1
|
Palak E, Ponikwicka-Tyszko D, Pulawska-Moon K, Sztachelska M, Milewska G, Modzelewska B, Kleszczewski T, Koivukoski ML, Bernaczyk P, Hady HR, Gołaszewski P, Lupinska AN, Kulikowski M, Lemancewicz A, Huhtaniemi IT, Wolczynski S, Rahman NA. Revisiting the follicle-stimulation hormone receptor expression and function in human myometrium and adipose tissue. Mol Med 2024; 30:241. [PMID: 39633277 PMCID: PMC11619181 DOI: 10.1186/s10020-024-01015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Extragonadal follicle-stimulating hormone receptor (FSHR) expression at low levels has been shown in several normal and tumor tissues, including myometrium and adipose tissue. FSH-FSHR signaling in the myometrium has been suggested to regulate uterine contractile activity and the timing of labor. In contrast, FSH-FSHR has been linked to the activation of brown/beige fat thermogenesis in adipose tissue. The issue of extragonadal FSHR expression and its functionality remains contentious within the scientific community, as contradictory findings necessitate further independent and critical analyses. Hereby, we re-investigated the FSHR expression and its functionality in normal non-pregnant (M-NP) and pregnant (N-P) human myometrium, as well as in human visceral (VAT) and subcutaneous (SCAT) adipose tissue (AT). METHODS FSHR expression at mRNA (real-time qPCR, RNAscope in situ hybridization) and protein (immunohistochemical staining) levels in adipose tissue, myometrium, and adipocytes were evaluated. Myometrium and adipocytes were treated with recombinant (rh)FSH to study its effects on functional pathways. Myometrium contractile activity was measured using a force transducer with digital output and the DASYLab software unit. Cyclic adenosine monophosphate (cAMP) production by myometrium explants and adipocytes was measured using a cAMP ELISA Kit. The activation of the AKT pathway in myometrium and adipocytes was analyzed by Western blot analysis. RESULTS Contrary to previous observations, we found no expression of FSHR at either mRNA or protein levels in M-NP, N-P, VAT, and SCAT. Treatment with recombinant human FSH (rhFSH) showed no effect on cAMP production or phosphorylation of AKT in M-NP, N-P, as well as in VAT and SCAT. rhFSH treatment did not influence contractile activity in M-NP, N-P. CONCLUSIONS These findings suggest that the FSHR signaling pathway does not regulate myometrial contractility during pregnancy. Additionally, the absence of FSHR expression in both VAT and SCAT implied that FSHR does not play a role in the functional signaling pathways in adipose tissues. In conclusion, our findings contradict earlier data on the involvement of FSH-FSHR signaling in regulating myometrial contractility near term, as well as in adipose tissue function.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Kamila Pulawska-Moon
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Tomasz Kleszczewski
- Department of Biophysics, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Maria L Koivukoski
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Hady Razak Hady
- 1st Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, 15- 269, Poland
| | - Piotr Gołaszewski
- 1st Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, 15- 269, Poland
| | - Aleksandra N Lupinska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Marek Kulikowski
- Department of Perinatology, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Adam Lemancewicz
- Department of Perinatology, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Nafis A Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20520, Finland.
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15-276, Poland.
| |
Collapse
|
2
|
Rocca MS, Pannella M, Bayraktar E, Marino S, Bortolozzi M, Di Nisio A, Foresta C, Ferlin A. Extragonadal function of follicle-stimulating hormone: Evidence for a role in endothelial physiology and dysfunction. Mol Cell Endocrinol 2024; 594:112378. [PMID: 39332467 DOI: 10.1016/j.mce.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
AIMS Follicle-stimulating hormone (FSH) plays a fundamental role in reproduction stimulating ovarian folliculogenesis, Sertoli cells function and spermatogenesis. However, the recent identification of FSH receptor (FSHR) also in extra-gonadal tissues has suggested that FSH activity may not be limited only to fertility regulation, with conflicting results on the possible role of FSH in endothelial cells. The aim of this study was to investigate FSH role on endothelial function in Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Endothelial Nitric oxide synthase (eNOS) expression, eNOS phosphorylation and Nitric Oxide (NO) production resulted increased after the stimulation of HUVEC with recombinant human FSH (rhFSH) at 3.6x103 ng/ml, with increasing Calcium release from intracellular stores. Furthermore, IP3 production increased after rhFSH stimulation despite PTX treatment and NFAT1 was observed prevalently in nucleus. We observed a statistical difference between untreated cells and cells stimulated with 0.36x103 ng/ml and between cells stimulated with 0.36x103 ng/ml and cells stimulated with 1.8x103 ng/ml at 4 and 8 h by Wound healing assay, respectively. Furthermore, a higher cellular permeability was observed in stimulated cells, with atypical VE-cadherin distribution, as well as filamentous actin. CONCLUSIONS Our findings suggest that FSH at high concentrations elicits a signalling that could compromise the endothelial membrane. Indeed, VE-cadherin anomalies may severely affect the endothelial barrier, resulting in an increased membrane permeability. Although NO is an important vasodilatation factor, probably an excessive production could impact on endothelial functionality, partially explaining the increased risk of cardiovascular diseases in menopausal women and men with hypogonadism.
