1
|
Mitchell SE, Simpson M, Coulet L, Gouedard S, Hambly C, Morimoto J, Allison DB, Speakman JR. Reproduction has immediate effects on female mortality, but no discernible lasting physiological impacts: A test of the disposable soma theory. Proc Natl Acad Sci U S A 2024; 121:e2408682121. [PMID: 39374394 PMCID: PMC11494338 DOI: 10.1073/pnas.2408682121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
The disposable soma theory (DST) posits that organisms age and die because of a direct trade-off in resource allocation between reproduction and somatic maintenance. DST predicts that investments in reproduction accentuate somatic damage which increase senescence and shortens lifespan. Here, we directly tested DST predictions in breeding and nonbreeding female C57BL/6J mice. We measured reproductive outputs, body composition, daily energy expenditure, and oxidative stress at peak lactation and over lifetime. We found that reproduction had an immediate and negative effect on survival due to problems encountered during parturition for some females. However, there was no statistically significant residual effect on survival once breeding had ceased, indicating no trade-off with somatic maintenance. Instead, higher mortality appeared to be a direct consequence of reproduction without long-term physiological consequences. Reproduction did not elevate oxidative stress. Our findings do not provide support for the predictions of the DST.
Collapse
Affiliation(s)
- Sharon E. Mitchell
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Megan Simpson
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Lena Coulet
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- L'Institut Agro Dijon, Dijon Cedex21079, France
| | - Solenn Gouedard
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- L'Institut Agro Dijon, Dijon Cedex21079, France
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, School of Natural and Computer Sciences, University of Aberdeen, AberdeenAB24 3UE, Scotland, United Kingdom
- Programa de Pós-Graduação em Ecologia e Conservação, Department of Ecology, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná81531-980, Brazil
| | - David B. Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, IN47405
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- Shenzhen key laboratory of metabolic health, Center for Energy metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong province1068, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Institute of Health Sciences, China Medical University, Liaoning Province, Shenyang110052, China
| |
Collapse
|
2
|
Ma L, Yang H, Xiao X, Chen Q, Lv W, Xu T, Jin Y, Wang W, Xiao Y. Co-exposure to sodium hypochlorite and cadmium induced locomotor behavior disorder by influencing neurotransmitter secretion and cardiac function in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123070. [PMID: 38056588 DOI: 10.1016/j.envpol.2023.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Sodium hypochlorite (NaClO) and cadmium (Cd) are widely co-occurring in natural aquatic environment; however, no study has been conducted on effects of their combined exposure on aquatic organisms. To assess effects of exposure to NaClO and Cd in zebrafish larvae, we designed six treatment groups, as follows: control group, NaClO group (300 μg/L), 1/100 Cd group (48 μg/L), 1/30 Cd group (160 μg/L), NaClO+1/100 Cd group, and NaClO+1/30 Cd group analyzed behavior, neurological function and cardiac function. Results revealed that exposure to 1/30 Cd and NaClO+1/30 Cd caused abnormal embryonic development in larvae by altering body morphology and physiological indicators. Combined exposure to NaClO and 1/30 Cd affected the free-swimming activity and behavior of larvae in response to light-dark transition stimuli. Moreover, exposure to 1/30 Cd or NaClO+1/30 Cd resulted in a significant increase in tyrosine hydroxylase and acetylcholinesterase activities, as well as significant changes of various neurotransmitters. Lastly, exposure to 1/30 Cd or NaClO+1/30 Cd influenced the transcription of cardiac myosin-related genes and disturbed the myocardial contractile function. Altogether, our results suggested that combined exposure to NaClO and Cd induced oxidative damage in larvae, resulting in detrimental effects on nervous system and cardiac function, thus altering their swimming behavior.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Birch G, Meniri M, Cant MA, Blount JD. Defence against the intergenerational cost of reproduction in males: oxidative shielding of the germline. Biol Rev Camb Philos Soc 2024; 99:70-84. [PMID: 37698166 DOI: 10.1111/brv.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Reproduction is expected to carry an oxidative cost, yet in many species breeders appear to sustain lower levels of oxidative damage compared to non-breeders. This paradox may be explained by considering the intergenerational costs of reproduction. Specifically, a reduction in oxidative damage upon transitioning to a reproductive state may represent a pre-emptive shielding strategy to protect the next generation from intergenerational oxidative damage (IOD) - known as the oxidative shielding hypothesis. Males may be particularly likely to transmit IOD, because sperm are highly susceptible to oxidative damage. Yet, the possibility of male-mediated IOD remains largely uninvestigated. Here, we present a conceptual and methodological framework to assess intergenerational costs of reproduction and oxidative shielding of the germline in males. We discuss variance in reproductive costs and expected payoffs of oxidative shielding according to species' life histories, and the expected impact on offspring fitness. Oxidative shielding presents an opportunity to incorporate intergenerational effects into the advancing field of life-history evolution.
