1
|
Shami GJ, Chen Z, Cheng D, Wisse E, Braet F. On the long-term storage of tissue for fluorescence and electron microscopy: lessons learned from rat liver samples. Histochem Cell Biol 2024; 163:12. [PMID: 39604692 PMCID: PMC11602835 DOI: 10.1007/s00418-024-02334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/29/2024]
Abstract
Occasionally, tissue samples cannot be processed completely and are stored under varying conditions for extended periods. This is particularly beneficial in interinstitutional studies where a given research setting may lack the expertise or infrastructure for sample processing, imaging and data analysis. Currently, there is limited literature available on the controlled storage of biological tissues in primary fixatives for fluorescence and electron microscopy. In this contribution, we mimicked various tissue storage scenarios by taking different fixation conditions, storage temperatures and storage durations into account. Rat liver tissue was used for its well-known diversity of cellular ultrastructure and microscopy analysis. Fluorescent labelling of actin, DNA and lipids were employed in conjunction with high-resolution electron microscopy imaging. Herein, we tested three different fixative solutions (1.5% glutaraldehyde, 0.4% glutaraldehyde and 4% formaldehyde and 4% formaldehyde) and stored samples for 1-28 days at room temperature and refrigerator temperature. We found that liver tissue can be stored for up to 2 weeks in a 0.4% glutaraldehyde + 4% formaldehyde fixative solution, while still enabling reliable fluorescent labelling and ultrastructural studies. Ultrastructural integrity was eminent up to 1 month using either glutaraldehyde or formaldehyde fixation protocols. When liver tissue is fixed with a mixture of 0.4% glutaraldehyde and 4% formaldehyde and stored at 4 °C, it retains its capacity for electron microscopy analysis for several years, but loses its capacity for reliable fluorescent labelling studies. In conclusion, we demonstrated that liver tissue can be stored for extended periods enabling profound structure-function analysis across length scales.
Collapse
Affiliation(s)
- Gerald J Shami
- University of Sydney, School of Medical Sciences (Molecular and Cellular Biomedicine), Sydney, Australia.
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Camperdown, NSW, 2006, Australia.
| | - Zenan Chen
- University of Sydney, School of Medical Sciences (Molecular and Cellular Biomedicine), Sydney, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Camperdown, NSW, 2006, Australia
| | - Delfine Cheng
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Camperdown, NSW, 2006, Australia
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Eddie Wisse
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Filip Braet
- University of Sydney, School of Medical Sciences (Molecular and Cellular Biomedicine), Sydney, Australia.
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
2
|
Jadav N, Velamoor S, Huang D, Cassin L, Hazelton N, Eruera AR, Burga LN, Bostina M. Beyond the surface: Investigation of tumorsphere morphology using volume electron microscopy. J Struct Biol 2023; 215:108035. [PMID: 37805154 DOI: 10.1016/j.jsb.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The advent of volume electron microscopy (vEM) has provided unprecedented insights into cellular and subcellular organization, revolutionizing our understanding of cancer biology. This study presents a previously unexplored comparative analysis of the ultrastructural disparities between cancer cells cultured as monolayers and tumorspheres. By integrating a robust workflow that incorporates high-pressure freezing followed by freeze substitution (HPF/FS), serial block face scanning electron microscopy (SBF-SEM), manual and deep learning-based segmentation, and statistical analysis, we have successfully generated three-dimensional (3D) reconstructions of monolayer and tumorsphere cells, including their subcellular organelles. Our findings reveal a significant degree of variation in cellular morphology in tumorspheres. We observed the increased prevalence of nuclear envelope invaginations in tumorsphere cells compared to monolayers. Furthermore, we detected a diverse range of mitochondrial morphologies exclusively in tumorsphere cells, as well as intricate cellular interconnectivity within the tumorsphere architecture. These remarkable ultrastructural differences emphasize the use of tumorspheres as a superior model for cancer research due to their relevance to in vivo conditions. Our results strongly advocate for the utilization of tumorsphere cells in cancer research studies, enhancing the precision and relevance of experimental outcomes, and ultimately accelerating therapeutic advancements.
