1
|
Faryadi S, Sheikhahmadi A, Farhadi A, Nourbakhsh H. Evaluating the therapeutic effect of different forms of silymarin on liver status and expression of some genes involved in fat metabolism, antioxidants and anti-inflammatory in older laying hens. Vet Med Sci 2024; 10:e70025. [PMID: 39324876 PMCID: PMC11426161 DOI: 10.1002/vms3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Silymarin, the predominant compound of milk thistle, is an extract took out from milk thistle (Silybum marianum) seeds, containing a mixture of flavonolignans with strong antioxidant capability. METHODS The experiment was conducted using 70 Lohmann LSL-Lite hens at 80 weeks of age with 7 treatments each with 10 replicates. Treatments included: (1) control diet without silymarin, (2) daily intake of 100 mg silymarin powder/kg body weight (BW) (PSM100), (3) daily intake of 200 mg silymarin powder/kg BW (PSM200), (4) daily intake of 100 mg nano-silymarin/kg BW (NSM100), (5) daily intake of 200 mg nano-silymarin/kg BW (NSM200), (6) daily intake of 100 mg lecithinized silymarin/kg BW (LSM100) and (7) daily intake of 200 mg lecithinized silymarin/kg BW (LSM200). The birds were housed individually, and diets were fed for 12 weeks. RESULTS Scanning electron microscopy showed that NSM was produced with the average particle size of 20.30 nm. Silymarin treatment improved serum antioxidant enzyme activity. All groups receiving silymarin showed a decrease in liver malondialdehyde content, expression of fatty acid synthase, tumour necrosis factor alpha, interleukin 6 (IL-6) genes in the liver, and hepatic steatosis than the control, except those fed the PSM100 diet. There were decreases in liver dry matter and fat contents, non-alcoholic fatty liver disease and hepatocyte ballooning, and an increase in glutathione peroxidase gene expression and a decrease in iNOS gene expression in birds fed the NSM100, NSM200, LSM100 and LSM200 diets compared to the control group. Moreover, all groups receiving silymarin showed a significant decrease in liver weight compare to the control group. CONCLUSIONS Overall, the effects of silymarin when converted to NSM or LSM and offered at the level of 200 mg/kg BW were more pronounced on the hepatic variables and may be useful in the prevention of the liver disease in older laying hens.
Collapse
Affiliation(s)
- Samira Faryadi
- Department of Animal ScienceFaculty of AgriculturalUniversity of KurdistanSanandajIran
| | - Ardashir Sheikhahmadi
- Department of Animal ScienceFaculty of AgriculturalUniversity of KurdistanSanandajIran
| | - Ayoub Farhadi
- Department of Animal ScienceFaculty of Animal Sciences and FisheriesSari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Himan Nourbakhsh
- Department of Food Science and EngineeringFaculty of AgricultureUniversity of KurdistanSanandajIran
| |
Collapse
|
2
|
Jia Y, Li Y, Wang M, Wang F, Liu Q, Song Z. Lecithin-based mixed polymeric micelles for activity improvement of curcumin against Staphylococcus aureus. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-18. [PMID: 39460953 DOI: 10.1080/09205063.2024.2421089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Considering cellular uptake promotion of lecithin and high expression of phospholipase in S. aureus, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti-S. aureus activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-S. aureus activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.
