1
|
Vercouillie N, Ren Z, Terras E, Lammens T. Long Non-Coding RNAs in Neuroblastoma: Pathogenesis, Biomarkers and Therapeutic Targets. Int J Mol Sci 2024; 25:5690. [PMID: 38891878 PMCID: PMC11171840 DOI: 10.3390/ijms25115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Neuroblastoma is the most common malignant extracranial solid tumor of childhood. Recent studies involving the application of advanced high-throughput "omics" techniques have revealed numerous genomic alterations, including aberrant coding-gene transcript levels and dysfunctional pathways, that drive the onset, growth, progression, and treatment resistance of neuroblastoma. Research conducted in the past decade has shown that long non-coding RNAs, once thought to be transcriptomic noise, play key roles in cancer development. With the recent and continuing increase in the amount of evidence for the underlying roles of long non-coding RNAs in neuroblastoma, the potential clinical implications of these RNAs cannot be ignored. In this review, we discuss their biological mechanisms of action in the context of the central driving mechanisms of neuroblastoma, focusing on potential contributions to the diagnosis, prognosis, and treatment of this disease. We also aim to provide a clear, integrated picture of future research opportunities.
Collapse
Affiliation(s)
- Niels Vercouillie
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
| | - Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Eva Terras
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (N.V.); (Z.R.); (E.T.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Modi A, Lopez G, Conkrite KL, Su C, Leung TC, Ramanan S, Manduchi E, Johnson ME, Cheung D, Gadd S, Zhang J, Smith MA, Guidry Auvil JM, Meshinchi S, Perlman EJ, Hunger SP, Maris JM, Wells AD, Grant SF, Diskin SJ. Integrative Genomic Analyses Identify LncRNA Regulatory Networks across Pediatric Leukemias and Solid Tumors. Cancer Res 2023; 83:3462-3477. [PMID: 37584517 PMCID: PMC10787516 DOI: 10.1158/0008-5472.can-22-3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/07/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.
Collapse
Affiliation(s)
- Apexa Modi
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Genomics and Computational Biology Graduate Group, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Karina L. Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tsz Ching Leung
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sathvik Ramanan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew E. Johnson
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daphne Cheung
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Samantha Gadd
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois 60208, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois 60208, USA
| | - Stephen P. Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Divisions of Human Genetics and Endocrinology & Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
4
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
5
|
Becker J, Sun B, Alammari F, Haerty W, Vance KW, Szele FG. What has single-cell transcriptomics taught us about long non-coding RNAs in the ventricular-subventricular zone? Stem Cell Reports 2022; 18:354-376. [PMID: 36525965 PMCID: PMC9860170 DOI: 10.1016/j.stemcr.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) function is mediated by the process of transcription or through transcript-dependent associations with proteins or nucleic acids to control gene regulatory networks. Many lncRNAs are transcribed in the ventricular-subventricular zone (V-SVZ), a postnatal neural stem cell niche. lncRNAs in the V-SVZ are implicated in neurodevelopmental disorders, cancer, and brain disease, but their functions are poorly understood. V-SVZ neurogenesis capacity declines with age due to stem cell depletion and resistance to neural stem cell activation. Here we analyzed V-SVZ transcriptomics by pooling current single-cell RNA-seq data. They showed consistent lncRNA expression during stem cell activation, lineage progression, and aging. In conjunction with epigenetic and genetic data, we predicted V-SVZ lncRNAs that regulate stem cell activation and differentiation. Some of the lncRNAs validate known epigenetic mechanisms, but most remain uninvestigated. Our analysis points to several lncRNAs that likely participate in key aspects of V-SVZ stem cell activation and neurogenesis in health and disease.
Collapse
Affiliation(s)
- Jemima Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia,Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Keith W. Vance
- Department of Life Sciences, University of Bath, Bath, UK
| | - Francis George Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
7
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
8
|
Huang S, Gong N, Li J, Hong M, Li L, Zhang L, Zhang H. The role of ncRNAs in neuroblastoma: mechanisms, biomarkers and therapeutic targets. Biomark Res 2022; 10:18. [PMID: 35392988 PMCID: PMC8991791 DOI: 10.1186/s40364-022-00368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is a malignant tumor in young children that originates from the neural crest of the sympathetic nervous system. Generally, NB occurs in the adrenal glands, but it can also affect the nerve tissues of the neck, chest, abdomen, and pelvis. Understanding the pathophysiology of NB and developing novel therapeutic approaches are critical. Noncoding RNAs (ncRNAs) are associated with crucial aspects of pathology, metastasis and drug resistance in NB. Here, we summarized the pretranscriptional, transcriptional and posttranscriptional regulatory mechanisms of ncRNAs involved in NB, especially focusing on regulatory pathways. Furthermore, ncRNAs with the potential to serve as biomarkers for risk stratification, drug resistance and therapeutic targets are also discussed, highlighting the clinical application of ncRNAs in NB.
Collapse
Affiliation(s)
- Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Naying Gong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangbin Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Li Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ling Zhang
- Health Science Center, University of Texas, Houston, 77030, USA.
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
9
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
10
|
Angrisani A, Di Fiore A, De Smaele E, Moretti M. The emerging role of the KCTD proteins in cancer. Cell Commun Signal 2021; 19:56. [PMID: 34001146 PMCID: PMC8127222 DOI: 10.1186/s12964-021-00737-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members' involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated. Video abstract.
