1
|
Chen Y, Su Y, Han J, Chen C, Fan H, Zhang C. Synthetic Mn 3Ce 2O 5-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. CHEMSUSCHEM 2024; 17:e202401031. [PMID: 38829180 DOI: 10.1002/cssc.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The photosynthetic oxygen-evolving center (OEC) is a unique Mn4CaO5-cluster that catalyses water splitting into electrons, protons, and dioxygen. Precisely structural and functional mimicking of the OEC is a long-standing challenge and pressingly needed for understanding the structure-function relationship and catalytic mechanism of O-O bond formation. Herein we report two simple and robust artificial Mn3Ce2O5-complexes that display a remarkable structural similarity to the OEC in regarding of the ten-atom core (five metal ions and five oxygen bridges) and the alkyl carboxylate peripheral ligands. This Mn3Ce2O5-cluster can catalyse the water-splitting reaction on the surface of ITO electrode. These results clearly show that cerium can structurally and functionally replace both calcium and manganese in the cluster. Mass spectroscopic measurements demonstrate that the oxide bridges in the cluster are exchangeable and can be rapidly replaced by the isotopic oxygen of H2 18O in acetonitrile solution, which supports that the oxide bridge(s) may serve as the active site for the formation of O-O bond during the water-splitting reaction. These results would contribute to our understanding of the structure-reactivity relationship of both natural and artificial clusters and shed new light on the development of efficient water-splitting catalysts in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Su
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxi Zhang
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Xu B, Chen Y, Yao R, Chen C, Zhang C. Redox‐Induced Structural Change in Artificial Heterometallic‐Oxide Cluster Mimicking the Photosynthetic Oxygen‐Evolving Center. Chemistry 2022; 28:e202201456. [DOI: 10.1002/chem.202201456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Boran Xu
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Yang Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Changhui Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
5
|
Holmes S, Kirkwood HJ, Bean R, Giewekemeyer K, Martin AV, Hadian-Jazi M, Wiedorn MO, Oberthür D, Marman H, Adriano L, Al-Qudami N, Bajt S, Barák I, Bari S, Bielecki J, Brockhauser S, Coleman MA, Cruz-Mazo F, Danilevski C, Dörner K, Gañán-Calvo AM, Graceffa R, Fanghor H, Heymann M, Frank M, Kaukher A, Kim Y, Kobe B, Knoška J, Laurus T, Letrun R, Maia L, Messerschmidt M, Metz M, Michelat T, Mills G, Molodtsov S, Monteiro DCF, Morgan AJ, Münnich A, Peña Murillo GE, Previtali G, Round A, Sato T, Schubert R, Schulz J, Shelby M, Seuring C, Sellberg JA, Sikorski M, Silenzi A, Stern S, Sztuk-Dambietz J, Szuba J, Trebbin M, Vagovic P, Ve T, Weinhausen B, Wrona K, Xavier PL, Xu C, Yefanov O, Nugent KA, Chapman HN, Mancuso AP, Barty A, Abbey B, Darmanin C. Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers. Nat Commun 2022; 13:4708. [PMID: 35953469 PMCID: PMC9372077 DOI: 10.1038/s41467-022-32434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX. Free-electron lasers are capable of high repetition rates and it is assumed that protein crystals often do not survive the first X-ray pulse. Here the authors address these issues with a demonstration of multi-hit serial crystallography in which multiple FEL pulses interact with the sample without destroying it.