Collapse
Affiliation(s)
- Yunjing Jia
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Yuli Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Mingzhu Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Fuyou Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Qingmin Liu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| |
Collapse
|
3
|
El-Helaly SN, Rashad AA. Mirtazapine loaded polymeric micelles for rapid release tablet: A novel formulation-In vitro and in vivo studies. Drug Deliv Transl Res 2024; 14:2488-2498. [PMID: 38353837 PMCID: PMC11291528 DOI: 10.1007/s13346-024-01525-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 08/03/2024]
Abstract
Major depression is a prevalent disorder characterized by sadness, lack of interest or pleasure, interrupted sleep or food, and impaired concentration. Mirtazapine (MTZ), a tetracyclic antidepressant drug, is commonly used to treat moderate to severe depression. MTZ is classified as a BCS class II drug that has shown bioavailability of 50% due to extensive first-pass metabolism. The aim of this research is to develop a delivery platform with enhanced solubility and oral bioavailability of MTZ through formulating polymeric micelles modeled in a rapid release tablet. Mirtazapine loaded polymeric micelles (MTZ-PMs) were formulated to enhance the solubility. Solutol® HS 15 and Brij 58 were used as combined surfactants in a ratio of (20:1) to MTZ in addition to Transcutol® P as a penetration enhancer. The following in vitro tests were performed: particle size, PDI, zeta potential, solubility factor, stability index, and transmission electron microscopes. Afterward, MTZ-PMs were converted to dry free flowable powder through loading on the adsorptive surface of Aerosil 200; then, the powder mixture was directly compressed (MTZ-PMs-RRT) into 13 mm tablets. MTZ-PMs-RRT was further investigated using in vitro evaluation tests of the tablets, namely, weight variation, thickness, diameter, hardness, friability, disintegration time, drug content, and in vitro dissolution test, which complied with the pharmacopeial limits. The pharmacokinetic parameters of MTZ-PMs-RRT compared to Remeron® tablet were further investigated in rabbits. The results showed enhanced solubility of MTZ with improved percentage relative bioavailability to 153%. The formulation of MTZ in the form of MTZ-PMs-RRT successfully improved the solubility, stability, and bioavailability of MTZ using a simple and scalable manufacturing process.
Collapse
Affiliation(s)
- Sara Nageeb El-Helaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amira A Rashad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo, Egypt
| |
Collapse
|
4
|
Oanh HT, Hoai Thu NT, Van Hanh N, Hoang MH, Minh Hien HT. Co-encapsulated astaxanthin and kaempferol nanoparticles: fabrication, characterization, and their potential synergistic effects on treating non-alcoholic fatty liver disease. RSC Adv 2023; 13:35127-35136. [PMID: 38046630 PMCID: PMC10691322 DOI: 10.1039/d3ra06537e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Astaxanthin and kaempferol, renowned natural compounds, possess potent antioxidant properties and exhibit remarkable biological activities. However, their poor water solubility, low stability, and limited bioavailability are the primary bottlenecks that restrict their utilization in pharmaceuticals and functional foods. To overcome these drawbacks, this study aims to fabricate astaxanthin/kaempferol co-encapsulated nanoparticles and investigate their synergistic effects on reducing the risk of stress oxidation, chronic inflammation, and lipid accumulation in RAW264.7 and HepG2 cells. The synthesized astaxanthin/kaempferol nanoparticles exhibited well-defined spherical morphology with an average particle diameter ranging from 74 to 120 nm. These nanoparticles demonstrated excellent stability with the remaining astaxanthin content ranging from 82.5% to 92.1% after 6 months of storage at 4 °C. Nanoastaxanthin/kaempferol displayed high dispersibility and stability in aqueous solutions, resulting in a significant enhancement of their bioactivity. In vitro assessments on cell lines revealed that nanoastaxanthin/kaempferol enhanced the inhibition of H2O2-induced oxidative stress in HepG2 and LPS-induced NO production in RAW264.7 compared to nanoastaxanthin. Additionally, these nanoparticles reduced the expression of genes involved in inflammation (iNOS, IL-6 and TNF-α). Moreover, hepatocytes treated with nanoastaxanthin/kaempferol showed a reduction in lipid content compared to those treated with nanoastaxanthin, through enhanced regulation of lipid metabolism-related genes. Overall, these findings suggest that the successful fabrication of co-encapsulated nanoparticles containing astaxanthin and kaempferol holds promising therapeutic potential in the treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ho Thi Oanh
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Ngo Thi Hoai Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Nguyen Van Hanh
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Mai Ha Hoang
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Hoang Thi Minh Hien
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| |
Collapse
|
5
|
Burns J, Buck AC, D’ Souza S, Dube A, Bardien S. Nanophytomedicines as Therapeutic Agents for Parkinson's Disease. ACS OMEGA 2023; 8:42045-42061. [PMID: 38024675 PMCID: PMC10652730 DOI: 10.1021/acsomega.3c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Phytochemicals are promising therapeutics for various neurodegenerative disorders, including Parkinson's disease (PD). However, their efficacy, pharmacokinetic properties, and penetration across the blood-brain barrier can be improved using delivery systems such as nanoparticles. We reviewed recently published work in which nanoparticles were used to deliver phytochemicals toward PD treatment. The studies show that nanoparticles not only improve the pharmacological effect of the phytochemicals but also enable targeting to the brain and crossing of the blood-brain barrier. Various ligands were added to the nanoparticles to improve blood-brain barrier transportation. The promising findings from the published studies reveal that more research into nanophytomedicine approaches as therapeutic targets for PD is warranted, especially since they have the potential to protect against key features of PD, including α-synuclein aggregation, mitochondrial dysfunction, and dopaminergic neuronal death. Furthermore, future directions should involve smart designs to tailor nanoparticles for improved therapeutic delivery by modifying their features, such as architecture, surface and material properties, targeting ligands, and responsiveness.