Collapse
Affiliation(s)
| | - Annamaria Di Fiore
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Ethanol Extracts of Solanum lyratum Thunb Regulate Ovarian Cancer Cell Proliferation, Apoptosis, and Epithelial-to-Mesenchymal Transition (EMT) via the ROS-Mediated p53 Pathway. J Immunol Res 2021; 2021:5569354. [PMID: 33869638 PMCID: PMC8035038 DOI: 10.1155/2021/5569354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is a type of common gynecological tumors with high incidence and poor survival. The anticancer effects of the traditional Chinese medicine Solanum lyratum Thunb (SLT) have been intensively investigated in various cancers but in ovarian cancer is rare. The current study is aimed at investigating the effect of SLT on ovarian cancer cells. Lactate dehydrogenase (LDH) and MTT assays indicated that SLT concentrations of 0.25 and 0.5 μg/mL were not cytotoxic and had significant inhibitory effects on the cell viabilities of A2780 and SKOV3 cells, hence were used for subsequent experiments. Flow cytometric and western blot analysis revealed that SLT effectively suppressed ovarian cancer cell proliferation via inducing cell cycle arrest and increasing apoptosis. Cell cycle and apoptosis-related protein expressions were also regulated in SLT-treated cells. Moreover, DCFH-DA and western blot assays demonstrated that SLT enhanced ROS accumulation and subsequently activated the p53 signaling pathway. However, SLT-regulated ovarian cancer cell proliferation, apoptosis, migration, invasion, and EMT were significantly reversed by an ROS inhibitor (NAC, N-acetyl-L-cysteine). Furthermore, A2780 and SKOV3 cells cocultured with M0 macrophages showed that SLT activated the polarization of M0 macrophages to M1 macrophages and inhibited the polarization to M2 macrophages, with the increased percentage of CD86+ cells and decreased percentage of CD206+ cells were detected. In summary, this study illustrated the anticancer effects of SLT on ovarian cancer cells, suggesting that SLT may have the potential to provide basic evidence for the discovery of antiovarian cancer agents.
Collapse
|
12
|
Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021; 11:5496. [PMID: 33750814 PMCID: PMC7943580 DOI: 10.1038/s41598-021-84185-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.
Collapse
|
13
|
Liu G, Liu B, Liu X, Xie L, He J, Zhang J, Dong R, Ma D, Dong K, Ye M. ARID1B/SUB1-activated lncRNA HOXA-AS2 drives the malignant behaviour of hepatoblastoma through regulation of HOXA3. J Cell Mol Med 2021; 25:3524-3536. [PMID: 33683826 PMCID: PMC8034473 DOI: 10.1111/jcmm.16435] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
It has been becoming increasingly evident that long non‐coding RNAs (lncRNAs) play important roles in various human cancers. However, the biological processes and clinical significance of most lncRNAs in hepatoblastoma (HB) remain unclear. In our previous study, genome‐wide analysis with a lncRNA microarray found that lncRNA HOXA‐AS2 was up‐regulated in HB. Stable transfected cell lines with HOXA‐AS2 knockdown or overexpression were constructed in HepG2 and Huh6 cells, respectively. Our data revealed knockdown of HOXA‐AS2 increased cell apoptosis and inhibited cell proliferation, migration and invasion in HB. Up‐regulation of HOXA‐AS2 promoted HB malignant biological behaviours. Mechanistic investigations indicated that HOXA‐AS2 was modulated by chromatin remodelling factor ARID1B and transcription co‐activator SUB1, thereby protecting HOXA3 from degradation. Therefore, HOXA‐AS2 positively regulates HOXA3, which might partly demonstrate the involvement of HOXA3 in HOXA‐AS2‐mediated HB carcinogenesis. In conclusion, HOXA‐AS2 is significantly overexpressed in HB and the ARID1B/HOXA‐AS2/HOXA3 axis plays a critical role in HB tumorigenesis and development. These results might provide a potential new target for HB diagnosis and therapy.
