1
|
Chen Y, Qu H, Li X, Wang H. Effects of amoxicillin exposure at different stages, doses and courses of pregnancy on adrenal development in fetal mice. Food Chem Toxicol 2023; 175:113754. [PMID: 37001632 DOI: 10.1016/j.fct.2023.113754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Pregnant women are usually treated with amoxicillin before cesarean section to prevent infection. This study aimed to investigate the effects of amoxicillin exposure on fetal adrenal development at different stages, doses and courses of pregnancy. We found prenatal amoxicillin exposure (PAmE) could cause adrenal developmental toxicity in both male and female fetal mice in a stage, dose and course-dependent manner, among which the third trimester, high dose and multiple courses of PAmE could significantly reduce the maximum cross-sectional area and diameter. Besides, the proliferation was inhibited, the apoptosis was enhanced, and the serum corticosterone level and expression of steroidogenic enzymes were decreased in the PAmE group. Further, the insulin-like growth factor 1 (IGF1) signaling pathway were inhibited in the male and female fetal mice at the third trimester, high dose and multiple courses of treatment, and adrenal IGF1 expression was positively correlated with the indicators of adrenal development. In conclusion, PAmE could induce adrenal dysplasia in fetal mice in the stage, dose and course-dependent manner, which was related to the inhibition of IGF1 signaling pathway. This study provides guidance for evaluating the toxicity and risk of fetal adrenal development and the rational use of amoxicillin during pregnancy.
Collapse
|
2
|
Cao X, Zhu L, Qi R, Wang X, Sun G, Ying Y, Chen R, Li X, Gao L. Effect of a High Estrogen Level in Early Pregnancy on the Development and Behavior of Marmoset Offspring. ACS OMEGA 2022; 7:36175-36183. [PMID: 36278046 PMCID: PMC9583300 DOI: 10.1021/acsomega.2c03263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The use of assisted reproductive technology (ART) has risen steadily worldwide over the past 3 decades and helps many infertile families. However, ART treatments lead to an abnormal internal environment in the uterus, which may increase the risks of health problems for the offspring. Higher maternal estradiol (E2) is a notable feature in women who use ART treatments, and this has been suggested as a key factor for the risk of diseases in the offspring. In the current study, we have established a marmoset model with a high E2 level in early pregnancy to examine its potential risk to the development and behavior of the offspring. In comparison with the normal group, babies of the high E2 group exhibited lower average survival rates and birth weights. However, those who survived in the high E2 group demonstrated normal vocal production with rich call repertoires, normal speed during locomotion, and normal behaviors in the home cage. In contrast to the normal group, surviving babies of the high E2 group spent more time sleeping during development without signs of sleep disorders. In summary, our study revealed that high estrogen in early pregnancy may cause low survival rates and birth weights of the offspring, though the surviving infants did not show obvious behavioral deficiencies during development. The current study is a valuable and highly important non-human primate study for evaluating the safety of ART treatments. However, it is worth noting that some results did not reach the significant level, which may be due to the small sample size caused by animal shortage stemming from the COVID-19 epidemic.