Collapse
Affiliation(s)
- Jessica Burns
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Amy Claire Buck
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Sarah D’ Souza
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Admire Dube
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Soraya Bardien
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- South
African Medical Research Council/Stellenbosch University Genomics
of Brain Disorders Research Unit, Stellenbosch
University, Stellenbosch, Cape Town 7600, South Africa
| |
Collapse
|
6
|
Abdel-Monem R, El-Leithy ES, Alaa-Eldin AA, Abdel-Rashid RS. Curcumin/Fusidic Acid Bitherapy Loaded Mixed Micellar Nanogel for Acne Vulgaris Treatment: In Vitro and In Vivo Studies. AAPS PharmSciTech 2023; 24:182. [PMID: 37697137 DOI: 10.1208/s12249-023-02641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023] Open
Abstract
The combination of herbal drugs with a topical antibacterial for managing a chronic disease like acne vulgaris has emerged lately to settle side effects and bacterial multidrug resistance. Mixed micelles (MMs) incorporated into nanogel were explored for hybrid delivery of curcumin (Cur) and fusidic acid (FA) combination presenting a multi-strategic treatment. Curcumin-fusidic acid-loaded mixed micelles (Cur-FA-MMs) were assessed for size, surface charge, compatibility, in vitro release, and encapsulation. The selected formula was further loaded into nanogel and investigated for viscosity, ex vivo permeation, and in vivo potential. Cur-FA-MMs exhibited uniform nanosized spherical morphology, and negative surface charge affording high encapsulation for both drugs with a biphasic in vitro release over a period of 48h and good colloidal stability. The attained Cur-FA-MM-loaded nanogel had optimum viscosity with remarkable permeation coefficient values nearly 2-fold that related to plain nanogel. The pharmacodynamic effect of Cur on FA was pronounced by the significant improvement of the skin's degree of inflammation, epidermal hypertrophy, and congestion in animals treated with Cur-FA-MM-loaded nanogel. In conclusion, micellar nanogel could enable the progressive effect of Cur (an antioxidant with reported antibiotic activity) on FA (antibiotic) and decrease the risk of emerging antibiotic resistance by enhancing the solubility and permeation of Cur.