Collapse
Affiliation(s)
- Gongbao Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jiajun He
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
14
|
Rezaei O, Honarmand Tamizkar K, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. Non-Coding RNAs Participate in the Pathogenesis of Neuroblastoma. Front Oncol 2021; 11:617362. [PMID: 33718173 PMCID: PMC7945591 DOI: 10.3389/fonc.2021.617362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is one of the utmost frequent neoplasms during the first year of life. This pediatric cancer is believed to be originated during the embryonic life from the neural crest cells. Previous studies have detected several types of chromosomal aberrations in this tumor. More recent studies have emphasized on expression profiling of neuroblastoma samples to identify the dysregulated genes in this type of cancer. Non-coding RNAs are among the mostly dysregulated genes in this type of cancer. Such dysregulation has been associated with a number of chromosomal aberrations that are frequently detected in neuroblastoma. In this study, we explain the role of non-coding transcripts in the malignant transformation in neuroblastoma and their role as biomarkers for this pediatric cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sun J, Yu X, Xue L, Li S, Li J, Tong D, Du Y. TP53-Associated Ion Channel Genes Serve as Prognostic Predictor and Therapeutic Targets in Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820972344. [PMID: 33243093 PMCID: PMC7705194 DOI: 10.1177/1533033820972344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TP53 mutations are the most occurred mutation in HNSCC which might affect the ion channel genes. We aim to investigate the ion channel gene alteration under TP53 mutation and their prognostic implication. The overall mutation status of HNSCC were explored. By screening the TP53-associated ion channel genes (TICGs), an ion channel prognostic signature (ICPS) was established through a series of machine learning algorithms. The ICPS was then evaluated and its clinical significance was explored. 82 TICGs differentially expressed between TP53WT and TP53MUT were screened. Using univariate regression analysis and LASSO regression analysis and multivariate regression analysis, an ICPS containing 7 ion channel genes was established. A series of evaluation was carried out which proved the predictive ability of ICPS. Functional analysis of ICPS revealed that cancer-related pathways were enriched in high-risk group. Next, for clinical application, a nomogram was constructed based on ICPS and other independent clinicopathological factors. TP53 mutation status strongly affects the expression of ion channel genes. The ICPM we have identified is a strong indicator for HNSCC prognosis and could help with patient stratification as well as identification of novel drug targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China.,Jing Sun and Xijiao Yu contributed equally to this work
| | - Xijiao Yu
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China.,Jing Sun and Xijiao Yu contributed equally to this work
| | - Lande Xue
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Shu Li
- Hospital of Stomatology, 12589Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jianxia Li
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Dongdong Tong
- Department of Oral and Maxillofacial, School and Hospital of Stomatology, 12589Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yi Du
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| |
Collapse
|
16
|
Ye M, Lu H, Tang W, Jing T, Chen S, Wei M, Zhang J, Wang J, Ma J, Ma D, Dong K. Downregulation of MEG3 promotes neuroblastoma development through FOXO1-mediated autophagy and mTOR-mediated epithelial-mesenchymal transition. Int J Biol Sci 2020; 16:3050-3061. [PMID: 33061817 PMCID: PMC7545718 DOI: 10.7150/ijbs.48126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies demonstrated that MEG3 was significantly downregulated in neuroblastoma (NB) and its expression was negatively associated with the INSS stage. Overexpression of MEG3 promoted apoptosis and inhibited proliferation in NB cells. In this study, we discovered more potential functions and molecular mechanisms of MEG3 in NB. According to the database, MEG3 positively correlated with the NB survival rate and was negatively associated with malignant clinical features. Moreover, we determined that MEG3 was mainly located in the nucleus by nuclear-cytoplasmic separation and RNA fish assays. Upregulation of MEG3 in stably transfected cell lines was accomplished, and CCK8, colony formation, and EDU assays were performed, which indicated that MEG3 significantly suppressed cell proliferation. Both wound healing and transwell experiments demonstrated that MEG3 decreased cell migration and invasion. CHIRP enrichments showed the anticancer effects of MEG3 were probably linked to autophagy and the mTOR signaling pathway. LC3 fluorescence dots and western blots showed that MEG3 attenuated autophagy by inhibiting FOXO1, but not the mTOR signaling pathway. Furthermore, MEG3 inhibited metastasis through epithelial-mesenchymal transition via the mTOR signaling pathway. Consistent with the above results, downregulation of MEG3 facilitated NB malignant phenotypes. Mechanistically, MEG3 and EZH2 regulated each other via a negative feedback loop and promoted NB progression together. In conclusion, our findings suggested that MEG3 was a tumor suppressor in NB and could be a potential target for NB treatment in the future.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Hong Lu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weitao Tang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Tianrui Jing
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shiyu Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| |
Collapse
|
17
|
Gao Y, Luo X, Meng T, Zhu M, Tian M, Lu X. [DNMT1 protein promotes retinoblastoma proliferation by silencing MEG3 gene]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1239-1245. [PMID: 32990237 DOI: 10.12122/j.issn.1673-4254.2020.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate whether DNMT1 protein induces retinoblastoma proliferation by silencing MEG3 gene. METHODS Two retinoblastoma cell lines (HXO-RB44 and SO-RB50) and a normal human retinal pigment epithelial (RPE) cell line were transfected with the plasmid pcDNA-DNMT1 or si-DNMT1 for up-regulating or interference of DNMT1 expression, and with pcDNA-MEG3 or si-MEG3 for up-regulating or interference of MEG3 expression. Western blotting was used to detect the changes in the expression of DNMT1 protein in the transfected cells, and CCK-8 and EdU assays were used to detect the changes in cell proliferation. Real-time quantitative PCR (qRT-PCR) was performed to detect MEG3 expression in SO-RB50 and HXO-RB44 cells after transfection, and the methylation level of MEG3 gene promoter after interference of DNMT1 expression was detected using methylation-specific PCR. RESULTS SO-RB50 and HXO-RB44 cells showed significantly increased expression of DNMT1 protein as compared with normal RPE cells (P < 0.05). In HXO-RB44 cells, transfection with pcDNADNMT1 resulted in significantly increased expression of DNMT1 protein, enhanced cell proliferation ability, and significantly reduced expression of MEG3 (P < 0.05). In SO-RB50 cells, transfection with si-DNMT1 significantly reduced the expression of DNMT1 protein, suppressed the cell proliferation, and increased MEG3 expression (P < 0.05). Interference of DNMT1 significantly reduced the methylation level of MEG3 gene promoter. After reversing the regulatory effect of DNMT1 on MEG3 gene, DNMT1 protein showed significantly weakened ability to regulate retinoblastoma cell proliferation (P < 0.05). CONCLUSIONS In retinoblastoma cells, the up-regulation of DNMT1 protein induces promoter methylation and inactivation of MEG3 gene and eventually leads to abnormal cell proliferation.