Collapse
Affiliation(s)
- Susannah Holmes
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Andrew V Martin
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Marjan Hadian-Jazi
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW, 2234, Australia
| | - Max O Wiedorn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Hugh Marman
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Luigi Adriano
- Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Imrich Barák
- Institute of Molecular Biology, SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | | | - Mathew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Francisco Cruz-Mazo
- Dept. de Ingeniería Aeroespacial y Mecánica de Fluidos, ETSI, Universidad de Sevilla, 41092, Sevilla, Spain.,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | | | - Alfonso M Gañán-Calvo
- Dept. de Ingeniería Aeroespacial y Mecánica de Fluidos, ETSI, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Rita Graceffa
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Hans Fanghor
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 175, 22761, Hamburg, Germany.,University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Am Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Juraj Knoška
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Luis Maia
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marc Messerschmidt
- School of Molecular Science, Arizona State University, Tempe, AZ, 85281, USA
| | - Markus Metz
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Serguei Molodtsov
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger, Str. 23, 09599, Freiberg, Germany.,ITMO University, Kronverksky pr. 49, St. Petersburg, 197101, Russia
| | - Diana C F Monteiro
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany.,Hauptman-Woodward Medical Research Institute, 700 Ellicott St., Buffalo, NY, 14203, USA
| | - Andrew J Morgan
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,Department of Physics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Gisel E Peña Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | - Adam Round
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | | | - Megan Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Carolin Seuring
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Jonas A Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | | | - Stephan Stern
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Janusz Szuba
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Martin Trebbin
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger, Str. 23, 09599, Freiberg, Germany.,Department of Chemistry, State University of New York at Buffalo, 760 Natural Sciences Complex, Buffalo, NY, 14260, USA
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | | | | | - Paul Lourdu Xavier
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 175, 22761, Hamburg, Germany
| | - Chen Xu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Keith A Nugent
- Department of Quantum Science and Technology, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anton Barty
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Connie Darmanin
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
6
|
Chen Y, Xu B, Yao R, Chen C, Zhang C. Mimicking the Oxygen-Evolving Center in Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:929532. [PMID: 35874004 PMCID: PMC9302449 DOI: 10.3389/fpls.2022.929532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of oxygenic photosynthetic organisms is a unique heterometallic-oxide Mn4CaO5-cluster that catalyzes water splitting into electrons, protons, and molecular oxygen through a five-state cycle (Sn, n = 0 ~ 4). It serves as the blueprint for the developing of the man-made water-splitting catalysts to generate solar fuel in artificial photosynthesis. Understanding the structure-function relationship of this natural catalyst is a great challenge and a long-standing issue, which is severely restricted by the lack of a precise chemical model for this heterometallic-oxide cluster. However, it is a great challenge for chemists to precisely mimic the OEC in a laboratory. Recently, significant advances have been achieved and a series of artificial Mn4XO4-clusters (X = Ca/Y/Gd) have been reported, which closely mimic both the geometric structure and the electronic structure, as well as the redox property of the OEC. These new advances provide a structurally well-defined molecular platform to study the structure-function relationship of the OEC and shed new light on the design of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boran Xu
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Mandal M, Saito K, Ishikita H. Requirement of Chloride for the Downhill Electron Transfer Pathway from the Water-Splitting Center in Natural Photosynthesis. J Phys Chem B 2021; 126:123-131. [PMID: 34955014 DOI: 10.1021/acs.jpcb.1c09176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), Cl- is a prerequisite for the second flash-induced oxidation of the Mn4CaO5 cluster (the S2 to S3 transition). We report proton transfer from the substrate water molecule via D1-Asp61 and electron transfer via redox-active D1-Tyr161 (TyrZ) to the chlorophyll pair in Cl--depleted PSII using a quantum mechanical/molecular mechanical approach. The low-barrier H-bond formation between the substrate water molecule and D1-Asp61 remained unaffected upon the depletion of Cl-. However, the binding site, D2-Lys317, formed a salt bridge with D1-Asp61, leading to the inhibition of the subsequent proton transfer. Remarkably, the redox potential (Em) of S2/S3 increased significantly, making electron transfer from S2 to TyrZ energetically uphill, as observed in Ca2+-depleted PSII. The uphill electron transfer pathway was induced by the significant increase in Em(S2/S3) caused by the loss of charge compensation for D2-Lys317 upon the depletion of Cl-, whereas it was induced by the significant decrease in Em(TyrZ) caused by the rearrangement of the water molecules at the Ca2+ binding moiety upon the depletion of Ca2+.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
8
|
Eliah Dawod I, Tîmneanu N, Mancuso AP, Caleman C, Grånäs O. Imaging of femtosecond bond breaking and charge dynamics in ultracharged peptides. Phys Chem Chem Phys 2021; 24:1532-1543. [PMID: 34939631 DOI: 10.1039/d1cp03419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray free-electrons lasers have revolutionized the method of imaging biological macromolecules such as proteins, viruses and cells by opening the door to structural determination of both single particles and crystals at room temperature. By utilizing high intensity X-ray pulses on femtosecond timescales, the effects of radiation damage can be reduced. Achieving high resolution structures will likely require knowledge of how radiation damage affects the structure on an atomic scale, since the experimentally obtained electron densities will be reconstructed in the presence of radiation damage. Detailed understanding of the expected damage scenarios provides further information, in addition to guiding possible corrections that may need to be made to obtain a damage free reconstruction. In this work, we have quantified the effects of ionizing photon-matter interactions using first principles molecular dynamics. We utilize density functional theory to calculate bond breaking and charge dynamics in three ultracharged molecules and two different structural conformations that are important to the structural integrity of biological macromolecules, comparing to our previous studies on amino acids. The effects of the ultracharged states and subsequent bond breaking in real space are studied in reciprocal space using coherent diffractive imaging of an ensemble of aligned biomolecules in the gas phase.