Collapse
Affiliation(s)
- Maria Santa Rocca
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy
| | | | - Erva Bayraktar
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Saralea Marino
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Andrea Di Nisio
- University of Padua, Department of Medicine, Padua, Italy; Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Carlo Foresta
- University of Padua, Department of Medicine, Padua, Italy
| | - Alberto Ferlin
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy; University of Padua, Department of Medicine, Padua, Italy.
| |
Collapse
|
3
|
Starzyński D, Rzeszotek S, Kolasa A, Grabowska M, Wiszniewska B, Kudrymska A, Karpińska K, Tołoczko-Grabarek A, Janiec A, Myszka A, Rynio P, Syrenicz A, Sowińska-Przepiera E. Pilot Study: FSHR Expression in Neuroendocrine Tumors of the Appendix. J Clin Med 2023; 12:5086. [PMID: 37568488 PMCID: PMC10419379 DOI: 10.3390/jcm12155086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Appendix neuroendocrine neoplasm (ANEN) treatment is based on tumor size and proliferation markers. Recently, the role of the follicle-stimulating hormone receptor (FSHR) from the clinical perspective has also been increasingly discussed. The FSHR is expressed in the endothelial cells of both intratumoral and peritumoral blood vessels, where it contributes to neoangiogenesis and blood vessel remodeling. FSHR expression is associated with a range of tumor types, such as gastrointestinal tumors, and it is not detected in healthy tissues located more than 10 mm from the tumor site or in tumor lymphatics. In this study, we evaluated the expression of FSHR and CD31 in the blood vessels of ANENs in females and males with confirmed histopathology. We conducted a quantitative analysis of the immunohistochemical reactions and found a higher number of microvessels in the mucosa and submucosa of neuroendocrine tumors in the appendix. A higher level of FSHR expression was observed in women. Future research should consider whether an elevated number of blood vessels along with a strong pattern of FSHR expression may influence future treatment strategies.
Collapse
Affiliation(s)
- Dariusz Starzyński
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Aleksandra Kudrymska
- Department of Pathomorphology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (A.K.); (K.K.)
| | - Katarzyna Karpińska
- Department of Pathomorphology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (A.K.); (K.K.)
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathomorphology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Agnieszka Janiec
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Aleksandra Myszka
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Paweł Rynio
- Department of Vascular Surgery, General Surgery and Angiology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| |
Collapse
|
4
|
Tedjawirja VN, Mieremet A, Rombouts KB, Yap C, Neele AE, Northoff BH, Chen HJ, Vos M, Klaver D, Yeung KK, Balm R, de Waard V. Exploring the expression and potential function of follicle stimulating hormone receptor in extragonadal cells related to abdominal aortic aneurysm. PLoS One 2023; 18:e0285607. [PMID: 37228156 DOI: 10.1371/journal.pone.0285607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Follicle stimulating hormone (FSH) is identified to play a role in postmenopausal disease and hypothesized to affect abdominal aortic aneurysm (AAA) onset/progression in postmenopausal women. We aimed to detect FSHR gene expression in AAA tissue and cell types involved in AAA formation. METHODS FSH stimulation of human umbilical cord endothelial cells (HUVECs), smooth muscle cells (HUCs) and PMA-differentiated macrophages to assess gene expression of FSHR and various markers. Human macrophages activated with various stimuli were assessed for FSHR gene expression. AAA dataset, AAA tissue samples and AAA-derived smooth muscle cells (SMC) obtained from elderly female donors were assessed for FSHR gene expression. AAA-SMCs were stimulated with FSH to assess its effect on gene expression. Lastly, oxidized low-density-lipoprotein (ox-LDL) uptake and abundance of cell surface protein markers were assessed by flow cytometry after FSH stimulation of human monocytes. RESULTS FSH stimulation showed similar levels of gene expression in HUVECs and HUCs. Only ACTA2 was downregulated in HUCs. In PMA-differentiated macrophages, gene expression of inflammation markers was unchanged after FSH stimulation. FSHR gene expression was found to be low in the AAA datasets. Female AAA-SMCs show occasional FSHR gene expression at a very low level, yet stimulation with FSH did not affect gene expression of SMC- or inflammation markers. FSH stimulation did not impact ox-LDL uptake or alter cell surface protein expression in monocytes. While FSHR gene expression was detected in human testis tissue, it was below quantification level in all other investigated cell types, even upon activation of macrophages with various stimuli. CONCLUSION Despite previous reports, we did not detect FSHR gene expression in various extragonadal cell types, except in occasional female AAA-SMCs. No clear effect on cell activation was observed upon FSH stimulation in any cell type. Our data suggest that a direct effect of FSH in AAA-related extragonadal cells is unlikely to influence AAA.