Collapse
Affiliation(s)
- Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sailakshmi Velamoor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Huang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Léna Cassin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Niki Hazelton
- Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Shami GJ, Samarska IV, Koek GH, Li A, Palma E, Chokshi S, Wisse E, Braet F. Giant mitochondria in human liver disease. Liver Int 2023; 43:2365-2378. [PMID: 37615254 DOI: 10.1111/liv.15711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
This thematic review aims to provide an overview of the current state of knowledge about the occurrence of giant mitochondria or megamitochondria in liver parenchymal cells. Their presence and accumulation are considered to be a major pathological hallmark of the health and fate of liver parenchymal cells that leads to overall tissue deterioration and eventually results in organ failure. The first description on giant mitochondria dates back to the 1960s, coinciding with the availability of the first generation of electron microscopes in clinical diagnostic laboratories. Detailed accounts on their ultrastructure have mostly been described in patients suffering from alcoholic liver disease, chronic hepatitis, hepatocellular carcinoma and non-alcoholic fatty liver disease. Interestingly, from this extensive literature survey, it became apparent that giant mitochondria or megamitochondria present themselves with or without highly organised crystal-like intramitochondrial inclusions. The origin, formation and potential role of giant mitochondria remain to-date largely unanswered. Likewise, the biochemical composition of the well-organised crystal-like inclusions and their possible impact on mitochondrial function is unclear. Herein, concepts about the possible mechanism of their formation and three-dimensional architecture will be approached. We will furthermore discuss their importance in diagnostics, including future research outlooks and potential therapeutic interventions to cure liver disease where giant mitochondria are implemented.
Collapse
Affiliation(s)
- Gerald J Shami
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Sydney, New South Wales, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, Australia
| | - Iryna V Samarska
- Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine division of Gastroenterology & Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amy Li
- Centre for Healthy Futures, Torrens University Australia, Sydney, New South Wales, Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Shilpa Chokshi
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Eddie Wisse
- Division of Nanoscopy, Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | - Filip Braet
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Sydney, New South Wales, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Liu Y, Wong TTW, Shi J, He Y, Nie L, Wang LV. Label-free differential imaging of cellular components in mouse brain tissue by wide-band photoacoustic microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530195. [PMID: 36909457 PMCID: PMC10002654 DOI: 10.1101/2023.02.27.530195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Mapping diverse cellular components with high spatial resolution is important to interrogate biological systems and study disease pathogenesis. Conventional optical imaging techniques for mapping biomolecular profiles with differential staining and labeling methods are cumbersome. Different types of cellular components exhibit distinctive characteristic absorption spectra across a wide wavelength range. By virtue of this property, a lab-made wide-band optical-resolution photoacoustic microscopy (wbOR-PAM) system, which covers wavelengths from the ultraviolet and visible to the shortwave infrared regions, was designed and developed to capture multiple cellular components in 300-μm-thick brain slices at nine different wavelengths without repetitive staining and complicated processing. This wbOR-PAM system provides abundant spectral information. A reflective objective lens with an infinite conjugate design was applied to focus laser beams with different wavelengths, avoiding chromatic aberration. The molecular components of complex brain slices were probed without labeling. The findings of the present study demonstrated a distinctive absorption of phospholipids, a major component of the cell membrane, brain, and nervous system, at 1690 nm and revealed their precise distribution with microscopic resolution in a mouse brain, for the first time. This novel imaging modality provides a new opportunity to investigate important biomolecular components without either labeling or lengthy specimen processing, thus, laying the groundwork for revealing cellular mechanisms involved in disease pathogenesis.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Terence T W Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yun He
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Brenna C, Simioni C, Varano G, Conti I, Costanzi E, Melloni M, Neri LM. Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochem Cell Biol 2022; 157:497-511. [PMID: 35235045 PMCID: PMC9114043 DOI: 10.1007/s00418-022-02081-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Understanding the inner morphology of intact tissues is one of the most competitive challenges in modern biology. Since the beginning of the twentieth century, optical tissue clearing (OTC) has provided solutions for volumetric imaging, allowing the microscopic visualization of thick sections of tissue, organoids, up to whole organs and organisms (for example, mouse or rat). Recently, tissue clearing has also been introduced in clinical settings to achieve a more accurate diagnosis with the support of 3D imaging. This review aims to give an overview of the most recent developments in OTC and 3D imaging and to illustrate their role in the field of medical diagnosis, with a specific focus on clinical applications.