Collapse
Affiliation(s)
- Raghda Abdel-Monem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Eman S El-Leithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | | | - Rania S Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
7
|
M Elsharkawy F, M Amin M, A Shamsel-Din H, Ibrahim W, Ibrahim AB, Sayed S. Self-Assembling Lecithin-Based Mixed Polymeric Micelles for Nose to Brain Delivery of Clozapine: In-vivo Assessment of Drug Efficacy via Radiobiological Evaluation. Int J Nanomedicine 2023; 18:1577-1595. [PMID: 37007986 PMCID: PMC10065422 DOI: 10.2147/ijn.s403707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Purpose The research objective is to design intranasal brain targeted CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) aiming to improve central systemic CLZ bioavailability. Methods In our study, intranasal CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) were formulated using soya phosphatidyl choline (SPC) and sodium deoxycholate (SDC) with different CLZ:SPC:SDC ratios via thin film hydration technique aiming to enhance drug solubility, bioavailability and nose to brain targeting efficiency. Optimization of the prepared CLZ-LbPM using Design-Expert® software was achieved showing that M6 which composed of (CLZ:SPC: SDC) in respective ratios of 1:3:10 was selected as the optimized formula. The optimized formula was subjected to further evaluation tests as, Differential Scanning Calorimetry (DSC), TEM, in vitro release profile, ex vivo intranasal permeation and in vivo biodistribution. Results The optimized formula with the highest desirability exhibiting (0.845), small particle size (12.23±4.76 nm), Zeta potential of (-38 mV), percent entrapment efficiency of > 90% and percent drug loading of 6.47%. Ex vivo permeation test showed flux value of 27 μg/cm².h and the enhancement ratio was about 3 when compared to the drug suspension, without any histological alteration. The radioiodinated clozapine ([131I] iodo-CLZ) and radioiodinated optimized formula ([131I] iodo-CLZ-LbPM) were formulated in an excellent radioiodination yield more than 95%. In vivo biodistribution studies of [131I] iodo-CLZ-LbPM showed higher brain uptake (7.8%± 0.1%ID/g) for intranasal administration with rapid onset of action (at 0.25 h) than the intravenous formula. Its pharmacokinetic behavior showed relative bioavailability, direct transport percentage from nose to brain and drug targeting efficiency of 170.59%, 83.42% and 117% respectively. Conclusion The intranasal self-assembling lecithin based mixed polymeric micelles could be an encouraging way for CLZ brain targeting.
Collapse
Affiliation(s)
- Fatma M Elsharkawy
- Regulatory Affairs Department, Al Andalous for Pharmaceutical Industries, Giza, Egypt
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Walaa Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Correspondence: Sinar Sayed, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt, Tel +2 01010421543, Email
| |
Collapse
|
8
|
Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:547-560. [PMID: 36651360 DOI: 10.2478/acph-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 01/20/2023]
Abstract
Fluconazole (FLZ) is the most widely used antifungal agent for treating cutaneous candidiasis. Although oral FLZ has been proved to be effective, the incidence of side effects necessitates the development of an effective formulation that could surpass the pitfalls associated with systemic availability. Accordingly, this research aimed at developing a self-assembled mixed micelles topical delivery system to enhance the topical delivery of the drug. Self-assembled mixed micelles were developed using D-α-tocopheryl polyethylene glycol 1000 succinate and phospholipids and optimized using Box-Behnken design. The optimized formulation with minimized size was then tested in vivo for the antifungal activity against C. albicans in immunocompromised mice. Treatment with the optimized formulation led to decreased peripheral erythema as well as lesions due to fungal infection in comparison to raw FLZ loaded gel. Therefore, the developed formulation was found to be a promising vehicle for the treatment of cutaneous candidiasis.