Collapse
Affiliation(s)
- Xinyuan Cao
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Lin Zhu
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Runze Qi
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Xiaohui Wang
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- Key
Laboratory of Biomedical Engineering of Ministry of Education, College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Guanglong Sun
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yue Ying
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Ruixue Chen
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xinjian Li
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- NHC
and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science
Center for Brain Science and Brain-machine Integration, School of
Brain Science and Brain Medicine, Zhejiang
University, Hangzhou 310058, China
- Key
Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou 310020, China
| | - Lixia Gao
- Department
of Neurology of the Second Affiliated Hospital and Interdisciplinary
Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- NHC
and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science
Center for Brain Science and Brain-machine Integration, School of
Brain Science and Brain Medicine, Zhejiang
University, Hangzhou 310058, China
- Key
Laboratory of Biomedical Engineering of Ministry of Education, College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Chen Y, Duan F, Liu L, Chen G, He Z, Huang H, Wang H. Sex differences and heritability of adrenal steroidogenesis in offspring rats induced by prenatal nicotine exposure. J Steroid Biochem Mol Biol 2022; 221:106102. [PMID: 35367371 DOI: 10.1016/j.jsbmb.2022.106102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The epidemiological investigation has suggested prenatal nicotine exposure (PNE) induces multiorgan developmental toxicity and increases the risk of metabolic diseases in offspring. Our previous study found that the occurrence of fetal-originated diseases was associated with abnormal adrenal development in offspring. However, the long-term harmful effects on adrenal development in offspring induced by PNE remain unclear. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg·d) from gestation day (GD) 9 to GD20 to obtain the adrenal gland from fetal and adult offspring rats of F1 and F2 generations. We found that the adrenal insulin-like growth factor 1 (IGF1) signaling pathway and steroidogenic function were increased in male while decreased in female of PNE fetal rats, which could extend into adulthood. Furthermore, the primary adrenal cells of fetal rats were treated with nicotine to observe the phenomena and clarify the possible mechanism of the sex difference. The results suggested that there are sex differences in IGF1 signaling pathway and steroidogenic function induced by PNE, which may be associated with sex differences in nAChRβ1 expression. In addition, the adrenal steroidogenic function was reduced in F2 offspring of F1 PNE female rats (regardless of mating with control or Male PNE rats). Therefore, the decrease of adrenal steroidogenic function in female offspring rats induced by PNE has maternal heritability. In conclusion, PNE could lead to sex differences and heritability of adrenal steroidogenic function in offspring rats.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan 430071, China
| | - Fangfang Duan
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lian Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Medical College of Yangtze University, Jingzhou 434023, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zheng He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hegui Huang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
4
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
5
|
Candler T, Kessler N, Gunasekara C, Ward K, James P, Laritsky E, Baker M, Dyer R, Elango R, Jeffries D, Waterland R, Moore S, Ludgate M, Prentice A, Silver M. DNA methylation at a nutritionally sensitive region of the PAX8 gene is associated with thyroid volume and function in Gambian children. SCIENCE ADVANCES 2021; 7:eabj1561. [PMID: 34739318 PMCID: PMC8570597 DOI: 10.1126/sciadv.abj1561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/16/2021] [Indexed: 05/13/2023]
Abstract
PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease.
Collapse
Affiliation(s)
- Toby Candler
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Noah Kessler
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chathura Gunasekara
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kate Ward
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
- MRC Lifecourse Epidemiology, University of Southampton, Southampton, UK
| | - Philip James
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Eleonora Laritsky
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Baker
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roger Dyer
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Rajavel Elango
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - David Jeffries
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Robert Waterland
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sophie Moore
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Marian Ludgate
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Matt Silver
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
7
|
Liu Y, Li X, Chen S, Wang L, Tan Y, Li X, Tang L, Zhang J, Wu D, Wu Y, Liu X, Zhu Y, Sheng J, Pan J, Jin L, Huang H. Comparison of Genome-Wide DNA Methylation Profiles of Human Fetal Tissues Conceived by in vitro Fertilization and Natural Conception. Front Cell Dev Biol 2021; 9:694769. [PMID: 34336842 PMCID: PMC8318003 DOI: 10.3389/fcell.2021.694769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Assisted reproductive technology (ART) might induce adverse pregnancy outcomes and increase the risk of metabolic diseases in offspring' later life with unknown reasons. Here we evaluated the global methylation level and methylation profile of fetal tissue from elective terminations of pregnancy (ETP) after natural conception and multifetal pregnancy reduction (MFPR) after in vitro fertilization and embryo transfer (IVF-ET). Results Global methylation levels were comparable between the fetal tissue of ETP after natural conception group and MFPR after IVF-ET group. The methylation levels were lower in the hypermethylated regions of the MFPR group than in the ETP group, while the methylation levels were higher in the hypomethylated regions of the MFPR group. Heatmap visualization and hierarchical clustering of the candidate differentially methylated regions (DMRs) showed differences between the DMRs in the ETP and MFPR samples. We identified 196 differentially methylated regions that matched 164 genes between the ETP and MFPR groups. In the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, skeletal system morphogenesis and diabetes mellitus ranked first. Ingenuity Pathway Analysis (IPA) revealed 8 diseases and functional annotations associated with IVT-ET. In the MFPR group, the final validation showed lower methylation levels in gene bodies of bone morphogenetic protein 4 (BMP4), higher methylation levels in the 1st exon and 5'UTR of thyroid peroxidase (TPO), and higher methylation levels in TSS1500 and TSS200 of interleukin 1 beta (IL1B). Conclusions ART does not alter global DNA methylation level, but influences DNA methylation variation in specific regions of human fetus in the early stage of life. Further studies are warranted to clarify the potential role of DNA methylation alterations in the gene expression profile.