Collapse
Affiliation(s)
- Graham Birch
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Magali Meniri
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Michael A Cant
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Jonathan D Blount
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| |
Collapse
|
4
|
Armstrong HC, Russell DJF, Moss SEW, Pomeroy P, Bennett KA. Fitness correlates of blubber oxidative stress and cellular defences in grey seals (Halichoerus grypus): support for the life-history-oxidative stress theory from an animal model of simultaneous lactation and fasting. Cell Stress Chaperones 2023; 28:551-566. [PMID: 36933172 PMCID: PMC10469160 DOI: 10.1007/s12192-023-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Life-history-oxidative stress theory predicts that elevated energy costs during reproduction reduce allocation to defences and increase cellular stress, with fitness consequences, particularly when resources are limited. As capital breeders, grey seals are a natural system in which to test this theory. We investigated oxidative damage (malondialdehyde (MDA) concentration) and cellular defences (relative mRNA abundance of heat shock proteins (Hsps) and redox enzymes (REs)) in blubber of wild female grey seals during the lactation fast (n = 17) and summer foraging (n = 13). Transcript abundance of Hsc70 increased, and Nox4, a pro-oxidant enzyme, decreased throughout lactation. Foraging females had higher mRNA abundance of some Hsps and lower RE transcript abundance and MDA concentrations, suggesting they experienced lower oxidative stress than lactating mothers, which diverted resources into pup rearing at the expense of blubber tissue damage. Lactation duration and maternal mass loss rate were both positively related to pup weaning mass. Pups whose mothers had higher blubber glutathione-S-transferase (GST) expression at early lactation gained mass more slowly. Higher glutathione peroxidase (GPx) and lower catalase (CAT) were associated with longer lactation but reduced maternal transfer efficiency and lower pup weaning mass. Cellular stress, and the ability to mount effective cellular defences, could proscribe lactation strategy in grey seal mothers and thus affect pup survival probability. These data support the life-history-oxidative stress hypothesis in a capital breeding mammal and suggest lactation is a period of heightened vulnerability to environmental factors that exacerbate cellular stress. Fitness consequences of stress may thus be accentuated during periods of rapid environmental change.
Collapse
Affiliation(s)
- Holly C Armstrong
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK.
| | - Debbie J F Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Kimberley A Bennett
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| |
Collapse
|
5
|
Li J, Li J, Zhai L, Lu K. Co-exposure of polycarbonate microplastics aggravated the toxic effects of imidacloprid on the liver and gut microbiota in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104194. [PMID: 37348773 DOI: 10.1016/j.etap.2023.104194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The joint toxicity of microplastics (MPs) and pesticides may be different from MPs or pesticides individually, however, the information about the combined toxicity of MPs and pesticides is not well understood. Herein, we investigated the joint toxicity of polycarbonate (PC) MPs and imidacloprid (IMI) on mice. After orally exposure for 4 weeks, PC and/or IMI lowered the body weight gain of mice. Single exposure of IMI induced the tissue damage in liver by disturbing the redox homeostasis, and PC significantly aggravated the imbalance of redox homeostasis by facilitating the accumulation of IMI in liver. Additionally, compared to single exposure of PC or IMI, PC+IMI exposure caused more severe damage to the gut microstructure and microbial diversity. Several key metabolic pathways, especially the lipid metabolism, were significantly affected. Overall, these findings provide new insight into understanding the potential risk of co-exposure of microplastics and pesticides to animal and human health.