Collapse
|
9
|
Tao M, Chen J, Huang K. Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Alhakamy NA, Ahmed OA, Fahmy UA, Asfour HZ, Alghaith AF, Mahdi WA, Alshehri S, Md S. Development, Optimization and Evaluation of 2-Methoxy-Estradiol Loaded Nanocarrier for Prostate Cancer. Front Pharmacol 2021; 12:682337. [PMID: 34335251 PMCID: PMC8322574 DOI: 10.3389/fphar.2021.682337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
The therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, toward the improvement of the anticancer potential of 2-methoxy estradiol (2 ME) on prostate cancer, the drug was entrapped into the hydrophobic micelles core formulated with Phospholipon 90G and d-α-tocopheryl polyethylene glycol succinate (TPGS). Optimization of the formulation was done by Box-Behnken statistical design using Statgraphics software to standardize percentages of TPGS and phospholipid to obtain the smallest particle size. The optimized formulation was found to be spherical with nanometer size of 152 ± 5.2 nm, and low PDI (0.234). The entrapment efficiency of the micelles was 88.67 ± 3.21% with >93% release of 2 ME within 24 h. There was a 16-fold increase in apoptosis and an 8-fold increase in necrosis of the PC-3 cells when incubated with 2 ME micellar delivery compared to control cells (2.8 ± 0.2%). This increased apoptosis was further correlated with increased BAX expression (11.6 ± 0.7) and decreased BCL-2 expression (0.29 ± 0.05) in 2 ME micelles treated cells when compared to the control group. Further, loss of mitochondrial membrane potential (∼50-fold) by the drug-loaded micelles and free drug compared to control cells was found to be due to the generation of ROS. Findings on cell cycle analysis revealed the significant arrest of the G2-M phase of the PC-3 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed the maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-9, p53, and NO, with downregulation of TNF-α, NF-κβ, and inflammatory mediators of the PC-3 cells established the superiority of the micellar approach against prostate cancer. In summary, the acquired results highlighted the potentiality of the 2 ME-micellar delivery tool for controlling the growth of prostate cancer cells for improved efficacy.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Tar M, Towhidi A, Zeinoaldini S, Zhandi M, Mohammadi-Sangcheshmeh A, Moazeni Zadeh MH. Effects of different ultrastructures of lecithin on cryosurvival of goat spermatozoa. Andrologia 2021; 53:e14183. [PMID: 34255371 DOI: 10.1111/and.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
This study was to evaluate the effects of two different ultrastructures of lecithin including nanoparticles (NPE mostly nanomicelles) and lecithin nanoliposome (NLE) with egg yolk extender (EYE) on goat sperm cryopreservation. Semen samples were collected from 6 goats, then pooled, diluted and then frozen. Motility and motion parameters, plasma membrane integrity and functionality, morphology, apoptosis status (Annexin V-PI), acrosome integrity, DNA fragmentation and in vitro fertilisation were assessed. Total motility and most motion parameters were higher in EYE (p < .05) compared with the two lecithin extenders, while there were no significant differences between NLE and NPE. NLE and NPE had higher values for viable spermatozoa (Annexin V-PI) (p < .05) compared with EYE. The highest value for dead spermatozoa was observed in EYE (p = .08). A higher percentage of DNA fragmentation (p < .05) was detected in EYE compared with NPE. Plasma membrane integrity and functionality, morphology, acrosome integrity and fertility of spermatozoa indicated no significant differences between extenders. Data suggested that ultrastructural changes of lecithin (micelles versus. liposome) could not improve the sperm cryosurvival of goat spermatozoa. Moreover, we cannot also claim that lecithin-based diluent supplies better protection compared with the egg yolk in goat.
Collapse
Affiliation(s)
- Mohammad Tar
- Department of Animal Science, Campus of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Armin Towhidi
- Department of Animal Science, Campus of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Saeed Zeinoaldini
- Department of Animal Science, Campus of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, Campus of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | | | | |
Collapse
|
12
|
Madan JR, Dere SG, Awasthi R, Dua K. Efavirenz Loaded Mixed Polymeric Micelles: Formulation, Optimization, and In Vitro Characterization. Assay Drug Dev Technol 2021; 19:322-334. [PMID: 34129373 DOI: 10.1089/adt.2021.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Efavirenz (EFZ) is a biopharmaceutics classification system (BCS) Class-II, first-line antiretroviral (ARV) drug. However, its utility through the oral route is restricted by its poor solubility. The objective of this study was to formulate EFZ-loaded binary-mixed micelles as a potential carrier for oral administration of EFZ. Rubingh's regular solution theory was used to determine the interaction behavior of the two components (Cremophor RH 40 and Phospholipon 80H) and of the mixed micelles and synergistic behavior was confirmed. The mixed miceller system was formulated using solvent evaporation method and a 32 factorial design was used for the optimization of selected independent variables. Miceller systems were further characterized in terms of morphology, particle size, zeta potential, percent entrapment efficiency, and drug loading. Fourier transform infrared and differential scanning calorimetry measurements confirmed the entrapment of EFZ in the micelles. The optimized formulation presented desirable qualities viz., nanometric size (17.27 ± 0.079), high entrapment efficiency, and good colloidal stability. The prepared optimized micelles can be potential carriers for EFZ in ARV therapies.