Collapse
Affiliation(s)
- Yali Gao
- Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - Xiaoling Luo
- Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - Ting Meng
- Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - Minjuan Zhu
- Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - Meiwen Tian
- Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
18
|
Lv Z, Sun L, Xu Q, Xing C, Yuan Y. Joint analysis of lncRNA m 6A methylome and lncRNA/mRNA expression profiles in gastric cancer. Cancer Cell Int 2020; 20:464. [PMID: 32982586 PMCID: PMC7517696 DOI: 10.1186/s12935-020-01554-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background N 6-methyladenosine (m6A) modification might be closely associated with the genesis and development of gastric cancer (GC). Currently, the evidence established by high-throughput assay for GC-related m6A patterns based on long non-coding RNAs (lncRNAs) remains limited. Here, a joint analysis of lncRNA m6A methylome and lncRNA/mRNA expression profiles in GC was performed to explore the regulatory roles of m6A modification in lncRNAs. Methods Three subjects with primary GC were enrolled in our study and paired sample was randomly selected from GC tissue and adjacent normal tissue for each case. Methylated RNA Immunoprecipitation NextGeneration Sequencing (MeRIP-Seq) and Microarray Gene Expression Profiling was subsequently performed. Then co-expression analysis and gene enrichment analysis were successively conducted. Results After data analysis, we identified 191 differentially m6A-methylated lncRNAs, 240 differentially expressed lncRNAs and 229 differentially expressed mRNAs in GC. Furthermore, four differentially m6A-methylated and expressed lncRNAs (dme-lncRNAs) were discovered including RASAL2-AS1, LINC00910, SNHG7 and LINC01105. Their potential target genes were explored by co-expression analysis. And gene enrichment analysis suggested that they might influence the cellular processes and biological behaviors involved in mitosis and cell cycle. The potential impacts of these targets on GC cells were further validated by CCLE database and literature review. Conclusions Four novel dme-lncRNAs were identified in GC, which might exert regulatory roles on GC cell proliferation. The present study would provide clues for the lncRNA m6A methylation-based research on GC epigenetic etiology and pathogenesis.
Collapse
Affiliation(s)
- Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001 Liaoning China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001 Liaoning China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001 Liaoning China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001 Liaoning China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001 Liaoning China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
19
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|
20
|
Chen B, Ding P, Hua Z, Qin X, Li Z. Analysis and identification of novel biomarkers involved in neuroblastoma via integrated bioinformatics. Invest New Drugs 2020; 39:52-65. [PMID: 32772341 DOI: 10.1007/s10637-020-00980-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Under various treatments, some patients still have a poor prognosis. Hence, it is necessary to find new valid targets for NB therapy. In this study, a comprehensive bioinformatic analysis was used to identify differentially expressed genes (DEGs) between NB and control cells, and to select hub genes associated with NB. GSE66586 and GSE78061 datasets were downloaded from the Gene Expression Omnibus (GEO) database and DEGs were selected. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to the selected DEGs. The STRING database and Cytoscape software were used to construct protein-protein interaction (PPI) networks and perform modular analysis of the DEGs. The R2 database was used for prognostic analysis. We identified a total of 238 DEGs from two microarray databases. GO enrichment analysis shows that these DEGs are mainly concentrated in the regulation of cell growth, cell migration, cell fate determination, and cell maturation. KEGG pathway analysis showed that these DEGs are mainly involved in focal adhesion, the TNF signaling pathway, cancer-related pathways, and signaling pathways regulating stem cell pluripotency. We identified the 15 most closely related DEGs from the PPI network, and performed R2 database prognostic analysis to select five hub genes - CTGF, EDN1, GATA2, LOX, and SERPINE1. This study distinguished hub genes and related signaling pathways that can potentially serve as diagnostic indicators and therapeutic biomarkers for NB, thereby improving understanding of the molecular mechanisms involved in NB.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Peng Ding
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiuni Qin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China. .,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
21
|
Ding H, Huang J, Wu D, Zhao J, Huang J, Lin Q. Silencing of the long non-coding RNA MEG3 suppresses the apoptosis of aortic endothelial cells in mice with chronic intermittent hypoxia via downregulation of HIF-1α by competitively binding to microRNA-135a. J Thorac Dis 2020; 12:1903-1916. [PMID: 32642094 PMCID: PMC7330306 DOI: 10.21037/jtd-19-2472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) involves substantial cortico-hippocampal injury, causing impairments of neurocognitive, respiratory, and cardiovascular functions. Long non-coding RNAs (lncRNAs) participate in CIH functions and development. Therefore, we explored the mechanisms involving lncRNA maternally expressed gene 3 (MEG3) regulating the aortic endothelial function of CIH mice via regulation of microRNA-135a (miR-135a) and the hypoxia-inducible factor (HIF)-1α. METHODS Expression of MEG3, miR-135a, and HIF-1α in CIH mice and CIH-treated cells was detected. Then, the apoptosis and proliferation of the aortic endothelial cells were examined to verify whether miR-135a and HIF-1α participated in CIH. Next, the interactions between MEG3, miR-135a, and HIF-1α were explored. Later, the effects of MEG3/miR-135a/HIF-1α on the expression of proliferation- and apoptosis-related factors and aortic injury were investigated via gain- and loss-of function studies both in vivo and in vitro. RESULTS MEG3 and HIF-1α were highly expressed while miR-135a was poorly expressed in CIH mice and CIH-modeled cells. Moreover, miR-135a targeted HIF-1α to promote cell proliferation and inhibit apoptosis. MEG3 regulated HIF-1α expression by competitively binding to miR-135a. More importantly, we found that the silencing of MEG3/HIF-1α and the overexpression of miR-135a inhibited the apoptosis and injury of aortic endothelial cells while promoting cell proliferation in CIH mice. CONCLUSIONS Altogether, silencing of MEG3 suppressed the aortic endothelial injury and cell apoptosis in CIH mice by downregulating HIF-1α through sponging miR-135a, providing evidence of a potential therapeutic target for CIH.