Collapse
Affiliation(s)
- Jiao Li
- Nanjing Qixia District Hospital, Nanjing 210033, China; Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Clinical Oncology School of Fujian Medical University, Department of radiology, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Gupta P, Mahapatra A, Suman A, Singh RK. In silico and in vivo assessment of developmental toxicity, oxidative stress response & Na +/K +-ATPase activity in zebrafish embryos exposed to cypermethrin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114547. [PMID: 36680990 DOI: 10.1016/j.ecoenv.2023.114547] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Cypermethrin (CYP), a synthetic type II pyrethroid pesticide, is extensively used to control pests in industrial, domestic, and agricultural environments. However, its indiscriminate use leads to a potential threat to aquatic organisms. Although several reports focussed on developmental toxicity effects, a concise study combining cardiotoxicity along with Na+/K+-ATPase activity and molecular docking of developmental proteins with CYP was lacking. This present study was designed to address this gap to comprehend the impact of CYP exposure (0, 25, 100 and 200 µg/L) on embryonic zebrafish. As a result, CYP delayed the hatching rate, reduced heart rate, increased mortality rate and induced numerous morphological abnormalities. Subsequently, CYP induced oxidative stress in treated zebrafish embryos with the concomitant increase in antioxidant enzymes (SOD and CAT) and malondialdehyde production. In addition, an alteration in AChE, NO content and Na+/K+-ATPase activity was observed, suggesting a disruption in cardiac development and ion regulation. Furthermore, AO staining showed notable apoptotic cells which are supported by alteration in apoptosis-related gene expressions. Moreover, to explore the putative targets of CYP, computational docking with developmental proteins (WNT3A, WNT8A, GATA-4, Nkx 2-5 and ZHE1) showed strong interactions and binding. Taken together, our findings provide a better understanding of assessing the ecotoxicological risk information and the mode of action underlying the development of teleost fishes following CYP exposure. Meanwhile, the pioneering nature of this study is to emphasize the future use of Na+/K+-ATPase activity as a potential toxicity biomarker and in silico molecular docking studies to complement developmental toxicity findings.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Qin Z, Wang W, Weng Y, Bao Z, Yang G, Jin Y. Bromuconazole exposure induces cardiotoxicity and lipid transport disorder in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109451. [PMID: 36064135 DOI: 10.1016/j.cbpc.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Bromuconazole (BRO), as one of the typical triazole fungicides, has not been reported on its effects on aquatic organisms. In this study, zebrafish embryos were used as experimental objects to evaluate the toxicity of BRO. In the acute embryo toxicity test, it was observed that the heart rate and growing development were affected by BRO in a concentration-dependent manner, and the half-lethal concentration (LC50) of BRO at 96 h post-fertilization (hpf) was about 11.83 mg/L. Then, low concentrations of BRO (50 ng/L, 0.075 mg/L, 0.3 mg/L, 1.2 mg/L), which were set according to the LC50 and environmental related concentrations, were used to analyze the toxic effects on the different endpoints in larval zebrafish. Interestingly, the transcriptomic analysis found that most different expressed genes (DEGs) could be focused on the pathways of lipid metabolism, myocardial function, glycometabolism, indicating that heart function and lipid metabolism in larval zebrafish were disrupted by BRO. For supporting this idea, we re-exposed the transgenic zebrafish and WT zebrafish embryos, proved that BRO caused damage to heart development and lipid transport on morphological and genetic level, which was consistent with transcriptomic results. In addition, BRO exposure caused oxidative damage in the larvae. Taken together, BRO exposure could affect the myocardial contraction function and lipid transport in larval zebrafish, accompanied by disturbances in the level of oxidative stress, which was of great significance for improving the biotoxicological information of BRO.