Collapse
Affiliation(s)
- Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shrikant G Dere
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rajendra Awasthi
- Center for Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
13
|
Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm 2021; 161:100-119. [DOI: 10.1016/j.ejpb.2021.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
|
14
|
Jia F, Chibhabha F, Yang Y, Kuang Y, Zhang Q, Ullah S, Liang Z, Xie M, Li F. Detection and monitoring of the neuroprotective behavior of curcumin micelles based on an AIEgen probe. J Mater Chem B 2021; 9:731-745. [PMID: 33315037 DOI: 10.1039/d0tb02320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the role of mitochondrial injury in the pathogenesis of Alzheimer's disease (AD) has attracted extensive attention. Studies have shown that curcumin (Cur) can protect nerve cells from beta-amyloid (Aβ)-induced mitochondrial damage. However, natural Cur encounters limited application due to its poor biocompatibility and bioavailability. To improve the solubility and biocompatibility of natural Cur, we prepared water-soluble curcumin micelles (CurM). Furthermore, the mitochondria-specific aggregation-induced emission (AIE) probe (TPE-Ph-In) was employed to observe the protective effect of CurM on the damage of mitochondrial morphology, distribution, and membrane potential caused by Aβ. Results showed that CurM had higher solubility, stronger stability and retention effect, and better cellular uptake than that of natural Cur. Furthermore, the inhibitory effects of CurM on mitochondrial morphology, distribution, and membrane potential damage induced by Aβ25-35 were observed utilizing TPE-Ph-In as an indicator of mitochondrial morphology and membrane potential. Thus, this method provides a useful strategy for experimental research and clinical treatment of AD with mitochondrial damage as the pathogenic mechanism.
Collapse
Affiliation(s)
- Fujie Jia
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin HL, Cheng WT, Chen LC, Ho HO, Lin SY, Hsieh CM. Honokiol/Magnolol-Loaded Self-Assembling Lecithin-Based Mixed Polymeric Micelles ( lbMPMs) for Improving Solubility to Enhance Oral Bioavailability. Int J Nanomedicine 2021; 16:651-665. [PMID: 33536753 PMCID: PMC7847769 DOI: 10.2147/ijn.s290444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study was intended to utilize lecithin-based mixed polymeric micelles (lbMPMs) for enhancing the solubility and bioavailability of honokiol and magnolol to resolve the hindrance of their extreme hydrophobicity on the clinical applications. METHODS Lecithin was selected to increase the volume of the core of lbMPMs, thereby providing a greater solubilization capacity. A series of amphiphilic polymers (sodium deoxycholate [NaDOC], Cremophor®, and Pluronic® series) were included with lecithin for screening and optimization. RESULTS After preliminary evaluation and subsequentially optimization, two lbMPMs formulations composed of honokiol/magnolol:lecithin:NaDOC (lbMPMs[NaDOC]) and honokiol/magnolol:lecithin:PP123 (lbMPMs[PP123]) in respective ratios of 6:2:5 and 1:1:10 were optimally obtained with the mean particle sizes of 80-150 nm, encapsulation efficacy (EEs) of >90%, and drug loading (DL) of >9.0%. These lbMPMs efficiently stabilized honokiol/magnolol in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C. PK study demonstrated that lbMPMs[NaDOC] showed much improvement in enhancing bioavailability than that by lbMPMs[PP123] for both honokiol and magnolol. The absolute bioavailability for honokiol and magnolol after intravenous administration of lbMPMs[NaDOC] exhibited 0.93- and 3.4-fold increases, respectively, compared to that of free honokiol and magnolol. For oral administration with lbMPMs[NaDOC], the absolute bioavailability of honokiol was 4.8%, and the absolute and relative bioavailability of magnolol were 20.1% and 2.9-fold increase, respectively. CONCLUSION Overall, honokiol/magnolol loaded in lbMPMs[NaDOC] showed an improvement of solubility with suitable physical characteristics leading to enhance honokiol and magnolol bioavailability and facilitating their wider application as therapeutic agents for treating human disorders.