Collapse
Affiliation(s)
- Haibo Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jiefeng Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Dawen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jianming Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jianchai Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Qichang Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
22
|
Yu Z, Zhang J, Han J. Silencing CASC11 curbs neonatal neuroblastoma progression through modulating microRNA-676-3p/nucleolar protein 4 like (NOL4L) axis. Pediatr Res 2020; 87:662-668. [PMID: 31645055 DOI: 10.1038/s41390-019-0625-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroblastoma is the commonest extracranial solid cancer for neonates. Long non-coding RNA cancer susceptibility 11 (CASC11) is corroborated as carcinogen in several tumors. But its role in neonatal neuroblastoma is poorly defined. METHODS Expression levels of CASC11, miR-676-3p, and NOL4L mRNA were analyzed by qRT-PCR in cells and tissues. Kaplan-Meier analysis was used to measure and analyze the survival time of patients with high/low CASC11. Neonatal neuroblastoma cell proliferation was reflected through colony-formation assay and CCK-8. Transwell assay was designed for detection of migratory and invasive capacities of neonatal neuroblastoma cells. Wound-healing assay was used for monitoring neuroblastoma cell migration. RNA pull-down, luciferase reporter, and RIP assays were utilized to identify the relationship between CASC11, miR-676-3p, and NOL4L on the basis of bioinformatics tools. RESULTS Highly expressed CASC11 was observed in neonatal neuroblastoma tissues and cells. High level of CASC11 indicated unsatisfactory survival of neonatal neuroblastoma patients. CASC11 depletion inhibited cell proliferation and invasiveness. CASC11 was a molecular sponge to release NOL4L from miR-676-3p inhibition in tumor cells. Upregulation of NOL4L abated the suppressed cell proliferation and invasiveness due to CASC11 downregulation. CONCLUSION CASC11 sequestered miR-676-3p from NOL4L to facilitate neonatal neuroblastoma progression, hinting a CASC11-mediated therapeutic target for neonatal neuroblastoma.
Collapse
Affiliation(s)
- Zekun Yu
- Department of Neonatology, the First Hospital of Jilin University, No. 71, XinMin Street, Changchun, 130021, Jilin, China
| | - Jing Zhang
- Department of Neonatology, the First Hospital of Jilin University, No. 71, XinMin Street, Changchun, 130021, Jilin, China
| | - Jun Han
- Department of Neonatology, the First Hospital of Jilin University, No. 71, XinMin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
23
|
Wang J, Wang Z, Yao W, Dong K, Zheng S, Li K. The association between lncRNA LINC01296 and the clinical characteristics in neuroblastoma. J Pediatr Surg 2019; 54:2589-2594. [PMID: 31522796 DOI: 10.1016/j.jpedsurg.2019.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid tumor in childhood. In this work, the clinical value of long noncoding RNA LINC01296 was evaluated in patients with neuroblastoma. METHODS LncRNA microarray was conducted to identify differentially expressed lncRNAs in 5 early stage and 5 advanced stage tumor tissues of neuroblastoma. RT-qPCR was carried out to validate the result of microarray. Clinical information was reviewed to analyze the relationship between lncRNA and clinical characteristics. The public database R2 was used to analyze prognosis. RESULTS 765 differentially expressed lncRNAs were identified. LINC01296 was the most overexpressed lncRNA in advanced stage patients. RT-qPCR was conducted in 28 tumor tissues, confirming the tendency with microarray. Higher expression of LINC01296 was associated with age > 18 months (p = 0.004) and advanced stage (p = 0.021). Furthermore, LINC01296 was correlated with tumor size (r = 0.4060, p = 0.0321), LDH level (r = 0.6904, p = 0.0002), and NSE level (r = 0.5772, p = 0.0013). The neuroblastoma dataset shows patients with overexpression of LINC01296 obtained a shorter overall survival than low expression (n = 88, log-rank: P < 0.0001). CONCLUSION LINC01296 is associated with clinical characteristics of neuroblastoma and may function as a prognostic predictor. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Gao L, Lin P, Chen P, Gao R, Yang H, He Y, Chen J, Luo Y, Xu Q, Liang S, Gu J, Huang Z, Dang Y, Chen G. A novel risk signature that combines 10 long noncoding RNAs to predict neuroblastoma prognosis. J Cell Physiol 2019; 235:3823-3834. [PMID: 31612488 DOI: 10.1002/jcp.29277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Gao
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Peng Lin
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Peng Chen
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Rui‐Zhi Gao
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Hong Yang
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yun He
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jia‐Bo Chen
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yi‐Ge Luo
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Qiong‐Qian Xu
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Song‐Wu Liang
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jin‐Han Gu
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhi‐Guang Huang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yi‐Wu Dang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
25
|
Wu X, Li J, Ren Y, Zuo Z, Ni S, Cai J. MEG3 can affect the proliferation and migration of colorectal cancer cells through regulating miR-376/PRKD1 axis. Am J Transl Res 2019; 11:5740-5751. [PMID: 31632544 PMCID: PMC6789261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The down-regulation of long non-coding RNA (lncRNA) MEG3 has been observed in various cancers; nonetheless, underlying mechanisms are still unclear. The current research work aims at exploring the roles of MEG3 in the pathogenesis of CRC and the associated mechanism. We observed that MEG3 was significantly down-regulated in both CRC tumor tissue and cell lines; also, the transient over-expression of MEG3 in CRC cell line SW480 and LoVo inhibited the proliferation and the migration and clone formation capability of cells; on the other hand, the knockdown of MEG3 has revealed opposite effects. Eventually, we figured it out that target miR-376 directly targeted both MEG3 and PRDK1 in SW480 and LoVo cells. To conclude, as our findings proved, MEG3 is likely to act as a tumor suppressor in the pathogenesis of CRC by means of the regulation of the miR-376/PRDK1 signal axis, suggesting that MEG3 has the potential to become a novel therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Xiangbin Wu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Jinlei Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Yuehan Ren