Collapse
Affiliation(s)
- Ibrahim Eliah Dawod
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Nicusor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| |
Collapse
|
9
|
Mandal M, Saito K, Ishikita H. Two Distinct Oxygen-Radical Conformations in the X-ray Free Electron Laser Structures of Photosystem II. J Phys Chem Lett 2021; 12:4032-4037. [PMID: 33881870 DOI: 10.1021/acs.jpclett.1c00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the existence of two distinct oxygen-radical-containing Mn4CaO5/6 conformations with short O···O bonds in the crystal structures of the oxygen-evolving enzyme photosystem II (PSII), obtained using an X-ray free electron laser (XFEL). A short O···O distance of <2.3 Å between the O4 site of the Mn4CaO5 complex and the adjacent water molecule (W539) in the proton-conducting O4-water chain was observed in the second flash-induced (2F) XFEL structure (2F-XFEL), which may correspond to S3. By use of a quantum mechanical/molecular mechanical approach, the OH• formation at W539 and the short O4···OW539 distance (<2.3 Å) were reproduced in S2 and S3 with reduced Mn1(III), which lacks the additional sixth water molecule O6. As the O•- formation at O6 and the short O5···O6 distance (1.9 Å) have been reported in another 2F-XFEL structure with reduced Mn4(III), two distinct oxygen-radical conformations exist in the 2F-XFEL crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
10
|
Mandal M, Saito K, Ishikita H. The Nature of the Short Oxygen-Oxygen Distance in the Mn 4CaO 6 Complex of Photosystem II Crystals. J Phys Chem Lett 2020; 11:10262-10268. [PMID: 33210928 DOI: 10.1021/acs.jpclett.0c02868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The O···O distance for a typical H-bond is ∼2.8 Å, whereas the radiation-damage-free structures of photosystem II (PSII), obtained using the X-ray free electron laser (XFEL), shows remarkably short O···O distances of ∼2 Å in the oxygen-evolving Mn4CaO5/6 complex. Herein, we report the protonation/oxidation states of the short O···O atoms in the XFEL structures using a quantum mechanical/molecular mechanical approach. The O5···O6 distance of 1.9 Å is reproduced only when O6 is an unprotonated O radical (O•-) with Mn(IV)3Mn(III), i.e., the S3 state. The potential energy profile shows a barrier-less energy minimum region when O5···O6 = 1.90-2.05 Å (O•- ↓) or 2.05-2.20 Å (O•- ↑). Formation of such a short O5···O6 distance is not possible when O6 is OH- with Mn(IV)4. In the case in which the O5···O6 distance is 1.9 Å, it seems likely that the O radical species exists in the oxygen-evolving complex of the XFEL-S3 crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
11
|
A Perspective on Molecular Structure and Bond-Breaking in Radiation Damage in Serial Femtosecond Crystallography. CRYSTALS 2020. [DOI: 10.3390/cryst10070585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
X-ray free-electron lasers (XFELs) have a unique capability for time-resolved studies of protein dynamics and conformational changes on femto- and pico-second time scales. The extreme intensity of X-ray pulses can potentially cause significant modifications to the sample structure during exposure. Successful time-resolved XFEL crystallography depends on the unambiguous interpretation of the protein dynamics of interest from the effects of radiation damage. Proteins containing relatively heavy elements, such as sulfur or metals, have a higher risk for radiation damage. In metaloenzymes, for example, the dynamics of interest usually occur at the metal centers, which are also hotspots for damage due to the higher atomic number of the elements they contain. An ongoing challenge with such local damage is to understand the residual bonding in these locally ionized systems and bond-breaking dynamics. Here, we present a perspective on radiation damage in XFEL experiments with a particular focus on the impacts for time-resolved protein crystallography. We discuss recent experimental and modelling results of bond-breaking and ion motion at disulfide bonding sites in protein crystals.