Collapse
Affiliation(s)
- Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
8
|
Ferroptosis and Apoptosis Are Involved in the Formation of L-Selenomethionine-Induced Ocular Defects in Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms23094783. [PMID: 35563172 PMCID: PMC9100823 DOI: 10.3390/ijms23094783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Selenium is an essential trace element for humans and other vertebrates, playing an important role in antioxidant defense, neurobiology and reproduction. However, the toxicity of excessive selenium has not been thoroughly evaluated, especially for the visual system of vertebrates. In this study, fertilized zebrafish embryos were treated with 0.5 µM L-selenomethionine to investigate how excessive selenium alters zebrafish eye development. Selenium-stressed zebrafish embryos showed microphthalmia and altered expression of genes required for retinal neurogenesis. Moreover, ectopic proliferation, disrupted mitochondrial morphology, elevated ROS-induced oxidative stress, apoptosis and ferroptosis were observed in selenium-stressed embryos. Two antioxidants—reduced glutathione (GSH) and N-acetylcysteine (NAC)—and the ferroptosis inhibitor ferrostatin (Fer-1) were unable to rescue selenium-induced eye defects, but the ferroptosis and apoptosis activator cisplatin (CDDP) was able to improve microphthalmia and the expression of retina-specific genes in selenium-stressed embryos. In summary, our results reveal that ferroptosis and apoptosis might play a key role in selenium-induced defects of embryonic eye development. The findings not only provide new insights into selenium-induced cellular damage and death, but also important implications for studying the association between excessive selenium and ocular diseases in the future.
Collapse
|
9
|
Meydan I, Seckin H, Burhan H, Gür T, Tanhaei B, Sen F. Arum italicum mediated silver nanoparticles: Synthesis and investigation of some biochemical parameters. ENVIRONMENTAL RESEARCH 2022; 204:112347. [PMID: 34767821 DOI: 10.1016/j.envres.2021.112347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The science world advancing day by day contributes to living systems in many areas with the development of nanotechnology. Besides being easily obtained from plants, the advantages it brings increase the importance of nanotechnology. Environmentally friendly, economical, and compatible with plants are just a few of the advantages it brings. Silver metal is one of the most preferred active ingredients in nanoparticle synthesis. Arum italicum is used in the treatment of various diseases in the health sector due to the structures it contains. In our study, nanoparticle synthesis was made by using Ag metal with Arum italicum plant. Then, the antimicrobial, DNA damage prevention and DPPH radical quenching activity of Ag NPs/Ai nanoparticles were investigated. The interaction of the plant with Ag, analysis by X-ray diffraction (XRD), UV visible spectrophotometer (UV-vis), scanning electron microscope and energy dispersive X-ray (SEM-EDX), Fourier-converted infrared spectroscopy (FT-IR) methods has been done. It has been observed that Ag NPs/Ai clusters formed by Arum italicum with Ag have an antibacterial effect against Bacillus subtilis, Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli pathogens. However, an antifungal effect hasn't been observed against Candida albicans fungus. Pseudomonas aeruginosa bacteria exerted a stronger effect than an antibiotic. It is seen that Ag NPs/Ai has a protective and anti-damage effect against DNA damage. The antioxidant effect of Ag NPs/Ai is remarkable when DPPH radical quenching activity is compared to positive control BHA and BHT.
Collapse
Affiliation(s)
- Ismet Meydan
- Van Vocational School of Health Services, Van Yüzüncü Yıl University, Zeve Campus, 65080, Van, Turkey; Chemistry Department, Faculty of Science, Van Yüzüncü Yıl University, Zeve Campus, 65080, Van, Turkey.