Collapse
Affiliation(s)
- V N Tedjawirja
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A Mieremet
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - K B Rombouts
- Department of Surgery and Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - C Yap
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A E Neele
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - B H Northoff
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - H J Chen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - M Vos
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - D Klaver
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - K K Yeung
- Department of Surgery and Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - R Balm
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - V de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ko EJ, Shin JE, Lee JY, Ryu CS, Hwang JY, Kim YR, Ahn EH, Kim JH, Kim NK. Association of Polymorphisms in FSHR, INHA, ESR1, and BMP15 with Recurrent Implantation Failure. Biomedicines 2023; 11:biomedicines11051374. [PMID: 37239044 DOI: 10.3390/biomedicines11051374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Recurrent implantation failure (RIF) refers to two or more unsuccessful in vitro fertilization embryo transfers in the same individual. Embryonic characteristics, immunological factors, and coagulation factors are known to be the causes of RIF. Genetic factors have also been reported to be involved in the occurrence of RIF, and some single nucleotide polymorphisms (SNPs) may contribute to RIF. We examined SNPs in FSHR, INHA, ESR1, and BMP15, which have been associated with primary ovarian failure. A cohort of 133 RIF patients and 317 healthy controls consisting of all Korean women was included. Genotyping was performed by Taq-Man genotyping assays to determine the frequency of the following polymorphisms: FSHR rs6165, INHA rs11893842 and rs35118453, ESR1 rs9340799 and rs2234693, and BMP15 rs17003221 and rs3810682. The differences in these SNPs were compared between the patient and control groups. Our results demonstrate a decreased prevalence of RIF in subjects with the FSHR rs6165 A>G polymorphism [AA vs. AG adjusted odds ratio (AOR) = 0.432; confidence interval (CI) = 0.206-0.908; p = 0.027, AA+AG vs. GG AOR = 0.434; CI = 0.213-0.885; p = 0.022]. Based on a genotype combination analysis, the GG/AA (FSHR rs6165/ESR1 rs9340799: OR = 0.250; CI = 0.072-0.874; p = 0.030) and GG-CC (FSHR rs6165/BMP15 rs3810682: OR = 0.466; CI = 0.220-0.987; p = 0.046) alleles were also associated with a decreased RIF risk. Additionally, the FSHR rs6165GG and BMP15 rs17003221TT+TC genotype combination was associated with a decreased RIF risk (OR = 0.430; CI = 0.210-0.877; p = 0.020) and increased FSH levels, as assessed by an analysis of variance. The FSHR rs6165 polymorphism and genotype combinations are significantly associated with RIF development in Korean women.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Ji-Eun Shin
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Jung-Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Chang-Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Ji-Young Hwang
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Ji-Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
6
|
Tedjawirja VN, Hooijer GKJ, Savci-Heijink CD, Kovac K, Balm R, de Waard V. Inadequate detection of the FSHR complicates future research on extragonadal FSHR localization. Front Endocrinol (Lausanne) 2023; 14:1095031. [PMID: 36875462 PMCID: PMC9978812 DOI: 10.3389/fendo.2023.1095031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Recently, follicle stimulating hormone (FSH) through interaction with its receptor (FSHR) has been proposed to play a role in postmenopausal osteoporosis and cardiovascular disease, rather than the loss of estrogen. To explore this hypothesis, unravelling which cells express extragonadal FSHR on protein level is key. METHODS We used two commercial anti-FSHR antibodies and validated them by performing immunohistochemistry on positive (ovary, testis) and negative controls (skin). RESULTS The monoclonal anti-FSHR antibody could not identify the FSHR in ovary or testis. The polyclonal anti-FSHR antibody stained the granulosa cells (ovary) and Sertoli cells (testis), yet there was equally intense staining of other cells/extracellular matrix. Furthermore, the polyclonal anti-FSHR antibody also stained skin tissue extensively, suggesting that the antibody stains more than just FSHR. DISCUSSION The findings in this study may add accuracy to literature on extragonadal FSHR localization and warrants attention to the use of inadequate anti-FSHR antibodies to value the potential role of FSH/FSHR in postmenopausal disease.