Collapse
Affiliation(s)
- Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung80708, Taiwan, Republic of China
| | - Wen-Ting Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu30015, Taiwan, Republic of China
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei11696, Taiwan, Republic of China
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| |
Collapse
|
16
|
Sharma M, Chaudhary D. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in rheumatoid arthritis management. Int J Pharm 2020; 594:120176. [PMID: 33326825 DOI: 10.1016/j.ijpharm.2020.120176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Bromelain, a cysteine protease exhibits promising potential in amelioration of wide variety of inflammatory disorders. Its denaturation or aggregation in gastric milieu depletes its therapeutic potential along with unpredictable prophylactic hypersensitivity reactions. Hence, efficient carrier system to improve bromelain's stability and avoid related side effects is of utmost importance. Therefore, present investigation was undertaken to prepare bromelain loaded nanostructured lipid carriers (Br-NCs) with high drug loading, stability and efficacy in rheumatoid arthritis management. Br-NCs fabricated via double emulsion solvent evaporation method were characterized for physical properties, morphology and stability. Optimized batch exhibited spherical shape, nanometric size (298.23 nm) and entrapment efficiency ~77% with sustained release behavior and improved gastric stability. Br-NCs exhibited 4.63-folds improvement in shelf-life compared to bromelain at room temperature. The protective potential of orally administered Br-NCs in rheumatoid arthritis was evaluated via assessing arthritis severity in wistar rats along with biochemical, hematological and immunological parameters. Br-NCs remarkably (p < 0.05) diminished paw edema, joint stiffness, mechanical allodynia and tissue damage along with alleviation of oxidative stress and immunological markers. Radiological joint alterations were also notably preserved with Br-NCs. Thus, preclinical studies distinctly manifested that Br-NCs formulation opens new avenue for development of novel effective therapeutic modality for rheumatoid arthritis management.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India.
| | - Deepika Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| |
Collapse
|
17
|
Elkateb H, Tatham LM, Cauldbeck H, Niezabitowska E, Owen A, Rannard S, McDonald T. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int J Pharm 2020; 588:119794. [PMID: 32828978 DOI: 10.1016/j.ijpharm.2020.119794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a global health concern to which nanomedicine approaches provide opportunities to improve the bioavailability of existing drugs used to treat HIV.In this article, lipid polymer hybrid nanoparticles (LPHNs) were developed as a system to provide a combination drug delivery of two leading antiretroviral drugs; darunavir (DRV) and its pharmacokinetic enhancer ritonavir (RTV).The LPHNs were designed with a poly(D, l-lactide-co-glycolide) (PLGA) core, and soybean lecithin (SBL) and Brij 78 as the stabilizers. The LPHNs were prepared by modified nanoprecipitation and the effect of synthetic conditions on the particle properties was studied, which included the Z-average diameter and polydispersity index of LPHNs in water and phosphate buffered saline, and the morphology of the particles. This investigation aimed to prepare a formulation that could be stored in its dry and redispersible form, therefore avoiding the challenges associated with storage of dispersions. The optimum ratio of stabilizer to polymer core was established at 20% w/w, and Brij 78 was found to be crucial in providing colloidal stability in physiological solutions; the minimum amount of Brij 78 required to provide stability in phosphate buffered saline was 70% w/w of the total stabilizer mass. Viable formulations of LPHNs containing DRV and RTV in the clinically used 8:1 ratio were prepared containing 20% w/w DRV with respect to the PLGA mass. The use of cryoprotectant, polyethylene glycol, combined with freeze-drying yielded LPHNs with a Z-average diameter of 150 nm when the particles were re-dispersed in water. The oral absorption behavior was assessed using an in vitro triple culture model. Whilst the use of cryoprotectant and freeze-drying led to no improvement of the transcellular permeability compared to the unformulated drugs, the non-freeze-dried samples with the highest soybean lecithin led to increased transcellular permeability, revealing the potential of LPHNs for enhancing HIV treatment.
