La Mancha UniversityToledoSpain
| |
Collapse
|
11
|
Roles of Small RNAs in Virus-Plant Interactions. Viruses 2019; 11:v11090827. [PMID: 31491987 PMCID: PMC6783996 DOI: 10.3390/v11090827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023] Open
Abstract
Small RNAs (sRNAs), including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are non-coding but powerful RNA molecules of 20–30 nucleotides in length. sRNAs play crucial regulatory roles in diverse plant biological processes. Recently, many studies on sRNAs have been reported. We summarize new findings of sRNAs in virus-plant interactions to accelerate the function analysis of sRNAs. The main content of this review article includes three parts: virus-responsive sRNAs, function analysis of sRNAs in virus pathogenicity or host resistance, and some sRNAs-mediated underlying mechanisms in virus-plant interactions. New findings of sRNAs deepen our understanding about sRNAs’ roles, which might contribute to the design of novel control measures against plant viruses.
Collapse
|
12
|
CMV2b-Dependent Regulation of Host Defense Pathways in the Context of Viral Infection. Viruses 2018; 10:v10110618. [PMID: 30423959 PMCID: PMC6265714 DOI: 10.3390/v10110618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/26/2023] Open
Abstract
RNA silencing (or RNA interference, RNAi) plays direct roles in plant host defenses against viruses. Viruses encode suppressors of RNAi (VSRs) to counteract host antiviral defenses. The generation of transgenic plants expressing VSRs facilitates the understanding of the mechanisms of VSR-mediated interference with the endogenous silencing pathway. However, studying VSRs independent of other viral components simplifies the complex roles of VSRs during natural viral infection. While suppression of transgene silencing by the VSR 2b protein encoded by cucumber mosaic virus (CMV) requires 2b-small RNA (sRNA) binding activity, suppression of host antiviral defenses requires the binding activity of both sRNAs and AGOs proteins. This study, aimed to understand the functions of 2b in the context of CMV infection; thus, we performed genome-wide analyses of differential DNA methylation regions among wild-type CMV-infected, CMVΔ2b-infected, and 2b-transgenic Arabidopsis plants. These analyses, together with transcriptome sequencing and RT-qPCR analyses, show that while the majority of induced genes in 2b-transgenic plants were involved in extensive metabolic pathways, CMV-infection 2b-dependent induced genes were enriched in plant immunity pathways, including salicylic acid (SA) signaling. Together with infection with CMV mutants that expressed the 2b functional domains of sRNA or AGO binding, our data demonstrate that CMV-accelerated SA signaling depends on 2b-sRNA binding activity which is also responsible for virulence.
Collapse
|
13
|
Patel P, Mathioni S, Kakrana A, Shatkay H, Meyers BC. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs. THE NEW PHYTOLOGIST 2018; 220:851-864. [PMID: 30020552 DOI: 10.1111/nph.15349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
Little is known about the characteristics and function of reproductive phased, secondary, small interfering RNAs (phasiRNAs) in the Poaceae, despite the availability of significant genomic resources, experimental data, and a growing number of computational tools. We utilized machine-learning methods to identify sequence-based and positional features that distinguish phasiRNAs in rice and maize from other small RNAs (sRNAs). We developed Random Forest classifiers that can distinguish reproductive phasiRNAs from other sRNAs in complex sets of sequencing data, utilizing sequence-based (k-mers) and features describing position-specific sequence biases. The classification performance attained is > 80% in accuracy, sensitivity, specificity, and positive predicted value. Feature selection identified important features in both ends of phasiRNAs. We demonstrated that phasiRNAs have strand specificity and position-specific nucleotide biases potentially influencing AGO sorting; we also predicted targets to infer functions of phasiRNAs, and computationally assessed their sequence characteristics relative to other sRNAs. Our results demonstrate that machine-learning methods effectively identify phasiRNAs despite the lack of characteristic features typically present in precursor loci of other small RNAs, such as sequence conservation or structural motifs. The 5'-end features we identified provide insights into AGO-phasiRNA interactions. We describe a hypothetical model of competition for AGO loading between phasiRNAs of different nucleotide compositions.