Collapse
Affiliation(s)
- Victoria N. Tedjawirja
- Department of Surgery, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Victoria N. Tedjawirja,
| | - Gerrit K. J. Hooijer
- Department of Pathology, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - C. Dilara Savci-Heijink
- Department of Pathology, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kristina Kovac
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ron Balm
- Department of Surgery, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Matta RA, Farrage HM, Saedii AA, Abdelrahman MM. Male subclinical hypogonadism and late-onset hypergonadotrophic hypogonadism: mechanisms, endothelial function, and interplay between reproductive hormones, undercarboxylated osteocalcin, and endothelial dysfunction. Aging Male 2022; 25:72-87. [PMID: 35291927 DOI: 10.1080/13685538.2022.2049744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Pathogenesis and endothelial function in subclinical hypogonadism (SCH) remain unclear. Undercarboxylated osteocalcin (ucOC) participates in atherosclerosis and reproduction. We explored the underlying mechanisms and interplay of endothelial dysfunction, unOC and reproductive hormones in SCH and primary late-onset hypogonadism (LOH). METHODS In the SCH, LOH, and healthy eugonadal male groups, we measured serum unOC, calculated luteinizing hormone/testosterone (LH/T), LH.T product, and estradiol/T (E/T) as indicators of impaired Leydig cells, androgen sensitivity index (ASI), and aromatase activity, respectively (LH set-point regulators), and assessed flow-mediated dilation of the brachial artery (FMD%), carotid-intima media thickness (CIMT), and aortic stiffness (AS). RESULTS ↑LH/T, ↑ASI, ↓aromatase activity, normal T, follicle-stimulating hormone (FSH) and sex hormone-binding globulin (SHBG) levels, ↑unOC, and enhanced atherosclerotic markers (↓FMD%, ↑CIMT, ↑AS) are characteristics of SCH. Testosterone was positively correlated with FMD% in SCH. The independent predictors were: SHBG and LH for FMD% and CIMT, respectively, and LH/T, ucOC, FSH, estradiol, and E/T ratio for AS in the LOH group; and LH for FMD% & AS and LH and LH/T for CIMT in all study subjects. CONCLUSIONS SCH is a distinct clinical entity characterized by impaired androgen sensitivity and aromatase activity, compensatory elevated unOC, endothelial dysfunction, and anti-atherogenic role of testosterone.
Collapse
Affiliation(s)
- Ragaa Abedelshaheed Matta
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | | |
Collapse
|
8
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
9
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
11
|
Sayers NS, Anujan P, Yu HN, Palmer SS, Nautiyal J, Franks S, Hanyaloglu AC. Follicle-Stimulating Hormone Induces Lipid Droplets via Gαi/o and β-Arrestin in an Endometrial Cancer Cell Line. Front Endocrinol (Lausanne) 2021; 12:798866. [PMID: 35185785 PMCID: PMC8850301 DOI: 10.3389/fendo.2021.798866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and its G protein-coupled receptor, FSHR, represents a paradigm for receptor signaling systems that activate multiple and complex pathways. Classically, FSHR activates Gαs to increase intracellular levels of cAMP, but its ability to activate other G proteins, and β-arrestin-mediated signaling is well documented in many different cell systems. The pleiotropic signal capacity of FSHR offers a mechanism for how FSH drives multiple and dynamic downstream functions in both gonadal and non-gonadal cell types, including distinct diseases, and how signal bias may be achieved at a pharmacological and cell system-specific manner. In this study, we identify an additional mechanism of FSH-mediated signaling and downstream function in the endometrial adenocarcinoma Ishikawa cell line. While FSH did not induce increases in cAMP levels, this hormone potently activated pertussis toxin sensitive Gαi/o signaling. A selective allosteric FSHR ligand, B3, also activated Gαi/o signaling in these cells, supporting a role for receptor-mediated activation despite the low levels of FSHR mRNA. The low expression levels may attribute to the lack of Gαs/cAMP signaling as increasing FSHR expression resulted in FSH-mediated activation of the Gαs pathway. Unlike prior reports for FSH-mediated Gαs/cAMP signaling, FSH-mediated Gαi/o signaling was not affected by inhibition of dynamin-dependent receptor internalization. While chronic FSH did not alter cell viability, FSH was able to increase lipid droplet size. The β-arrestins are key adaptor proteins known to regulate FSHR signaling. Indeed, a rapid, FSH-dependent increase in interactions between β-arrestin1 and Gαi1 was observed via NanoBiT complementation in Ishikawa cells. Furthermore, both inhibition of Gαi/o signaling and siRNA knockdown of β-arrestin 1/2 significantly reduced FSH-induced lipid droplet accumulation, implying a role for a Gαi/o/β-arrestin complex in FSH functions in this cell type. As FSH/FSHR has been implicated in distinct hormone-dependent cancers, including endometrial cancer, analysis of the cancer genome database from 575 human endometrial adenocarcinoma tumors revealed that a subpopulation of samples expressed FSHR. Overall, this study highlights a novel mechanism for FSHR signal pleiotropy that may be exploited for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Niamh S. Sayers
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Priyanka Anujan
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Henry N. Yu
- CanWell Pharma Inc., Wellesley, MA, United States
| | - Stephen S. Palmer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stephen Franks
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Aylin C. Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- *Correspondence: Aylin C. Hanyaloglu,
| |
Collapse
|
12
|