Collapse
Affiliation(s)
- Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.,Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy.,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy. .,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
6
|
Lewczuk B, Szyryńska N. Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies. Animals (Basel) 2021; 11:ani11123390. [PMID: 34944167 PMCID: PMC8698110 DOI: 10.3390/ani11123390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Ultrastructural studies of cells and tissues are usually performed using transmission electron microscopy (TEM), which enables imaging at the highest possible resolution. The weak point of TEM is the limited ability to analyze the ultrastructure of large areas and volumes of biological samples. This limitation can be overcome by using modern field-emission scanning electron microscopy (FE-SEM) with high-sensitivity detection, which enables the creation of TEM-like images from the flat surfaces of resin-embedded biological specimens. Several FE-SEM-based techniques for two- and three-dimensional ultrastructural studies of cells, tissues, organs, and organisms have been developed in the 21st century. These techniques have created a new era in structural biology and have changed the role of the scanning electron microscope (SEM) in biological and medical laboratories. Since the premiere of the first commercially available SEM in 1965, these instruments were used almost exclusively to obtain topographical information over a large range of magnifications. Currently, FE-SEM offers many attractive possibilities in the studies of cell and tissue ultrastructure, and they are presented in this review. Abstract The development of field-emission scanning electron microscopes for high-resolution imaging at very low acceleration voltages and equipped with highly sensitive detectors of backscattered electrons (BSE) has enabled transmission electron microscopy (TEM)-like imaging of the cut surfaces of tissue blocks, which are impermeable to the electron beam, or tissue sections mounted on the solid substrates. This has resulted in the development of methods that simplify and accelerate ultrastructural studies of large areas and volumes of biological samples. This article provides an overview of these methods, including their advantages and disadvantages. The imaging of large sample areas can be performed using two methods based on the detection of transmitted electrons or BSE. Effective imaging using BSE requires special fixation and en bloc contrasting of samples. BSE imaging has resulted in the development of volume imaging techniques, including array tomography (AT) and serial block-face imaging (SBF-SEM). In AT, serial ultrathin sections are collected manually on a solid substrate such as a glass and silicon wafer or automatically on a tape using a special ultramicrotome. The imaging of serial sections is used to obtain three-dimensional (3D) information. SBF-SEM is based on removing the top layer of a resin-embedded sample using an ultramicrotome inside the SEM specimen chamber and then imaging the exposed surface with a BSE detector. The steps of cutting and imaging the resin block are repeated hundreds or thousands of times to obtain a z-stack for 3D analyses.
Collapse
|
7
|
Mantani Y, Haruta T, Nakanishi S, Sakata N, Yuasa H, Yokoyama T, Hoshi N. Ultrastructural and phenotypical diversity of macrophages in the rat ileal mucosa. Cell Tissue Res 2021; 385:697-711. [PMID: 33961127 DOI: 10.1007/s00441-021-03457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Several types of macrophages have been reported in the intestinal mucosa, but their histological localization remains ambiguous. Here, we obtained detailed information about ultrastructural and phenotypical diversity of macrophage-like cells (MLCs) in the rat ileal mucosa using immunofluorescent analysis and serial block-face scanning electron microscopy (SBF-SEM). The results revealed that the cells immunopositive for CD68, the pan-macrophage marker, included CD163-CD4+, CD163+CD4+, and CD163-CD4- cells in the lamina propria (LP) of the intestinal villus and around the crypt. CD68+CD4+CD163- cells seemed to be preferentially localized in the intestinal villus, whereas CD68+CD163+CD4+ cells were frequently localized around the crypt. SBF-SEM analysis identified three types of MLCs in the ileal mucosa, which were tentatively named types I-III MLC based on aspects of the 3D-ultrastructure, such as the localization, quantity of lysosomes, endoplasmic reticulum, and exoplasm. Type I and II MLCs were localized in the villous LP, while type III MLCs were localized around the crypt, although type II MLCs were a minor population. All three MLC types extended their cellular processes into the epithelium, with type I MLCs showing the greatest abundance of extended processes. Type I MLCs in the upper portion of the intestinal villus showed a higher level of attachment to intraepithelial lymphocytes (IELs) compared to type III MLCs around the crypt. These findings suggest that macrophages of the rat ileal mucosa differed by region along the longitudinal axis of the villous tip-crypt from the perspective of ultrastructure, cellular composition, localization, and interactions with IELs.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tomohiro Haruta