Collapse
Affiliation(s)
- Parth Patel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19714, USA
| | - Sandra Mathioni
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19714, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Atul Kakrana
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19714, USA
| | - Hagit Shatkay
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19714, USA
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19714, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| |
Collapse
|
14
|
Borgognone A, Castanera R, Morselli M, López-Varas L, Rubbi L, Pisabarro AG, Pellegrini M, Ramírez L. Transposon-associated epigenetic silencing during Pleurotus ostreatus life cycle. DNA Res 2018; 25:451-464. [PMID: 29893819 PMCID: PMC6191308 DOI: 10.1093/dnares/dsy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Transposable elements constitute an important fraction of eukaryotic genomes. Given their mutagenic potential, host-genomes have evolved epigenetic defense mechanisms to limit their expansion. In fungi, epigenetic modifications have been widely studied in ascomycetes, although we lack a global picture of the epigenetic landscape in basidiomycetes. In this study, we analysed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity and suggest that 21 nt small RNAs play a key role in transposon silencing. Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Remarkably, we found that nucleus-specific methylation levels varied in dikaryotic strains sharing identical genetic complement but different subculture conditions. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes. This study provides an integrated picture of epigenetic defense mechanisms leading to the transcriptional silencing of transposons and surrounding genes in basidiomycetes. Moreover, our findings suggest that transcriptional but not methylation reprogramming triggers fruitbody development in P. ostreatus.
Collapse
Affiliation(s)
- Alessandra Borgognone
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
- Institute for Genomics and Proteomics, UCLA-U.S. Department of Energy (DOE), University of California, Los Angeles, USA
| | - Leticia López-Varas
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
- Institute for Genomics and Proteomics, UCLA-U.S. Department of Energy (DOE), University of California, Los Angeles, USA
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| |
Collapse
|
15
|
Wang C, Wang C, Xu W, Zou J, Qiu Y, Kong J, Yang Y, Zhang B, Zhu S. Epigenetic Changes in the Regulation of Nicotiana tabacum Response to Cucumber Mosaic Virus Infection and Symptom Recovery through Single-Base Resolution Methylomes. Viruses 2018; 10:E402. [PMID: 30060626 PMCID: PMC6115852 DOI: 10.3390/v10080402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Plants have evolved multiple mechanisms to respond to viral infection. These responses have been studied in detail at the level of host immune response and antiviral RNA silencing (RNAi). However, the possibility of epigenetic reprogramming has not been thoroughly investigated. Here, we identified the role of DNA methylation during viral infection and performed reduced representation bisulfite sequencing (RRBS) on tissues of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum at various developmental stages. Differential methylated regions are enriched with CHH sequence contexts, 80% of which are located on the gene body to regulate gene expression in a temporal style. The methylated genes depressed by methyltransferase inhibition largely overlapped with methylated genes in response to viral invasion. Activation in the argonaute protein and depression in methyl donor synthase revealed the important role of dynamic methylation changes in modulating viral clearance and resistance signaling. Methylation-expression relationships were found to be required for the immune response and cellular components are necessary for the proper defense response to infection and symptom recovery.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Wenjie Xu
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Jingze Zou
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
- College of Biological Sciences, China Agricultural University, Beijing 100083, China.
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Jun Kong
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| | - Yunshu Yang
- Beijing Academy of Food Sciences, Beijing 100162, China.
| | - Boyang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shuifang Zhu
- College of Plant Protection, China Agricultural University, Beijing 100083, China.
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100083, China.