Cheung J, Lokman NA, Abraham RD, Macpherson AM, Lee E, Grutzner F, Ghinea N, Oehler MK, Ricciardelli C. Reduced Gonadotrophin Receptor Expression Is Associated with a More Aggressive Ovarian Cancer Phenotype. Int J Mol Sci 2020; 22:ijms22010071. [PMID: 33374698 PMCID: PMC7793521 DOI: 10.3390/ijms22010071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and luteinising hormone (LH) play important roles in regulating cell growth and proliferation in the ovary. However, few studies have explored the expression of FSH and LH receptors (FSHR and LHCGR) in ovarian cancer, and their functional roles in cancer progression remain inconclusive. This study investigated the potential impact of both mRNA (FSHR, LHCGR) and protein (FSHR, LHCGR) expression on ovarian cancer progression using publicly available online databases, qRT-PCR (high grade serous ovarian cancers, HGSOC, n = 29 and benign ovarian tumors, n = 17) and immunohistochemistry (HGSOC, n = 144). In addition, we investigated the effect of FSHR and LHCGR siRNA knockdown on the pro-metastatic behavior of serous ovarian cancer cells in vitro. High FSHR or high LHCGR expression in patients with all subtypes of high-grade ovarian cancer was significantly associated with longer progression-free survival (PFS) and overall survival (OS). High FSHR protein expression was associated with increased PFS (p = 0.050) and OS (p = 0.025). HGSOC patients with both high FSHR and high LHCGR protein levels had the best survival outcome, whilst both low FSHR and low LHCGR expression was associated with poorest survival (p = 0.019). Knockdown of FSHR significantly increased the invasion of serous ovarian cancer cells (OVCAR3 and COV362) in vitro. LHCGR knockdown also promoted invasion of COV362 cells. This study highlights that lower FSHR and LHCGR expression is associated with a more aggressive epithelial ovarian cancer phenotype and promotes pro-metastatic behaviour.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Female
- Humans
- Middle Aged
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phenotype
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
Collapse
Affiliation(s)
- Janelle Cheung
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Noor A. Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Riya D. Abraham
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Anne M. Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Eunice Lee
- School of Biological Science, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (E.L.); (F.G.)
| | - Frank Grutzner
- School of Biological Science, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (E.L.); (F.G.)
| | - Nicolae Ghinea
- Curie Institute, Research Center, Translational Research Department, Tumor Angiogenesis Team, 75005 Paris, France;
| | - Martin K. Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
- Correspondence:
| |
Collapse
|
13
|
Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y, Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med 2019; 18:2167-2177. [PMID: 31452708 PMCID: PMC6704934 DOI: 10.3892/etm.2019.7802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Follicular fluid serves a crucial role in follicular development and oocyte maturation. Increasing evidence indicates that follicular fluid is rich in proteins and functional cells. In addition to oocyte cells, follicular fluid contains granulosa, thecal and ovarian surface epithelial cells. Granulosa cells (GCs) represent the predominant somatic cell type of the ovarian follicle and are involved in steroidogenesis and folliculogenesis. However, the long-term culture of GCs in vitro remains challenging. The present study aimed to extend the culture of GCs in vitro. Human GCs were collected from the follicular fluid of patients included in an in vitro fertilization program and cultured in the presence of conditioned medium obtained from mouse embryonic fibroblasts. GCs were cultured for over a year and 130 passages, and the population doubling time was ~22 h. Cells presented epithelial-like morphology and a cobblestone-like appearance when they reached confluence. Flow cytometric analysis demonstrated that cells expressed CD29, CD166 and CD49f but not CD31, CD34, CD45, CD90, CD105 or CD13. Immunofluorescence staining revealed that cells expressed follicle stimulating hormone receptor, luteinizing hormone receptor and cytochrome P450 aromatase, which was confirmed by reverse transcription-quantitative polymerase chain reaction. In the presence of androstenedione, cells secreted estradiol. In addition, estradiol level was further stimulated by dibutyryl cAMP treatment. In addition, intracellular cAMP and progesterone expression levels were upregulated by follicle stimulating hormone and/or human chorionic gonadotropin. Furthermore, cells survived in severe combined immunodeficiency mice following intra-ovarian injection. Histological analysis revealed that certain cells formed follicle-like structures. The results from the present study suggested that immortalized GCs may be a useful tool for further research on GC and improve the clinical application of drugs such as follicle-stimulating hormone or human chorionic gonadotropin.
Collapse
Affiliation(s)
- Ai Ai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Zhengya Tang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Sha Yu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - He Huang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Xiangsheng Wang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Bousfield GR, Harvey DJ. Follicle-Stimulating Hormone Glycobiology. Endocrinology 2019; 160:1515-1535. [PMID: 31127275 PMCID: PMC6534497 DOI: 10.1210/en.2019-00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHβ glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| |
Collapse
|
15
|
Chrusciel M, Ponikwicka-Tyszko D, Wolczynski S, Huhtaniemi I, Rahman NA. Extragonadal FSHR Expression and Function-Is It Real? Front Endocrinol (Lausanne) 2019; 10:32. [PMID: 30778333 PMCID: PMC6369633 DOI: 10.3389/fendo.2019.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of the follicle-stimulating hormone receptor (FSHR), besides gonadal tissues, has recently been detected in several extragonadal normal and tumorous tissues, including different types of primary and metastatic cancer and tumor vessel endothelial cells (TVEC). The suggested FSH actions in extragonadal tissues include promotion of angiogenesis, myometrial contractility, skeletal integrity, and adipose tissue accumulation. Non-malignant cells within cancer tissue have been shown to be devoid of FSHR expression, which implies a potential role of FSHR as a diagnostic, prognostic, or even a therapeutic tool. There are shared issues between several of the published reports questioning the validity of some of the conclusion. Firstly, protein expression of FSHR was performed solely with immunohistochemistry (IHC) using either an unavailable "in house" FSHR323 monoclonal antibody or poorly validated polyclonal antibodies, usually without additional methodological quality control and confirmations. Secondly, there is discrepancy between the hardly traceable or absent FSHR gene amplification/transcript data and non-reciprocal strong FSHR protein immunoreactivity. Thirdly, the pharmacological high doses of recombinant FSH used in in vitro studies also jeopardizes the physiological or pathophysiological meaning of the findings. We performed in this review a critical analysis of the results presenting extragonadal expression of FSHR and FSH action, and provide a rationale for the validation of the reported results using additional more accurate and sensitive supplemental methods, including in vivo models and proper positive and negative controls.