Collapse
|
12
|
Hybrid Plasma/Molecular-Dynamics Approach for Efficient XFEL Radiation Damage Simulations. CRYSTALS 2020. [DOI: 10.3390/cryst10060478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
X-ray free-electron laser pulses initiate a complex series of changes to the electronic and nuclear structure of matter on femtosecond timescales. These damage processes include widespread ionization, the formation of a quasi-plasma state and the ultimate explosion of the sample due to Coulomb forces. The accurate simulation of these dynamical effects is critical in designing feasible XFEL experiments and interpreting the results. Current molecular dynamics simulations are, however, computationally intensive, particularly when they treat unbound electrons as classical point particles. On the other hand, plasma simulations are computationally efficient but do not model atomic motion. Here we present a hybrid approach to XFEL damage simulation that combines molecular dynamics for the nuclear motion and plasma models to describe the evolution of the low-energy electron continuum. The plasma properties of the unbound electron gas are used to define modified inter-ionic potentials for the molecular dynamics, including Debye screening and drag forces. The hybrid approach is significantly faster than damage simulations that treat unbound electrons as classical particles, enabling simulations to be performed on large sample volumes.
Collapse
|
13
|
Nass K, Gorel A, Abdullah MM, V Martin A, Kloos M, Marinelli A, Aquila A, Barends TRM, Decker FJ, Bruce Doak R, Foucar L, Hartmann E, Hilpert M, Hunter MS, Jurek Z, Koglin JE, Kozlov A, Lutman AA, Kovacs GN, Roome CM, Shoeman RL, Santra R, Quiney HM, Ziaja B, Boutet S, Schlichting I. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat Commun 2020; 11:1814. [PMID: 32286284 PMCID: PMC7156470 DOI: 10.1038/s41467-020-15610-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter’s correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics. The local X-ray-induced dynamics that occur in protein crystals during serial femtosecond crystallography (SFX) measurements at XFELs are not well understood. Here the authors performed a time-resolved X-ray pump X-ray probe SFX experiment, and they observe distinct structural changes in the disulfide bridges and peptide backbone of proteins; complementing theoretical approaches allow them to further characterize the details of the X-ray induced ionization and local structural dynamics.
Collapse
Affiliation(s)
- Karol Nass
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Malik M Abdullah
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew V Martin
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Andrew Aquila
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jason E Koglin
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355, Hamburg, Germany
| | - Harry M Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Beata Ziaja
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland.
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of plants, algae and cyanobacteria is a unique natural catalyst that splits water into electrons, protons and dioxygen. The crystallographic studies of PSII have revealed that the OEC is an asymmetric Mn4CaO5-cluster. The understanding of the structure-function relationship of this natural Mn4CaO5-cluster is impeded mainly due to the complexity of the protein environment and lack of a rational chemical model as a reference. Although it has been a great challenge for chemists to synthesize the OEC in the laboratory, significant advances have been achieved recently. Different artificial complexes have been reported, especially a series of artificial Mn4CaO4-clusters that closely mimic both the geometric and electronic structures of the OEC in PSII, which provides a structurally well-defined chemical model to investigate the structure-function relationship of the natural Mn4CaO5-cluster. The deep investigations on this artificial Mn4CaO4-cluster could provide new insights into the mechanism of the water-splitting reaction in natural photosynthesis and may help the development of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
|
15
|
The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. INORGANICS 2019. [DOI: 10.3390/inorganics7040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The catalytic cycle of the oxygen-evolving complex (OEC) of photosystem II (PSII) comprises five intermediate states Si (i = 0–4), from the most reduced S0 state to the most oxidized S4, which spontaneously evolves dioxygen. The precise geometric and electronic structure of the Si states, and hence the mechanism of O–O bond formation in the OEC, remain under investigation, particularly for the final steps of the catalytic cycle. Recent advances in protein crystallography based on X-ray free-electron lasers (XFELs) have produced new structural models for the S3 state, which indicate that two of the oxygen atoms of the inorganic Mn4CaO6 core of the OEC are in very close proximity. This has been interpreted as possible evidence for “early-onset” O–O bond formation in the S3 state, as opposed to the more widely accepted view that the O–O bond is formed in the final state of the cycle, S4. Peroxo or superoxo formation in S3 has received partial support from computational studies. Here, a brief overview is provided of spectroscopic information, recent crystallographic results, and computational models for the S3 state. Emphasis is placed on computational S3 models that involve O–O formation, which are discussed with respect to their agreement with structural information, experimental evidence from various spectroscopic studies, and substrate exchange kinetics. Despite seemingly better agreement with some of the available crystallographic interpretations for the S3 state, models that implicate early-onset O–O bond formation are hard to reconcile with the complete line of experimental evidence, especially with X-ray absorption, X-ray emission, and magnetic resonance spectroscopic observations. Specifically with respect to quantum chemical studies, the inconclusive energetics for the possible isoforms of S3 is an acute problem that is probably beyond the capabilities of standard density functional theory.