| |
Collapse
|
16
|
Chen Y, Ren Y, Zhang G, An J, Yang J, Wang Y, Wang W. Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:190-198. [PMID: 29414315 DOI: 10.1016/j.plaphy.2018.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/02/2023]
Abstract
Expansins play an important role in plant stress tolerance. In a previous study, we cloned the wheat expansin gene TaEXPA2. Here, we analyze its involvement in oxidative stress tolerance. First, we observed that the expression of TaEXPA2 in wheat seedlings was upregulated during H2O2 stress. Then, we assembled a TaEXPA2 gene expression vector, transformed it to Arabidopsis, and obtained transgenic plants overexpressing TaEXPA2 (labeled OE). When exposed to H2O2, both OE and wild-type (Col) plants were damaged by oxidative stress, as indicated by decolored leaves and increased malondialdehyde (MDA) content. Damage in OE plants was less severe than in Col plants (WT), and this was accompanied by higher activity of cell wall peroxidase (POD) enzymes, including soluble POD, ionically bound POD, and covalently bound POD. The expansin activities of the OE plants were also higher than WT under oxidative stress. We further obtained the Arabidopsis mutant atexpa2 (AtEXPA2 is homologous to TaEXPA2), and found that the antioxidant ability of atexpa2 was lower than that in Col plants, accompanied by depressed activity of POD enzymes and expansins in cell walls. We transformed wheat TaEXPA2 to atexpa2 and obtained plants (labeled Rs) capable of recovering the antioxidant capacity. Oxidative stress tolerance in Rs plants was higher than that of Col plants, and the Rs plants also had higher levels of cell wall POD enzyme and expansin activity. Finally, we identified 13 POD genes in Arabidopsis thaliana and analyzed their expression patterns using quantitative real-time PCR. The expression of 4 of these genes (AtPOD31, AtPOD33, AtPOD34 and AtPOD71) was significantly upregulated during exposure to H2O2. We speculate that the 4 genes upregulated by H2O2 treatment are involved in the increased activity of POD in the cell wall. We suggest that TaEXPA2 may regulate antioxidant capacity in plants by regulating the activity of cell wall peroxidase.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Yuanqing Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Jie An
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
17
|
Hewezi T, Pantalone V, Bennett M, Neal Stewart C, Burch-Smith TM. Phytopathogen-induced changes to plant methylomes. PLANT CELL REPORTS 2018; 37:17-23. [PMID: 28756583 DOI: 10.1007/s00299-017-2188-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
DNA methylation is a dynamic and reversible type of epigenetic mark that contributes to cellular physiology by affecting transcription activity, transposon mobility and genome stability. When plants are infected with pathogens, plant DNA methylation patterns can change, indicating an epigenetic interplay between plant host and pathogen. In most cases methylation can change susceptibility. While DNA hypomethylation appears to be a common phenomenon during the susceptible interaction, the levels and patterns of hypomethylation in transposable elements and genic regions may mediate distinct responses against various plant pathogens. The effect of DNA methylation on the plant immune response and other cellular activities and molecular functions is established by localized differential DNA methylation via cis-regulatory mechanisms as well as through trans-acting mechanisms. Understanding the epigenetic differences that control the phenotypic variations between susceptible and resistant interactions should facilitate the identification of new sources of resistance mediated by epigenetic mechanisms, which can be exploited to endow pathogen resistance to crops.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996-4561, USA.
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996-4561, USA
| | - Morgan Bennett
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996-4561, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996-4561, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| |
Collapse
|
18
|
Tamiru M, Hardcastle TJ, Lewsey MG. Regulation of genome-wide DNA methylation by mobile small RNAs. THE NEW PHYTOLOGIST 2018; 217:540-546. [PMID: 29105762 DOI: 10.1111/nph.14874] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 540 I. Introduction 540 II. There are different types of sRNA mobility 541 III. Mechanisms of sRNA movement 541 IV. Long-distance, shoot-root, mobile siRNAs influence DNA methylation in recipient tissues 541 V. Classes of interactions between shoot-root mobile siRNAs and DNA methylation 542 VI. Loci targeted directly and indirectly by shoot-root mobile siRNAs are associated with different histone modifications 543 VII. Is mobile siRNA-regulated DNA methylation important in specific tissues or under specific conditions? 543 VIII. Mobile sRNAs can be used to modify plant traits 544 IX. Conclusions 544 Acknowledgements 544 References 544 SUMMARY: RNA-directed DNA methylation (RdDM) at cytosine residues regulates gene expression, silences transposable elements and influences genome stability. The mechanisms responsible for RdDM are guided to target loci by small RNAs (sRNAs) that can move within plants cell to cell and long distance. Here we discuss recent advances in the understanding of interactions between mobile sRNAs and DNA methylation. We describe the mechanisms of sRNA movement, the differences between known classes of mobile sRNA-DNA methylation interactions and the limits of current knowledge. Finally, we discuss potential applications of mobile sRNAs in modifying plant traits.