Collapse
Affiliation(s)
- Marcin Chrusciel
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | | | - Slawomir Wolczynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Nafis A. Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Doroszko M, Chrusciel M, Stelmaszewska J, Slezak T, Anisimowicz S, Plöckinger U, Quinkler M, Bonomi M, Wolczynski S, Huhtaniemi I, Toppari J, Rahman NA. GnRH antagonist treatment of malignant adrenocortical tumors. Endocr Relat Cancer 2019; 26:103-117. [PMID: 30400009 PMCID: PMC6215908 DOI: 10.1530/erc-17-0399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.
Collapse
Affiliation(s)
| | | | - Joanna Stelmaszewska
- Department of Reproduction and Gynecological EndocrinologyMedical University of Bialystok, Bialystok, Poland
| | - Tomasz Slezak
- Department of Biochemistry and Molecular BiologyUniversity of Chicago, Chicago, Illinois, USA
| | | | - Ursula Plöckinger
- Interdisciplinary Center of Metabolism: EndocrinologyDiabetes and Metabolism, Charité University Medicine Berlin, Berlin, Germany
| | - Marcus Quinkler
- Endocrinology in CharlottenburgBerlin, Germany
- Department of Clinical EndocrinologyCharité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany
| | - Marco Bonomi
- Department of Clinical Sciences & Community HealthUniversity of Milan, Milan, Italy
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological EndocrinologyMedical University of Bialystok, Bialystok, Poland
| | - Ilpo Huhtaniemi
- Institute of BiomedicineUniversity of Turku, Turku, Finland
- Department of Surgery and CancerFaculty of Medicine, Imperial College London, London, U.K.
| | - Jorma Toppari
- Institute of BiomedicineUniversity of Turku, Turku, Finland
- Department of PediatricsTurku University Hospital, Turku, Finland
| | - Nafis A Rahman
- Institute of BiomedicineUniversity of Turku, Turku, Finland
- Department of Reproduction and Gynecological EndocrinologyMedical University of Bialystok, Bialystok, Poland
- Correspondence should be addressed to N Rahman:
| |
Collapse
|
17
|
Gheorghiu ML. ACTUALITIES IN MUTATIONS OF LUTEINIZING HORMONE (LH) AND FOLLICLE-STIMULATING HORMONE (FSH) RECEPTORS. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; -5:139-142. [PMID: 31149075 DOI: 10.4183/aeb.2019.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M L Gheorghiu
- "C.I.Parhon" National Institute of Endocrinology, "Carol Davila" University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| |
Collapse
|
18
|
Stilley JAW, Segaloff DL. FSH Actions and Pregnancy: Looking Beyond Ovarian FSH Receptors. Endocrinology 2018; 159:4033-4042. [PMID: 30395176 PMCID: PMC6260061 DOI: 10.1210/en.2018-00497] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
By mediating estrogen synthesis and follicular growth in response to FSH, the ovarian FSH receptor (FSHR) is essential for female fertility. Indeed, ovarian stimulation via administration of FSH to women with infertility is part of the primary therapeutic intervention used in assisted reproductive technology. In physiological and therapeutic contexts, current dogma dictates that once ovulation has occurred, FSH/FSHR signaling is no longer required for successful pregnancy outcomes. However, a continued role for FSH during pregnancy is suggested by recent studies demonstrating extraovarian FSHR in the female reproductive tract. Furthermore, functional roles for FSHR in placenta and in uterine myometrium have now been demonstrated. In placenta, vascular endothelial FSHR of fetal vessels within the chorionic villi (human) or labyrinth (mouse) mediate angiogenesis, and it has further been shown that deletion of placental Fshr in mice has deleterious effects on pregnancy. In uterine myometrium, changes in the densities of FSHR in muscle fiber and stroma in the nonpregnant state, early pregnancy, and term pregnancy differentially regulate contractile activity, suggesting that signaling through myometrial FSHR may contribute to the quieting of contractile activity required for successful implantation and that the temporal upregulation of the FSHR at term pregnancy may be required for the appropriate timing of parturition. In addition, extraovarian expression of mRNAs encoding the glycoprotein hormone α subunit and the FSH β subunit has been demonstrated, suggesting that these novel aspects of extraovarian FSH/FSHR signaling during pregnancy may be mediated by locally synthesized FSH.