Collapse
Affiliation(s)
- Ye Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xinzhu Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Songchang Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Li Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yajing Tan
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiaocui Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Tang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyu Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yanting Wu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Department of Pathology and Pathphysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiexue Pan
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Jin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
8
|
Zhou CL, Xu GF, Yang Q, Wang HH, Guo MX, Xiong YM, Guo XY, Hou M, Jin LY, Sheng JZ, He L, Jin L, Huang HF. Diminished verbal ability among children conceived through ART with exposure to high serum estradiol in utero. J Assist Reprod Genet 2020; 37:1931-1938. [PMID: 32519010 PMCID: PMC7468024 DOI: 10.1007/s10815-020-01835-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose Higher serum estradiol levels occur in women undergoing assisted reproductive technology (ART) owing to ovarian stimulation. Here, we investigated the association between maternal serum estradiol levels and the intellectual development of offspring conceived with ART. Methods A total of 204 singletons born after fresh embryo transfer were recruited for this cohort study. Among them, 102 children were born from mothers with high serum estradiol levels (> 12,000 pmol/L) on the day that human chorionic gonadotropin was administered. Another 102 children, matched by gestational age and age of the children, were recruited as controls from mothers with low serum estradiol (≤ 12,000 pmol/L). The Wechsler Preschool and Primary Scale of Intelligence was used to evaluate the intellectual development of the children. Results Children from mothers with higher serum estradiol levels scored lower in the verbal intelligence quotient (IQ) tests and verbal comprehension than children whose mothers had lower estradiol levels. The main difference between the two groups was in verbal subtests including information, vocabulary, and sorting. Partial correlation analysis revealed that the logarithm of maternal serum estradiol level negatively correlated with verbal IQ, performance IQ, and full scale IQ. Conclusion Our data demonstrate that a high maternal serum estradiol level may negatively associate the verbal ability of children conceived via ART.
Collapse
Affiliation(s)
- Cheng-Liang Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Gu-Feng Xu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Qian Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hui-Hui Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Meng-Xi Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Meng Xiong
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiao-Yan Guo
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Min Hou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Lu-Yang Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China.
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Assessment of conditioned fear extinction in male and female adolescent rats. Psychoneuroendocrinology 2020; 116:104670. [PMID: 32334346 DOI: 10.1016/j.psyneuen.2020.104670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
Pavlovian fear conditioning and extinction have been widely studied across many species to understand emotional learning and memory. Importantly, it is becoming clear that these processes are affected by sex and age. In adult rodents and humans, sex differences are evident in extinction, with estradiol playing a significant role. In adolescence, an extinction deficit has been reported in rodents and humans. However, the influence of sex on extinction during adolescence is unknown. This is surprising, since adolescence coincides with the onset of hormone cycling, and therefore it might be expected that hormones fluctuations exert a more profound effect at this time. Therefore, we examined Pavlovian fear conditioning and extinction in adolescent male and female rats. In experiment 1, 35-day-old male and female rats were exposed to 6 pairings of a conditioned stimulus (CS, a tone) with an aversive unconditioned stimulus (US, a footshock). The next day they were extinguished in a contextually distinct chamber, via 60 presentations of the CS without the US. Extinction recall was tested 24 hours later in the extinction context. Estrous phase was monitored by cytology on vaginal smears taken 1 hour after each behavioral session. In experiment 2, male and female rats were given sham surgery or gonadectomy at 21 days of age. They were then trained and tested as for experiment 1. We observed that females in proestrus or met/diestrus during extinction showed delayed extinction and impaired extinction recall the next day compared to males. Ovariectomy enhanced extinction for female rats, but orchidectomy delayed extinction for males. Plasma analyses showed that met/di/proestrus phases were associated with high estradiol levels. These findings suggest that high plasma estradiol levels impair extinction for adolescent females. These results contradict what is reported in adult animals, suggesting that hormonal influences on extinction are dependent on age. Given that impaired extinction is widely used as a model to understand resistance to exposure-based therapies, our findings have important implications for understanding mental health treatments in adolescents.