- Bio 3D Promotion Group, Application Management Department, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
8
|
Reichelt M, Sagolla M, Katakam AK, Webster JD. Unobstructed Multiscale Imaging of Tissue Sections for Ultrastructural Pathology Analysis by Backscattered Electron Scanning Microscopy. J Histochem Cytochem 2019; 68:9-23. [PMID: 31385742 DOI: 10.1369/0022155419868992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ultrastructural analysis of healthy, diseased, or experimental tissues is essential in diagnostic and investigative pathology. Evaluation of large tissue areas with suborganelle resolution is challenging because biological structures ranging from several millimeters to nanometers in size need to be identified and imaged while maintaining context over multiple scales. Imaging with field emission scanning electron microscopes (FE-SEMs) is uniquely suited for this task. We describe an efficient workflow for the preparation and unobstructed multiscale imaging of tissue sections with backscattered electron scanning electron microscopy (BSE-SEM) for applications in ultrastructural pathology. We demonstrate that a diverse range of tissues, processed by conventional electron microscopy protocols and avoiding the use of mordanting agents, can be imaged on standard glass slides over multiple scales, from the histological to the ultrastructural level, without any visual obstructions. Our workflow takes advantage of the very large scan fields possible with modern FE-SEMs that allow for the acquisition of wide-field overview images which can be explored at the ultrastructural level by digitally zooming into the images. Examples from applications in pulmonary research and neuropathology demonstrate the versatility and efficiency of this method. This BSE-SEM-based multiscale imaging procedure promises to substantially simplify and accelerate ultrastructural tissue analysis in pathology.
Collapse
Affiliation(s)
- Mike Reichelt
- Department of Pathology, Genentech Inc., South San Francisco, California
| | - Meredith Sagolla
- Department of Pathology, Genentech Inc., South San Francisco, California
| | - Anand K Katakam
- Department of Pathology, Genentech Inc., South San Francisco, California
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, California
| |
Collapse
|
9
|
Shami GJ, Cheng D, Braet F. Expedited large-volume 3-D SEM workflows for comparative microanatomical imaging. Methods Cell Biol 2019; 152:23-39. [DOI: 10.1016/bs.mcb.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Albumin uptake and distribution in the zebrafish liver as observed via correlative imaging. Exp Cell Res 2018; 374:162-171. [PMID: 30496757 DOI: 10.1016/j.yexcr.2018.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Although liver transport routes have been extensively studied in rodents, live imaging under in situ and in vivo conditions of large volumes is still proven to be difficult. In this study, we took advantage of the optical transparency of zebrafish and their small size to explore their usefulness for correlative imaging studies and liver transport experimentations. First, we assessed the micro-architecture of the zebrafish liver and compared its fine structure to the rodent and humans' literature. Next, we investigated the transport routes and cellular distribution of albumin using combined and correlative microscopy approaches. These methods permitted us to track the injected proteins at different time points through the process of liver uptake and clearance of albumin. We demonstrate strong structural and functional resemblance between the zebrafish liver and its rodents and humans' counterparts. In as short as 5 min post-injection, albumin rapidly accumulated within the LSECs. Furthermore, albumin entered the space of Disse where it initially accumulated then subsequently was taken up by the hepatocytes. We propose the zebrafish as a viable alternative experimental model for hepatic transport studies, allowing swift multimodal imaging and direct quantification on the hepatic distribution of supramolecular complexes of interest.