| | - Hamdullah Seckin
- Van Vocational School of Health Services, Van Yüzüncü Yıl University, Zeve Campus, 65080, Van, Turkey
| | - Hakan Burhan
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Tuğba Gür
- Van Vocational School of Health Services, Van Yüzüncü Yıl University, Zeve Campus, 65080, Van, Turkey
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
10
|
Lin Y, Patterson A, Jimenez AG, Elliott K. Altered Oxidative Status as a Cost of Reproduction in a Seabird with High Reproductive Costs. Physiol Biochem Zool 2021; 95:35-53. [PMID: 34846992 DOI: 10.1086/717916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLife history theory posits that reproduction is constrained by a cost of reproduction such that any increase in breeding effort should reduce subsequent survival. Oxidative stress refers to an imbalance between the prooxidant reactive oxygen species (ROS) and antioxidant defense. If not thwarted, ROS can cause damage to DNA, lipids, and proteins, potentially increasing the rate of senescence and decreasing cellular function. Reproduction is often associated with higher metabolic rates, which could increase production of ROS and lead to oxidative damage if the animal does not increase antioxidant protection. Thus, oxidative stress could be one mechanism creating a cost of reproduction. In this study we explored how reproduction may affect oxidative status differently between male and female thick-billed murres during early and late breeding seasons over three consecutive years. We manipulated breeding efforts by removing an egg from the nest of some individuals, which forced females to relay, and by handicapping other individuals by clipping wings. We measured total antioxidant capacity (TAC), uric acid (UA) concentration, and malondialdehyde (MDA; an index of lipid oxidative damage) concentration in blood plasma as well as activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in red blood cells. Oxidative status was highly variable across years, and year was consistently the most important factor determining oxidative status; inconsistent results in previous field studies may be because reproductive oxidative stress occurs only in some years. Females had lower SOD and GPx and higher MDA and TAC than males immediately after egg laying, suggesting that the cost of egg laying required investment in cheaper nonenzymatic antioxidant defenses that had lower capacity for defending against lipid peroxidation. Delayed birds had lower UA and lower SOD, GPx, and CAT activity compared with control birds. In conclusion, when reproductive costs increase via higher energy costs or longer breeding seasons, the oxidative status of both male and female murres deteriorated as a result of reduced antioxidant defenses.
Collapse
Affiliation(s)
- Yimei Lin
- Department of Biology, Colgate University, Hamilton, New York
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
11
|
Douhard F, Douhard M, Gilbert H, Monget P, Gaillard J, Lemaître J. How much energetic trade-offs limit selection? Insights from livestock and related laboratory model species. Evol Appl 2021; 14:2726-2749. [PMID: 34950226 PMCID: PMC8674892 DOI: 10.1111/eva.13320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Trade-offs between life history traits are expected to occur due to the limited amount of resources that organisms can obtain and share among biological functions, but are of least concern for selection responses in nutrient-rich or benign environments. In domestic animals, selection limits have not yet been reached despite strong selection for higher meat, milk or egg yields. Yet, negative genetic correlations between productivity traits and health or fertility traits have often been reported, supporting the view that trade-offs do occur in the context of nonlimiting resources. The importance of allocation mechanisms in limiting genetic changes can thus be questioned when animals are mostly constrained by their time to acquire and process energy rather than by feed availability. Selection for high productivity traits early in life should promote a fast metabolism with less energy allocated to self-maintenance (contributing to soma preservation and repair). Consequently, the capacity to breed shortly after an intensive period of production or to remain healthy should be compromised. We assessed those predictions in mammalian and avian livestock and related laboratory model species. First, we surveyed studies that compared energy allocation to maintenance between breeds or lines of contrasting productivity but found little support for the occurrence of an energy allocation trade-off. Second, selection experiments for lower feed intake per unit of product (i.e. higher feed efficiency) generally resulted in reduced allocation to maintenance, but this did not entail fitness costs in terms of survival or future reproduction. These findings indicate that the consequences of a particular selection in domestic animals are much more difficult to predict than one could anticipate from the energy allocation framework alone. Future developments to predict the contribution of time constraints and trade-offs to selection limits will be insightful to breed livestock in increasingly challenging environments.