Collapse
|
10
|
Hu M, Lou Y, Liu S, Mao Y, Le F, Wang L, Li L, Wang Q, Li H, Lou H, Wang N, Jin F. Altered expression of DNA damage repair genes in the brain tissue of mice conceived by in vitro fertilization. Mol Hum Reprod 2020; 26:141-153. [PMID: 32003796 DOI: 10.1093/molehr/gaaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.
Collapse
Affiliation(s)
- Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Shuyuan Liu
- Department of Gynaecology, Weifang Maternal and Child Health Hospital, Weifang 261000, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China.,Women's Reproductive Health Laboratory of Zhejiang Province, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
| |
Collapse
|
11
|
Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, López PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C, Lux-Lantos V. Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 2019; 31:e12765. [PMID: 31269532 DOI: 10.1111/jne.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and β and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERβ was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Pablo N Surkin
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula V López
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Zou K, Ding G, Huang H. Advances in research into gamete and embryo-fetal origins of adult diseases. SCIENCE CHINA-LIFE SCIENCES 2019; 62:360-368. [PMID: 30685828 DOI: 10.1007/s11427-018-9427-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
The fetal and infant origins of adult disease hypothesis proposed that the roots of adult chronic disease lie in the effects of adverse environments in fetal life and early infancy. In addition to the fetal period, fertilization and early embryonic stages, the critical time windows of epigenetic reprogramming, rapid cell differentiation and organogenesis, are the most sensitive stages to environmental disturbances. Compared with embryo and fetal development, gametogenesis and maturation take decades and are more vulnerable to potential damage for a longer exposure period. Therefore, we should shift the focus of adult disease occurrence and pathogenesis further back to gametogenesis and embryonic development events, which may result in intergenerational, even transgenerational, epigenetic re-programming with transmission of adverse traits and characteristics to offspring. Here, we focus on the research progress relating to diseases that originated from events in the gametes and early embryos and the potential epigenetic mechanisms involved.
Collapse
Affiliation(s)
- Kexin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guolian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
13
|
Validation of Housekeeping Genes as Reference for Reverse-Transcription-qPCR Analysis in Busulfan-Injured Microvascular Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4953806. [PMID: 30386793 PMCID: PMC6189687 DOI: 10.1155/2018/4953806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Endothelial cells (ECs) could express some important cytokines and signal molecules which play a key role in normal hematopoiesis and repopulation. Busulfan-induced vascular endothelial injury is an important feature after hematopoietic stem cell transplantation (HSCT). But the molecular mechanism of how the injured ECs affect hematopoietic reconstruction is still unknown. It is possibly through modulation of the change of some gene expression. RT-qPCR is one of the most popular methods used to accurately determine gene expression levels, based on stable reference gene (RG) selection from housekeeping genes. So our aim is to select stable RGs for more accurate measures of mRNA levels during Busulfan-induced vascular endothelial injury. In this study, 14 RGs were selected to investigate their expression stability in ECs during 72 hours of EC injury treated with Busulfan. Our results revealed extreme variation in RG stability compared by five statistical algorithms. ywhaz and alas1 were recognized as the two idlest RGs on account of the final ranking, while the two most usually used RGs (gapdh and actb) were not the most stable RGs. Next, these data were verified by testing signalling pathway genes ctnnb1, robo4, and notch1 based on the above four genes ywha, alas1, gapdh, and actb. It shows that the normalization of mRNA expression data using unstable RGs greatly affects gene fold change, which means the reliability of the biological conclusions is questionable. Based on the best RGs used, we also found that robo4 is significantly overexpressed in Busulfan-impaired ECs. In conclusion, our data reaffirms the importance of RGs selection for the valid analysis of gene expression in Busulfan-impaired ECs. And it also provides very useful guidance and basis for more accurate differential expression gene screening and future expanding biomolecule study of different drugs such as cyclophosphamide and fludarabine-injured ECs.