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Zhigui Zuo
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Shichang Ni
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Jianhui Cai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 534] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
27
|
Abstract
Objective: Recent studies have shown the important influence of various micro factors on the general biological activity and function of endothelial cells (ECs). Vascular endothelial growth factor (VEGF) and angiogenin (ANG) are classic micro factors that promote proliferation, differentiation, and migration of ECs. The underlying pathophysiological mechanisms and related pathways of these micro factors remain the focus of current research. Data sources: An extensive search was undertaken in the PubMed database by using keywords including “micro factors” and “endothelial cell.” This search covered relevant research articles published between January 1, 2007 and December 31, 2018. Study selection: Original articles, reviews, and other articles were searched and reviewed for content on micro factors of ECs. Results: VEGF and ANG have critical functions in the occurrence, development, and status of the physiological pathology of ECs. Other EC-associated micro factors include interleukin 10, tumor protein P53, nuclear factor kappa B subunit, interleukin 6, and tumor necrosis factor. The results of Gene Ontology analysis revealed that variations were mainly enriched in positive regulation of transcription by the RNA polymerase II promoter, cellular response to lipopolysaccharides, negative regulation of apoptotic processes, external side of the plasma membrane, cytoplasm, extracellular regions, cytokine activity, growth factor activity, and identical protein binding. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that micro factors were predominantly enriched in inflammatory diseases. Conclusions: In summary, the main mediators, factors, or genes associated with ECs include VEGF and ANG. The effect of micro factors on ECs is complex and multifaceted. This review summarizes the correlation between ECs and several micro factors.
Collapse
|
28
|
Sherpa C, Rausch JW, Le Grice SF. Structural characterization of maternally expressed gene 3 RNA reveals conserved motifs and potential sites of interaction with polycomb repressive complex 2. Nucleic Acids Res 2019; 46:10432-10447. [PMID: 30102382 PMCID: PMC6212721 DOI: 10.1093/nar/gky722] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key players in gene regulation. However, our incomplete understanding of the structure of lncRNAs has hindered molecular characterization of their function. Maternally expressed gene 3 (Meg3) lncRNA is a tumor suppressor that is downregulated in various types of cancer. Mechanistic studies have reported a role for Meg3 in epigenetic regulation by interacting with chromatin-modifying complexes such as the polycomb repressive complex 2 (PRC2), guiding them to genomic sites via DNA-RNA triplex formation. Resolving the structure of Meg3 RNA and characterizing its interactions with cellular binding partners will deepen our understanding of tumorigenesis and provide a framework for RNA-based anti-cancer therapies. Herein, we characterize the architectural landscape of Meg3 RNA and its interactions with PRC2 from a functional standpoint.
Collapse
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Stuart Fj Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| |
Collapse
|
29
|
Søkilde R, Persson H, Ehinger A, Pirona AC, Fernö M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, Saal L, Borg Å, Vallon-Christerson J, Rovira C. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics 2019; 20:503. [PMID: 31208318 PMCID: PMC6580620 DOI: 10.1186/s12864-019-5887-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Accurate classification of breast cancer using gene expression profiles has contributed to a better understanding of the biological mechanisms behind the disease and has paved the way for better prognostication and treatment prediction. Results We found that miRNA profiles largely recapitulate intrinsic subtypes. In the case of HER2-enriched tumors a small set of miRNAs including the HER2-encoded mir-4728 identifies the group with very high specificity. We also identified differential expression of the miR-99a/let-7c/miR-125b miRNA cluster as a marker for separation of the Luminal A and B subtypes. High expression of this miRNA cluster is linked to better overall survival among patients with Luminal A tumors. Correlation between the miRNA cluster and their precursor LINC00478 is highly significant suggesting that its expression could help improve the accuracy of present day’s signatures. Conclusions We show here that miRNA expression can be translated into mRNA profiles and that the inclusion of miRNA information facilitates the molecular diagnosis of specific subtypes, in particular the clinically relevant sub-classification of luminal tumors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5887-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rolf Søkilde
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Helena Persson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Anna Ehinger
- Clinical Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Anna Chiara Pirona
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,German Cancer Research Center DKFZ, Division of Functional Genome Analysis, Heidelberg, Germany
| | - Mårten Fernö
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Lund University, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - Martin Malmberg
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - Lisa Rydén
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Lao Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Johan Vallon-Christerson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Carlos Rovira
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden. .,BioCARE, Strategic Cancer Research Program, Lund, Sweden.
| |
Collapse
|
30
|
Utnes P, Løkke C, Flægstad T, Einvik C. Clinically Relevant Biomarker Discovery in High-Risk Recurrent Neuroblastoma. Cancer Inform 2019; 18:1176935119832910. [PMID: 30886518 PMCID: PMC6413431 DOI: 10.1177/1176935119832910] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a pediatric cancer of the developing sympathetic nervous system.