Collapse
|
16
|
Abstract
AbstractCyanobacteria and plants carry out oxygenic photosynthesis. They use water to generate the atmospheric oxygen we breathe and carbon dioxide to produce the biomass serving as food, feed, fibre and fuel. This paper scans the emergence of structural and mechanistic understanding of oxygen evolution over the past 50 years. It reviews speculative concepts and the stepped insight provided by novel experimental and theoretical techniques. Driven by sunlight photosystem II oxidizes the catalyst of water oxidation, a hetero-metallic Mn4CaO5(H2O)4 cluster. Mn3Ca are arranged in cubanoid and one Mn dangles out. By accumulation of four oxidizing equivalents before initiating dioxygen formation it matches the four-electron chemistry from water to dioxygen to the one-electron chemistry of the photo-sensitizer. Potentially harmful intermediates are thereby occluded in space and time. Kinetic signatures of the catalytic cluster and its partners in the photo-reaction centre have been resolved, in the frequency domain ranging from acoustic waves via infra-red to X-ray radiation, and in the time domain from nano- to milli-seconds. X-ray structures to a resolution of 1.9 Å are available. Even time resolved X-ray structures have been obtained by clocking the reaction cycle by flashes of light and diffraction with femtosecond X-ray pulses. The terminal reaction cascade from two molecules of water to dioxygen involves the transfer of four electrons, two protons, one dioxygen and one water. A rigorous mechanistic analysis is challenging because of the kinetic enslaving at millisecond duration of six partial reactions (4e−, 1H+, 1O2). For the time being a peroxide-intermediate in the reaction cascade to dioxygen has been in focus, both experimentally and by quantum chemistry. Homo sapiens has relied on burning the products of oxygenic photosynthesis, recent and fossil. Mankind's total energy consumption amounts to almost one-fourth of the global photosynthetic productivity. If the average power consumption equalled one of those nations with the highest consumption per capita it was four times greater and matched the total productivity. It is obvious that biomass should be harvested for food, feed, fibre and platform chemicals rather than for fuel.
Collapse
|
17
|
Amin M, Kaur D, Yang KR, Wang J, Mohamed Z, Brudvig GW, Gunner MR, Batista V. Thermodynamics of the S2-to-S3 state transition of the oxygen-evolving complex of photosystem II. Phys Chem Chem Phys 2019; 21:20840-20848. [DOI: 10.1039/c9cp02308a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The S2 to S3 transition in the OEC of PSII changes the structure of the Mn cluster. Monte Carlo sampling finds a Ca terminal water moves to form a bridge to Mn4 and the Mn1 ligand E189 can be replaced with a hydroxyl as a proton is lost.