Collapse
Affiliation(s)
- Julie A W Stilley
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Deborah L Segaloff
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa
- Correspondence: Deborah L. Segaloff, PhD, Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, 5-470 Bowen Science Building, 51 Newton Road, Iowa City, Iowa 52242. E-mail:
| |
Collapse
|
19
|
Stilley JAW, Segaloff DL. Deletion of fetoplacental Fshr inhibits fetal vessel angiogenesis in the mouse placenta. Mol Cell Endocrinol 2018; 476:79-83. [PMID: 29715497 PMCID: PMC6120782 DOI: 10.1016/j.mce.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
It has been shown in both human and mouse placentas that follicle stimulating hormone receptor (FSHR) is expressed in fetal vascular endothelium. There are conflicting reports, however, on the role of FSH to stimulate angiogenesis in vitro in cultured endothelial cells from umbilical veins. Therefore, in this study we undertook an in vivo approach utilizing Fshr null mice to definitively address this question. In the context where all pregnant dams have identical Fshr genotypes, we generated fetuses and associated fetal portions of placenta that were Fshr wt or Fshr null and analyzed angiogenesis within the placental labyrinths. Quantitative morphometric analyses of placentas obtained at mid-gestation revealed that the percentage of the placenta composed of labyrinth is significantly decreased in Fshr null placentas relative to wt placentas. Furthermore, data presented demonstrate that within the Fshr null labyrinths, fetal vessel angiogenesis was significantly reduced relative to wt labyrinths. The results obtained with this combination of in vivo and genetic approaches conclusively demonstrate that signaling through endothelial FSHR does indeed stimulate angiogenesis and that placental Fshr is essential for normal angiogenesis of the fetal placental vasculature.
Collapse
Affiliation(s)
- Julie A W Stilley
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Deborah L Segaloff
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
20
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
21
|
Zhu D, Li X, Macrae VE, Simoncini T, Fu X. Extragonadal Effects of Follicle-Stimulating Hormone on Osteoporosis and Cardiovascular Disease in Women during Menopausal Transition. Trends Endocrinol Metab 2018; 29:571-580. [PMID: 29983231 DOI: 10.1016/j.tem.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
The risk of osteoporosis and cardiovascular disease increases significantly in postmenopausal women. Until recently, the underlying mechanisms have been primarily attributed to estrogen decline following menopause. However, follicle-stimulating hormone (FSH) levels rise sharply during menopausal transition and are maintained at elevated levels for many years. FSH receptor has been detected in various extragonadal sites, including osteoclasts and endothelial cells. Recent advances suggest FSH may contribute to postmenopausal osteoporosis and cardiovascular disease. Here, we review the key actions through which FSH contributes to the risk of osteoporosis and cardiovascular disease in women as they transition through menopause. Advancing our understanding of the precise mechanisms through which FSH promotes osteoporosis and cardiovascular disease may provide new opportunities for improving health-span for postmenopausal women.
Collapse
Affiliation(s)
- Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Vicky E Macrae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy.
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
22
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
23
|
Kumar TR. Extragonadal Actions of FSH: A Critical Need for Novel Genetic Models. Endocrinology 2018; 159:2-8. [PMID: 29236987 PMCID: PMC5761596 DOI: 10.1210/en.2017-03118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) is critical for ovarian folliculogenesis and essential for female fertility. FSH binds to FSH receptors (FSHRs) and regulates estrogen production in ovarian granulosa cells to orchestrate female reproductive physiology. Ovarian senescence that occurs as a function of aging results in loss of estrogen production, and this is believed to be the major reason for bone loss in postmenopausal women. Although conflicting, studies in rodents and humans during the last decade have provided genetic, pharmacological, and physiological evidence that elevated FSH levels that occur in the face of normal or declining estrogen levels directly regulate bone mass and adiposity. Recently, an efficacious blocking polyclonal FSHβ antibody was developed that inhibited ovariectomy-induced bone loss and triggered white-to-brown fat conversion accompanied by mitochondrial biogenesis in mice. Moreover, additional nongonadal targets of FSH action have been identified, and these include the female reproductive tract (endometrium and myometrium), the placenta, hepatocytes, and blood vessels. In this mini-review, I summarize these studies in mice and humans and discuss critical gaps in our knowledge, yet unanswered questions, and the rationale for developing novel genetic models to unambiguously address the extragonadal actions of FSH.