High-risk neuroblastoma patients typically undergo an initial remission in
response to treatment, followed by recurrence of aggressive tumors that have
become refractory to further treatment. The need for biomarkers that can select
patients not responding well to therapy in an early phase is therefore needed.
In this study, we used next generation sequencing technology to determine the
expression profiles in high-risk neuroblastoma cell lines established before and
after therapy. Using partial least squares-discriminant analysis (PLS-DA) with
least absolute shrinkage and selection operator (LASSO) and leave-one-out
cross-validation, we identified a panel of 55 messenger RNAs and 17 long
non-coding RNAs (lncRNAs) which were significantly altered in the expression
between cell lines isolated from primary and recurrent tumors. From a
neuroblastoma patient cohort, we found 20 of the 55 protein-coding genes to be
differentially expressed in patients with unfavorable compared with favorable
outcome. We further found a twofold increase or decrease in hazard ratios in
these genes when comparing patients with unfavorable and favorable outcome. Gene
set enrichment analysis (GSEA) revealed that these genes were involved in
proliferation, differentiation and regulated by Polycomb group (PcG) proteins.
Of the 17 lncRNAs, 3 upregulated (NEAT1, SH3BP5-AS1, NORAD) and
3 downregulated lncRNAs (DUBR, MEG3, DHRS4-AS1) were also found
to be differentially expressed in favorable compared with unfavorable outcome.
Moreover, using expression profiles on both miRNAs and mRNAs in the same cohort
of cell lines, we found 13 downregulated and 18 upregulated experimentally
observed miRNA target genes targeted by miR-21, -424 and
-30e, -29b, -138, -494, -181a, -34a, -29b,
respectively. The advantage of analyzing biomarkers in a clinically relevant
neuroblastoma model system enables further studies on the effect of individual
genes upon gene perturbation. In summary, this study identified several genes,
which may aid in the prediction of response to therapy and tumor recurrence.
Collapse
Affiliation(s)
- Peter Utnes
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, Tromsø, Norway
| | - Cecilie Løkke
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, Tromsø, Norway
| | - Trond Flægstad
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, Tromsø, Norway.,Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, Tromsø, Norway
| | - Christer Einvik
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, Tromsø, Norway.,Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, Tromsø, Norway
| |
Collapse
|
31
|
Oskooei VK, Ghafouri-Fard S. Are long non-coding RNAs involved in the interaction circuit between estrogen receptor and vitamin D receptor? Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Liao M, Liu Q, Li B, Liao W, Xie W, Zhang Y. A group of long noncoding RNAs identified by data mining can predict the prognosis of lung adenocarcinoma. Cancer Sci 2018; 109:4033-4044. [PMID: 30290038 PMCID: PMC6272079 DOI: 10.1111/cas.13822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNA) are reported to be potential cancer biomarkers. This study aims to find new lncRNA biomarker relevant to lung adenocarcinoma. Gene expression profile and clinical data of lung adenocarcinoma and lung squamous cell carcinoma patients were downloaded from the UCSC Xena database. These data were analyzed to identify potential lncRNA prognostic biomarkers, and the candidate lncRNAs were analyzed and verified with association analysis, meta-analysis, survival analysis, gene ontology analysis, gene set enrichment analysis, and other statistical methods. A group of 5 lncRNAs was identified from the 1965 differentially expressed (fold-change >2) genes. Four of these 5 lncRNAs were expressed at a lower level in lung adenocarcinoma tissues and the other one at a higher level (P < .0001). A risk score model was constructed using a linear combination of the expression levels of these lncRNAs. High-risk patients showed poorer overall survival (hazard ratio [HR] = 2.14; 95% confidence interval [CI], 1.67-3.06, P < .0001), disease-free survival (HR = 1.84; 95% CI, 1.26-2.35, P = .0007), and recurrence-free survival (HR = 1.51; 95% CI, 1.02-2.40, P = .04). The 5-fold cross-validation and subsequent meta-analysis further verified that patients in the low-risk group had better survival (95% CI, 0.74-1.79, Z = 4.72, P < .00001). Furthermore, both univariate and multivariate Cox regression analyses revealed that the prognostic value of these 5 lncRNAs was independent of other clinical prognostic factors. Further analysis indicated that these 5 lncRNAs might be associated with tumor metastasis. Taken together, our study suggests new prognostic lncRNA biomarkers for lung adenocarcinoma.