Collapse
|
14
|
Löf C, Patyra K, Kero A, Kero J. Genetically modified mouse models to investigate thyroid development, function and growth. Best Pract Res Clin Endocrinol Metab 2018; 32:241-256. [PMID: 29779579 DOI: 10.1016/j.beem.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thyroid gland produces thyroid hormones (TH), which are essential regulators for growth, development and metabolism. The thyroid is mainly controlled by the thyroid-stimulating hormone (TSH) that binds to its receptor (TSHR) on thyrocytes and mediates its action via different G protein-mediated signaling pathways. TSH primarily activates the Gs-pathway, and at higher concentrations also the Gq/11-pathway, leading to an increase of intracellular cAMP and Ca2+, respectively. To date, the physiological importance of other G protein-mediated signaling pathways in thyrocytes is unclear. Congenital hypothyroidism (CH) is defined as the lack of TH at birth. In familial cases, high-throughput sequencing methods have facilitated the identification of novel mutations. Nevertheless, the precise etiology of CH yet remains unraveled in a proportion of cases. Genetically modified mouse models can reveal new pathophysiological mechanisms of thyroid diseases. Here, we will present an overview of genetic mouse models for thyroid diseases, which have provided crucial insights into thyroid gland development, function, and growth with a special focus on TSHR and microRNA signaling.
Collapse
Affiliation(s)
- C Löf
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - K Patyra
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - A Kero
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| | - J Kero
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland; Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.
| |
Collapse
|
15
|
Wang HH, Zhou CL, Lv M, Yang Q, Li JX, Hou M, Lin J, Liu XM, Wu YT, Sheng JZ, Huang HF. Prenatal High Estradiol Exposure Induces Sex-Specific and Dietarily Reversible Insulin Resistance Through Decreased Hypothalamic INSR. Endocrinology 2018; 159:465-476. [PMID: 29155986 DOI: 10.1210/en.2017-03017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022]
Abstract
An adverse intrauterine environment may induce adult disease in offspring, but the mechanisms are not well understood. It is reported that fresh embryo transfer (ET) in assisted reproductive technology leads to high maternal estradiol (E2), and prenatal high E2 exposure increases the risk of organ disorders in later life. We found that male newborns and children of fresh ET showed elevated fasting insulin and homeostasis model of assessment for insulin resistance index (HOMA-IR) scores. Male mice with high prenatal estradiol exposure (HE) grew heavier than control mice and developed insulin resistance; they also showed increased food intake, with increased orexigenic hypothalamic neuropeptide Y (NPY) expression. The hypothalamic insulin receptor (INSR) was decreased in male HE mice, associated with elevated promoter methylation. Chronic food restriction (FR) in HE mice reversed insulin resistance and rescued hypothalamic INSR expression by correcting the elevated Insr promoter methylation. Our findings suggest that prenatal exposure to high E2 may induce sex-specific metabolic disorders in later life through epigenetic programming of hypothalamic Insr promoter, and dietary intervention may reverse insulin resistance by remodeling its methylation pattern.
Collapse
Affiliation(s)
- Hui-Hui Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Liang Zhou
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Min Lv
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qian Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ju-Xue Li
- Department of Biochemistry, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Lin
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Mei Liu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Ting Wu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|