Collapse
Affiliation(s)
- Muhamed Amin
- Center for Free-Electron Laser Science
- Deutsches Elektronen-Synchrotron DESY
- 22607 Hamburg
- Germany
- Department of Sciences
| | - Divya Kaur
- Department of Physics
- City College of New York
- 160 Convent Avenue
- New York
- USA
| | - Ke R. Yang
- Department of Chemistry, Yale University
- New Haven
- USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry
- Yale University
- New Haven
- USA
| | - Zainab Mohamed
- Zewail City of Science and Technology
- Sheikh Zayed
- 12588 Giza
- Egypt
| | | | - M. R. Gunner
- Department of Physics
- City College of New York
- 160 Convent Avenue
- New York
- USA
| | | |
Collapse
|
18
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Shoji M, Isobe H, Tanaka A, Fukushima Y, Kawakami K, Umena Y, Kamiya N, Nakajima T, Yamaguchi K. Understanding Two Different Structures in the Dark Stable State of the Oxygen-Evolving Complex of Photosystem II: Applicability of the Jahn-Teller Deformation Formula. CHEMPHOTOCHEM 2018; 2:257-270. [PMID: 29577075 PMCID: PMC5861676 DOI: 10.1002/cptc.201700162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/02/2017] [Indexed: 11/11/2022]
Abstract
Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three-dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X-ray diffraction (XRD) using extremely low X-ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen-bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn-Teller (JT) deformation formula based on large-scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low-dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low-dose XRD and damage-free serial femtosecond X-ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low-dose XRD structures were not damaged by X-ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation.
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center of Computational SciencesTsukuba University, TsukubaIbaraki305–8577Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and TechnologyOkayama UniversityOkayama700–8530Japan
| | - Ayako Tanaka
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Yoshimasa Fukushima
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Keisuke Kawakami
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Yasufumi Umena
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Nobuo Kamiya
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Takahito Nakajima
- Riken Advanced Institute for Computational Science, Chuo-KuKobe, Hyogo650-0047Japan
| | - Kizashi Yamaguchi
- Riken Advanced Institute for Computational Science, Chuo-KuKobe, Hyogo650-0047Japan
- Institute for Nanoscience DesignOsaka University, ToyonakaOsaka560–8531Japan
- Handairigaku Techno-Research, ToyonakaOsaka560-0043Japan
| |
Collapse
|
20
|
Wang J, Askerka M, Brudvig GW, Batista VS. Crystallographic Data Support the Carousel Mechanism of Water Supply to the Oxygen-Evolving Complex of Photosystem II. ACS ENERGY LETTERS 2017; 2:2299-2306. [PMID: 29057331 PMCID: PMC5644713 DOI: 10.1021/acsenergylett.7b00750] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/07/2017] [Indexed: 05/21/2023]
Abstract
Photosystem II (PSII) oxidizes water to produce oxygen through a four-step photocatalytic cycle. Understanding PSII structure-function relations is important for the development of biomimetic photocatalytic systems. The quantum mechanics/molecular mechanics (QM/MM) analysis of substrate water binding to the oxygen-evolving complex (OEC) has suggested a rearrangement of water ligands in a carousel mechanism around a key Mn center. Here, we find that the most recently reported X-ray free-electron laser (XFEL) crystallographic data obtained for the dark-stable S1 state and the doubly flashed S3 state at 2.25 Å resolution support the carousel mechanism. The features in the XFEL data and QM/MM model-simulated difference Fourier maps suggest that water displacement may occur from the so-called "narrow" channel, resulting in binding of a new water molecule to the OEC, and thus provide new insights into the nature of rearrangements of water ligands along the catalytic cycle before O=O bond formation.
Collapse
Affiliation(s)
- Jimin Wang
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Mikhail Askerka
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- E-mail:
| |
Collapse
|
21
|
Amin M, Askerka M, Batista VS, Brudvig GW, Gunner MR. X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2017; 121:9382-9388. [DOI: 10.1021/acs.jpcb.7b08371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Muhamed Amin
- Center
for Photonics and Smart Materials, Zewail City of Science and Technology, Sheikh
Zayed District, 6th of October City, 12588 Giza, Egypt
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mikhail Askerka
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - M. R. Gunner
- Department
of Physics, City College of New York, New York, New York 10031, United States
| |
Collapse
|
22
|
Andersson R, Safari C, Dods R, Nango E, Tanaka R, Yamashita A, Nakane T, Tono K, Joti Y, Båth P, Dunevall E, Bosman R, Nureki O, Iwata S, Neutze R, Brändén G. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci Rep 2017; 7:4518. [PMID: 28674417 PMCID: PMC5495810 DOI: 10.1038/s41598-017-04817-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022] Open
Abstract
Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba3-type and aa3-type cytochrome c oxidases around the proton-loading site are also described.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden.
| |
Collapse
|