Collapse
Affiliation(s)
- Meijian Liao
- School of Life Sciences, Tsinghua University, Beijing, China.,Key Laboratory in Health Science and Technology, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qing Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,Key Laboratory in Health Science and Technology, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bing Li
- School of Life Sciences, Tsinghua University, Beijing, China.,Key Laboratory in Health Science and Technology, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Weijie Liao
- School of Life Sciences, Tsinghua University, Beijing, China.,Key Laboratory in Health Science and Technology, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Weidong Xie
- Key Laboratory in Health Science and Technology, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Open FIESTA Center, Tsinghua University, Shenzhen, China
| | - Yaou Zhang
- Key Laboratory in Health Science and Technology, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Open FIESTA Center, Tsinghua University, Shenzhen, China
| |
Collapse
|
33
|
Haque SU, Niu L, Kuhnell D, Hendershot J, Biesiada J, Niu W, Hagan MC, Kelsey KT, Casper KA, Wise-Draper TM, Medvedovic M, Langevin SM. Differential expression and prognostic value of long non-coding RNA in HPV-negative head and neck squamous cell carcinoma. Head Neck 2018; 40:1555-1564. [PMID: 29575229 DOI: 10.1002/hed.25136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/30/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) has emerged as a new avenue of interest due to its various biological functions in cancer. Abnormal expression of lncRNA has been reported in other malignancies but has been understudied in head and neck squamous cell carcinoma (HNSCC). METHODS The lncRNA expression was interrogated via quantitative real-time polymerase chain reaction (qRT-PCR) array for 19 human papillomavirus (HPV)-negative HNSCC tumor-normal pairs. The Cancer Genome Atlas (TCGA) was used to validate these results. The association between differentially expressed lncRNA and survival outcomes was analyzed. RESULTS Differential expression was validated for 5 lncRNA (SPRY4-IT1, HEIH, LUCAT1, LINC00152, and HAND2-AS1). There was also an inverse association between MEG3 expression (not significantly differentially expressed in TCGA tumors but highly variable expression) and 3-year recurrence-free survival (RFS). CONCLUSION We identified and validated differential expression of 5 lncRNA in HPV-negative HNSCC. Low MEG3 expression was associated with favorable 3-year RFS, although the significance of this finding remains unclear.
Collapse
Affiliation(s)
- Sulsal-Ul Haque
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Liang Niu
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Damaris Kuhnell
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jacob Hendershot
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jacek Biesiada
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wen Niu
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew C Hagan
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Keith A Casper
- Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan
| | - Trisha M Wise-Draper
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
34
|
PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Semin Cancer Biol 2017; 52:53-65. [PMID: 29196189 DOI: 10.1016/j.semcancer.2017.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.
Collapse
|
35
|
Cui X, Jing X, Long C, Tian J, Zhu J. Long noncoding RNA MEG3, a potential novel biomarker to predict the clinical outcome of cancer patients: a meta-analysis. Oncotarget 2017; 8:19049-19056. [PMID: 28157702 PMCID: PMC5386668 DOI: 10.18632/oncotarget.14987] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have demonstrated that the expression level of maternally expressed gene 3 (MEG3) was lost in various cancers. Low expression of MEG3 is associated with an increased risk of metastasis and a poor prognosis in cancer patients. This meta-analysis investigated the association between MEG3 levels and distant metastasis (DM), lymph node metastasis (LNM), overall survival (OS), and recurrence-free survival (RFS) of cancer patients. A total of 536 participants from 9 articles were finally enrolled. The results showed a significant negative association between MEG3 levels and DM (OR = 2.16, 95% CI = 0.99–4.71, P = 0.05, fixed-effect), and it could also predict poor OS (HR = 0.43, 95% CI = 0.15–1.24, P = 0.006, fixed-effect) and RFS (HR = 0.52, 95% CI = 0.29–0.92, P = 0.02, fixed-effect) in cancer patients. In conclusion, this meta-analysis indicated that MEG3 might serve as a potential novel biomarker for indicating the clinical outcomes in human cancers.
Collapse
Affiliation(s)
- Xiangrong Cui
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Shanxi, 030000, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| |
Collapse
|
36
|
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8:73282-73295. [PMID: 29069869 PMCID: PMC5641212 DOI: 10.18632/oncotarget.19931] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
LncRNAs are emerging as integral functional and regulatory components of normal biological activities and are now considered as critically involved in the development of different diseases including cancer. In this review, we summarized recent findings on maternally expressed gene 3 (MEG3), a noncoding lncRNA, locates in the imprinted DLK1–MEG3 locus on human chromosome 14q32.3 region. MEG3 is expressed in normal tissues but is either lost or decreased in many human tumors and tumor derived cell lines. Studies have demonstrated that MEG3 is associated with cancer initiation, progression, metastasis and chemo-resistance. MEG3 may affect the activities of TP53, MDM2, GDF15, RB1 and some other key cell cycle regulators. In addition, the level of MEG3 showed good correlation with cancer clinicopathological grade. In summary, MEGs is an RNA-based tumor suppressor and is involved in the etiology, progression, and chemosensitivity of cancers. The alteration of MEG3 levels in various cancers suggested the possibility of using MEG3 level for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan 523808, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Yanhong Luo
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Biyu Liang
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Lei Ye
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Guangxing Lu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Weiming He
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
37
|
Zhang H, Wei DL, Wan L, Yan SF, Sun YH. Highly expressed lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/β-catenin signaling. Biochem Biophys Res Commun 2016; 482:1219-1225. [PMID: 27923660 DOI: 10.1016/j.bbrc.2016.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
Glioma is the most common and aggressive primary brain tumor in adults. Long-non coding RNAs (lncRNAs) have been recently shown to play important roles in regulating numerous biological processes both in physiologic and pathologic condition. However, the role of lncRNAs in glioma remains largely unknown. In this study, we firstly found that lncRNA CCND2-AS2 is significantly up regulated in malignant glioma tissues and cell lines. Both loss- and gain-functions assays show that CCND2-AS1 promotes glioma cells proliferation and growth. In addition, we also revealed that highly expressed CCND2-AS1 could enhance Wnt/β-catenin signaling in glioma. Taken together, our findings revealed a novel lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/β-catenin signaling and CCND2-AS1 might function as a potential novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dai-Lin Wei
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Long Wan
- Department of Oncology, Taian City Central Hospital, Taian, China
| | - Shao-Feng Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Hui Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|