Collapse
Affiliation(s)
- T. Rajendra Kumar
- Division of Reproductive Sciences and Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
24
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
25
|
Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M, Rivero-Müller A. FSHR Trans-Activation and Oligomerization. Front Endocrinol (Lausanne) 2018; 9:760. [PMID: 30619090 PMCID: PMC6301190 DOI: 10.3389/fendo.2018.00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) plays a key role in human reproduction through, among others, induction of spermatogenesis in men and production of estrogen in women. The function FSH is performed upon binding to its cognate receptor-follicle-stimulating hormone receptor (FSHR) expressed on the surface of target cells (granulosa and Sertoli cells). FSHR belongs to the family of G protein-coupled receptors (GPCRs), a family of receptors distinguished by the presence of various signaling pathway activation as well as formation of cross-talking aggregates. Until recently, it was claimed that the FSHR occurred naturally as a monomer, however, the crystal structure as well as experimental evidence have shown that FSHR both self-associates and forms heterodimers with the luteinizing hormone/chorionic gonadotropin receptor-LHCGR. The tremendous gain of knowledge is also visible on the subject of receptor activation. It was once thought that activation occurs only as a result of ligand binding to a particular receptor, however there is mounting evidence of trans-activation as well as biased signaling between GPCRs. Herein, we describe the mechanisms of aforementioned phenomena as well as briefly describe important experiments that contributed to their better understanding.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Beata Paziewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- *Correspondence: Adolfo Rivero-Müller ;
| |
Collapse
|
26
|
Jayaraman A, Kumar TR. Extra-pituitary expressed follicle-stimulating hormone: Is it physiologically important? Biol Reprod 2017; 97:622-626. [PMID: 29036567 DOI: 10.1093/biolre/iox117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/19/2017] [Indexed: 11/14/2022] Open
Abstract
Pituitary gonadotropes synthesize and secrete follicle-stimulating hormone (FSH). FSH is a heterodimer that consists of an α- and β-subunit. The α-subunit is common to other pituitary and placental glycoprotein hormones, and the β-subunit is the hormone/receptor-specific subunit. Although the pituitary is the main tissue that accounts for circulating hormone, previous and recent reports indicate extra-pituitary sources of FSH production including mouse gonads, human stomach, prostate, umbilical cord vein endothelial cells, uterine myometrium, placenta, and chicken abdominal adipose tissue. Whether extra-pituitary derived FSH exerts any physiologically significant actions is not known. In this review, we have comprehensively analyzed the expression of mRNAs that encode mouse and human FSH subunits and also their corresponding expressed sequence tags in normal tissues, cancer cell lines, and primary tumors by public database mining. We propose criteria to assess the significance of individual FSH subunit or FSH dimer expression as well as genetic approaches to unambiguously define the physiological relevance of extra-pituitary FSH expression.
Collapse
Affiliation(s)
- Anushka Jayaraman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Reproductive Endocrinology & Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
27
|
Wang N, Shao H, Chen Y, Xia F, Chi C, Li Q, Han B, Teng Y, Lu Y. Follicle-Stimulating Hormone, Its Association with Cardiometabolic Risk Factors, and 10-Year Risk of Cardiovascular Disease in Postmenopausal Women. J Am Heart Assoc 2017; 6:JAHA.117.005918. [PMID: 28855169 PMCID: PMC5634260 DOI: 10.1161/jaha.117.005918] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of mortality in postmenopausal women. Follicle-stimulating hormone (FSH) shows negative associations with obesity and diabetes mellitus in postmenopausal women. We aimed to study the associations between FSH and 10-year risk of atherosclerotic cardiovascular disease (ASCVD) in postmenopausal women. METHODS AND RESULTS SPECT-China (the Survey on Prevalence in East China for Metabolic Diseases and Risk Factors) is a 22-site, population-based study conducted during 2014-2015. This study included 2658 postmenopausal women. A newly developed effective tool for 10-year ASCVD risk prediction among Chinese was adopted. Regression analyses were performed to assess the relationship among FSH, 10-year ASCVD risk, and multiple cardiometabolic risk factors. With the increase in FSH quartiles, the mean 10-year ASCVD risk in postmenopausal women decreased from 4.9% to 3.3%, and most metabolic parameters were significantly ameliorated (all P for trend <0.05). In regression analyses, a 1-SD increment in ln-FSH was negatively associated with continuous (B -0.12, 95% confidence interval, -0.16, -0.09, P<0.05) and categorical (odds ratio 0.65, 95% confidence interval, 0.49, 0.85, P<0.05) 10-year ASCVD risk. These significant associations existed in subgroups with or without medication use, obesity, diabetes mellitus, hypertension, and dyslipidemia. Body mass index and waist circumference (both B -0.35, 95% confidence interval, -0.40, -0.30, P<0.05) had the largest associations of all metabolic measures, and blood pressure had the smallest association. CONCLUSIONS Serum FSH levels were negatively associated with 10-year ASCVD risk in postmenopausal women. Among cardiometabolic factors, obesity indices had the largest associations with FSH. These results indicated that a low FSH might be a risk factor or a biomarker for cardiovascular disease risk in postmenopausal women.
Collapse
Affiliation(s)
- Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hongfang Shao
- Centre for Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chen Chi
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yincheng Teng
- Centre for Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|