Collapse
Affiliation(s)
| | - Mathieu Douhard
- Laboratoire de Biométrie & Biologie EvolutiveCNRSUMR 5558Université Lyon 1VilleurbanneFrance
| | - Hélène Gilbert
- GenPhySEINRAEENVTUniversité de ToulouseCastanet‐TolosanFrance
| | | | - Jean‐Michel Gaillard
- Laboratoire de Biométrie & Biologie EvolutiveCNRSUMR 5558Université Lyon 1VilleurbanneFrance
| | - Jean‐François Lemaître
- Laboratoire de Biométrie & Biologie EvolutiveCNRSUMR 5558Université Lyon 1VilleurbanneFrance
| |
Collapse
|
12
|
Chen X, Zheng J, Teng M, Zhang J, Qian L, Duan M, Zhao F, Zhao W, Wang Z, Wang C. Bioaccumulation, Metabolism and the Toxic Effects of Chlorfenapyr in Zebrafish ( Danio rerio). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8110-8119. [PMID: 34270249 DOI: 10.1021/acs.jafc.1c02301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorfenapyr is widely used as an insecticide/miticide. Tralopyril, the active metabolite of chlorfenapyr, is used as an antifouling biocide in antifouling systems, and negatively affects aquatic environments. However, it is unclear whether tralopyril is a metabolite of chlorfenapyr in aquatic vertebrates, and there is little data on the bioaccumulation and toxicity of chlorfenapyr to aquatic vertebrates. In this study, the bioaccumulation and elimination of chlorfenapyr in zebrafish were assessed, and tralopyril, the active metabolite of chlorfenapyr, was determined. The effects of chronic exposure to chlorfenapyr on zebrafish liver and brain oxidative damage, apoptosis, immune response, and metabolome were investigated. These results showed that chlorfenapyr has a high bioaccumulation in zebrafish, with bioaccumulation factors of 864.6 and 1321.9 after exposure to 1.0 and 10 μg/L chlorfenapyr for 21 days, respectively. Chlorfenapyr at these concentrations also rapidly accumulated in zebrafish, reaching 615.5 and 10336 μg/kg on the second and third days of exposure, respectively. Chlorfenapyr was degraded to tralopyril in zebrafish; therefore, both chlorfenapyr and tralopyril should be considered when evaluating the risk of chlorfenapyr to aquatic organisms. In addition, chronic exposure caused oxidative damage, apoptosis, and immune disorders in zebrafish liver. Chronic exposure also altered the levels of endogenous metabolites in liver and brain. After 9 days of depuration, some indicators of oxidative damage, apoptosis, and immunity returned to normal levels, but the concentration of endogenous metabolites in zebrafish liver was still altered. Overall, these results provide useful information for evaluating the toxicity and environmental fate of chlorfenapyr in aquatic vertebrates.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- The Institute of Plant Production, Jilin Academy of Agriculture Science, Changchun 130033, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Ohta Y, Nomura E, Shang J, Feng T, Huang Y, Liu X, Shi X, Nakano Y, Hishikawa N, Sato K, Takemoto M, Yamashita T, Abe K. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res 2018; 97:607-619. [DOI: 10.1002/jnr.24368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| |
Collapse
|
14
|
Ołdakowski Ł, Taylor JRE. Oxidative damage and antioxidant defense are assay and tissue-dependent both in captive and wild-caught bank voles ( Myodes glareolus) before and after reproduction. Ecol Evol 2018; 8:7543-7552. [PMID: 30151169 PMCID: PMC6106179 DOI: 10.1002/ece3.4187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 02/14/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023] Open
Abstract
Reproduction is costly and life-history theory predicts that current parental investment will result in lower survival or decreased future reproduction. The physiological mechanisms mediating the link between reproduction and survival are still under debate and elevated oxidative damage during reproduction has been proposed as a plausible candidate. Previous studies of oxidative stress during reproduction in animals under natural conditions have been restricted to analyses of blood. Herein, we measured the level of oxidative damage to lipids (tiobarbituric-acid-reactive substances) and proteins (carbonyls) in the liver, kidneys, heart and skeletal muscles in free-living bank vole females from spring and autumn generations, before and after reproduction. Antioxidant defense in the liver and kidneys was also determined. We expected oxidative damage to tissues and hypothesized that the damage would be more uniform between tissues in wild animals compared to those breeding under laboratory conditions. Considering all combinations of markers/tissues/generations, oxidative damage in females did not differ before and after reproduction in 12 comparisons, was lower after reproduction in three comparisons, and was higher after breeding in one comparison. The total glutathione was significantly increased after reproduction only in the liver of the autumn generation and there was no change in catalase activity. Our results confirm-for the first time in the field-previous observations from laboratory studies that there is no simple link between oxidative stress and reproduction and that patterns depend on the tissue and marker being studied. Overall, however, our study does not support the hypothesis that the cost of reproduction in bank voles is mediated by oxidative stress in these tissues.