Collapse
Affiliation(s)
- Muluneh Tamiru
- Centre for AgriBioscience, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Thomas J Hardcastle
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|
19
|
Hardcastle TJ. Methods for discovering genomic loci exhibiting complex patterns of differential methylation. BMC Bioinformatics 2017; 18:416. [PMID: 28923005 PMCID: PMC5604413 DOI: 10.1186/s12859-017-1836-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cytosine methylation is widespread in most eukaryotic genomes and is known to play a substantial role in various regulatory pathways. Unmethylated cytosines may be converted to uracil through the addition of sodium bisulphite, allowing genome-wide quantification of cytosine methylation via high-throughput sequencing. The data thus acquired allows the discovery of methylation 'loci'; contiguous regions of methylation consistently methylated across biological replicates. The mapping of these loci allows for associations with other genomic factors to be identified, and for analyses of differential methylation to take place. RESULTS The segmentSeq R package is extended to identify methylation loci from high-throughput sequencing data from multiple experimental conditions. A statistical model is then developed that accounts for biological replication and variable rates of non-conversion of cytosines in each sample to compute posterior likelihoods of methylation at each locus within an empirical Bayesian framework. The same model is used as a basis for analysis of differential methylation between multiple experimental conditions with the baySeq R package. We demonstrate the capability of this method to analyse complex data sets in an analysis of data derived from multiple Dicer-like mutants in Arabidopsis. This reveals several novel behaviours at distinct sets of loci in response to loss of one or more of the Dicer-like proteins that indicate an antagonistic relationship between the Dicer-like proteins at at least some methylation loci. Finally, we show in simulation studies that this approach can be significantly more powerful in the detection of differential methylation than many existing methods in data derived from both mammalian and plant systems. CONCLUSIONS The methods developed here make it possible to analyse high-throughput sequencing of the methylome of any given organism under a diverse set of experimental conditions. The methods are able to identify methylation loci and evaluate the likelihood that a region is truly methylated under any given experimental condition, allowing for downstream analyses that characterise differences between methylated and non-methylated regions of the genome. Futhermore, diverse patterns of differential methylation may also be characterised from these data.
Collapse
Affiliation(s)
- Thomas J Hardcastle
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
20
|
Narsai R, Gouil Q, Secco D, Srivastava A, Karpievitch YV, Liew LC, Lister R, Lewsey MG, Whelan J. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol 2017; 18:172. [PMID: 28911330 PMCID: PMC5599894 DOI: 10.1186/s13059-017-1302-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Seed germination involves progression from complete metabolic dormancy to a highly active, growing seedling. Many factors regulate germination and these interact extensively, forming a complex network of inputs that control the seed-to-seedling transition. Our understanding of the direct regulation of gene expression and the dynamic changes in the epigenome and small RNAs during germination is limited. The interactions between genome, transcriptome and epigenome must be revealed in order to identify the regulatory mechanisms that control seed germination. RESULTS We present an integrated analysis of high-resolution RNA sequencing, small RNA sequencing and MethylC sequencing over ten developmental time points in Arabidopsis thaliana seeds, finding extensive transcriptomic and epigenomic transformations associated with seed germination. We identify previously unannotated loci from which messenger RNAs are expressed transiently during germination and find widespread alternative splicing and divergent isoform abundance of genes involved in RNA processing and splicing. We generate the first dynamic transcription factor network model of germination, identifying known and novel regulatory factors. Expression of both microRNA and short interfering RNA loci changes significantly during germination, particularly between the seed and the post-germinative seedling. These are associated with changes in gene expression and large-scale demethylation observed towards the end of germination, as the epigenome transitions from an embryo-like to a vegetative seedling state. CONCLUSIONS This study reveals the complex dynamics and interactions of the transcriptome and epigenome during seed germination, including the extensive remodelling of the seed DNA methylome from an embryo-like to vegetative-like state during the seed-to-seedling transition. Data are available for exploration in a user-friendly browser at https://jbrowse.latrobe.edu.au/germination_epigenome .
Collapse
Affiliation(s)
- Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Quentin Gouil
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - David Secco
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Akanksha Srivastava
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yuliya V Karpievitch
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
- Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Lim Chee Liew
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
- Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|