Collapse
|
11
|
Comparison of 3D cellular imaging techniques based on scanned electron probes: Serial block face SEM vs. Axial bright-field STEM tomography. J Struct Biol 2018; 202:216-228. [PMID: 29408702 DOI: 10.1016/j.jsb.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/22/2022]
Abstract
Microscopies based on focused electron probes allow the cell biologist to image the 3D ultrastructure of eukaryotic cells and tissues extending over large volumes, thus providing new insight into the relationship between cellular architecture and function of organelles. Here we compare two such techniques: electron tomography in conjunction with axial bright-field scanning transmission electron microscopy (BF-STEM), and serial block face scanning electron microscopy (SBF-SEM). The advantages and limitations of each technique are illustrated by their application to determining the 3D ultrastructure of human blood platelets, by considering specimen geometry, specimen preparation, beam damage and image processing methods. Many features of the complex membranes composing the platelet organelles can be determined from both approaches, although STEM tomography offers a higher ∼3 nm isotropic pixel size, compared with ∼5 nm for SBF-SEM in the plane of the block face and ∼30 nm in the perpendicular direction. In this regard, we demonstrate that STEM tomography is advantageous for visualizing the platelet canalicular system, which consists of an interconnected network of narrow (∼50-100 nm) membranous cisternae. In contrast, SBF-SEM enables visualization of complete platelets, each of which extends ∼2 µm in minimum dimension, whereas BF-STEM tomography can typically only visualize approximately half of the platelet volume due to a rapid non-linear loss of signal in specimens of thickness greater than ∼1.5 µm. We also show that the limitations of each approach can be ameliorated by combining 3D and 2D measurements using a stereological approach.
Collapse
|
12
|
Shami GJ, Cheng D, Braet F. Silver Filler Pre-embedding to Enhance Resolution and Contrast in Multidimensional SEM: A Nanoscale Imaging Study on Liver Tissue. Methods Mol Biol 2018; 1814:561-576. [PMID: 29956255 DOI: 10.1007/978-1-4939-8591-3_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Contemporarily, serial block-face scanning electron microscopy (SBF-SEM) has emerged as an immensely powerful nanoscopic imaging technique, capable of generating large-volume three-dimensional information on a variety of biological specimens in a semiautomated manner. Despite the plethora of insights and advantages provided by SBF-SEM, a major challenge inherent to the technique is that of electron charging, which ultimately reduces attainable resolution and detracts from overall image quality. In this chapter, we describe a pre-embedding approach that involves infiltration of tissue with a highly conductive silver filler suspension following primary fixation. Such an approach is demonstrated to improve overall sample conductivity, resulting in the minimization of charging under high-vacuum conditions and an improvement in lateral resolution and image contrast. The strength of this sample preparation approach for SBF-SEM is illustrated on liver tissue.
Collapse
Affiliation(s)
- Gerald J Shami
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute, The University of Sydney, Camperdown, NSW, Australia.
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute, The University of Sydney, Camperdown, NSW, Australia
- Australian Centre for Microscopy and Microanalysis (ACMM), The University of Sydney, Camperdown, NSW, Australia
- Cellular Imaging Facility, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Relocation is the key to successful correlative fluorescence and scanning electron microscopy. Methods Cell Biol 2017; 140:215-244. [PMID: 28528635 DOI: 10.1016/bs.mcb.2017.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter the authors report on an automated hardware and software solution enabling swift correlative sample array mapping of fluorescently stained molecules within cells and tissues across length scales. Samples are first observed utilizing wide-field optical and fluorescence microscopy, followed by scanning electron microscopy, using calibration points on a dedicated sample-relocation holder. We investigated HeLa cells in vitro, fluorescently labeled for monosialoganglioside one (GM-1), across both imaging platforms within tens of minutes of initial sample preparation. This resulted in a high-throughput and high spatially resolved correlative fluorescence and electron microscopy analysis and allowed us to collect complementary nanoscopic information on the molecular and structural composition of two differently distinct HeLa cell populations expressing different levels of GM-1. Furthermore, using the small zebrafish animal model Danio rerio, we showed the versatility and relocation accuracy of the sample-relocation holder to locate fluo-tagged macromolecular complexes within large volumes using long ribbons of serial tissue sections. The subsequent electron microscopy imaging of the tissue arrays of interest enabled the generation of correlated information on the fine distribution of albumin within hepatic and kidney tissue. Our approach underpins the merits that an automated sample-relocation holder solution brings in support of results-driven research, where relevant biological questions can be answered, and high-throughput data can be generated in a rigorous statistical manner.
Collapse
|
14
|
|