Collapse
|
15
|
Hyatt HW, Zhang Y, Hood WR, Kavazis AN. Changes in Metabolism, Mitochondrial Function, and Oxidative Stress Between Female Rats Under Nonreproductive and 3 Reproductive Conditions. Reprod Sci 2018; 26:114-127. [PMID: 29621953 DOI: 10.1177/1933719118766264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Women who do not lactate display increased incidence of obesity, type II diabetes, and cancer. Stuebe and Rich-Edwards proposed that these effects occur because physiological changes that ensue during pregnancy are not reversed without lactation. To empirically test this hypothesis, we compared markers of metabolism, mitochondrial function, and oxidative stress between 4 groups of Sprague-Dawley rats: (1) nonreproductive (NR) rats, (2) rats killed at day 20 of gestation, (3) rats that gave birth but were not allowed to suckle their pups (nonlactating), and (4) rats that suckled their young for 14 days. Nonlactating females displayed higher body fat compared to all other groups. Peroxisome proliferator-activated receptor δ (PPARδ) in skeletal muscle and white adipose tissue of nonlactating rats was lower than the other groups. The PPARδ is associated with lipid metabolism suggesting that the higher fat mass in nonlactating females was not associated with the retention of a physiological state that was set during pregnancy but instead an independent drop in PPARδ. Relative mitochondrial respiratory function and complex activity in the liver and skeletal muscle of nonlactating mice were not predictive of higher body mass, and measures of oxidative stress displayed minimal variation between groups.
Collapse
Affiliation(s)
- Hayden W Hyatt
- 1 School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Yufeng Zhang
- 2 Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Wendy R Hood
- 2 Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
16
|
Mu X, Shen G, Huang Y, Luo J, Zhu L, Qi S, Li Y, Wang C, Li X. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:312-320. [PMID: 28601763 DOI: 10.1016/j.envpol.2017.05.088] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/10/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Although the toxicity of beta-cypermethrin (beta-CYP) to aquatic organisms has become a significant concern in recent years, its enantioselective effects on non-target organisms is poorly understood. To investigate the enantioselective toxicity of beta-CYP on zebrafish, adult zebrafish were exposed to a series of isometric concentrations of four beta-CYP enantiomers and the beta-CYP racemate for 96 h. In addition, the activities of four antioxidant enzymes and the malondialdehyde (MDA) content in zebrafish liver and brain were tested after 15 and 30 days beta-CYP enantiomers and racemate exposure under environmentally relevant dosages (0.01 and 0.1 μg/L). According to the acute toxicity results, the 1R-cis-αS and 1R-trans-αS enantiomers were more lethal than 1S-cis-αR and 1S-trans-αR. At 0.1 μg/L, the 1R-cis-αS and 1R-trans-αS enantiomers, and the beta-CYP racemate could significantly induce a hepatic MDA content at 30 days post exposure (dpe), while only 1R-cis-αS caused brain lipid peroxidation. An apparent regulation of antioxidase levels was observed in zebrafish liver and brain after exposure to the 1R-cis-αS and 1R-trans-αS enantiomers, and the beta-CYP racemate. In contrast, no significant oxidative stress was observed in zebrafish exposed to 1S-cis-αR and 1S-trans-αR enantiomers under the test concentrations. This work demonstrated the occurrence of enantioselectivity in toxicity and oxidative stress of beta-CYP to adult zebrafish, which should be considered in environmental risk assessments.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Jianbo Luo
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|