Collapse
Affiliation(s)
- Heba Elkateb
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El Gomhouria Street, 35516, Egypt
| | - Lee M Tatham
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK; Tandem Nano Ltd., Liverpool, UK
| | - Helen Cauldbeck
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK; Tandem Nano Ltd., Liverpool, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK; Tandem Nano Ltd., Liverpool, UK
| | - Tom McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
| |
Collapse
|
18
|
Hamdi M, Abdel-Bar HM, Elmowafy E, Al-Jamal KT, Awad GAS. An integrated vitamin E-coated polymer hybrid nanoplatform: A lucrative option for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect. PLoS One 2020; 15:e0227231. [PMID: 31923260 PMCID: PMC6953793 DOI: 10.1371/journal.pone.0227231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
A platform capable of specifically delivering an antiviral drug to the liver infected with hepatitis B is a major concern in hepatology. Vaccination has had a major effect on decreasing the emerging numbers of new cases of infection. However, the total elimination of the hepatitis B virus from the body requires prolonged therapy. In this work, we aimed to target the liver macrophages with lipid polymer hybrid nanoparticles (LPH), combining the merit of polymeric nanoparticles and lipid vesicles. The hydrophilic antiviral drug, entecavir (E), loaded LPH nanoparticles were optimized and physicochemically characterized. A modulated lipidic corona, as well as, an additional coat with vitamin E were used to extend the drug release enhance the macrophage uptake. The selected vitamin E coated LPH nanoparticles enriched with lecithin-glyceryl monostearate lipid shell exhibited high entrapment for E (80.47%), a size ≤ 200 nm for liver passive targeting, extended release over one week, proven serum stability, retained stability after refrigeration storage for 6 months. Upon macrophage uptake in vitro assessment, the presented formulation displayed promising traits, enhancing the cellular retention in J774 macrophages cells. In vivo and antiviral activity futuristic studies would help in the potential application of the ELPH in hepatitis B control.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Sadat City, Egypt
| | - Khuloud T. Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, England, United Kingdom
| | - Gehanne A. S. Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Sadat City, Egypt
| |
Collapse
|
19
|
Gupta PK, Tripathi SK, Pappuru S, Chabattula SC, Govarthanan K, Gupta S, Biswal BK, Chakraborty D, Verma RS. Metal-free semi-aromatic polyester as nanodrug carrier: A novel tumor targeting drug delivery vehicle for potential clinical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110285. [PMID: 31761245 DOI: 10.1016/j.msec.2019.110285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/09/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022]
Abstract
Polyester nanomaterials have been widely used in drug delivey application from a longer period of time. This study reports the synthesis of metal-free semi-aromatic polyester (SAP) nanomaterial for drug delivery and evaluate its in vivo acute and systemic toxicity for potential clinical application. The ring opening coplymerization of commercially available cyclohexene oxide (CHO) and phthalic anhydride (PA) monomers was carried out to synthesize fully alternating poly(CHO-co-PA) copolymer using metal-free activators. The obtained low Mn SAP was found to be biocompatible, hemocompataible and biodegradable nature. This copolymer was first-time used to fabricate curcumin (CUR) loaded nanoparticles (NPs). These NPs were physicochemically characterized by thermogravimetric analyzer (TGA), X-ray diffraction (XRD), and UV/visible spectrophotometer analysis. Further, these negatively charged core-shell spherical NPs exhibited slow sustained release behavior of CUR with anomalous transport and further displayed its higher intracellular uptake in SiHa cells at different time-periods compared to free CUR. In vitro anti-cancer therapeutic effects of free CUR and poly(CHO-alt-PA)-CUR NPs were evaluated on different cancer cells. We observed the increased cytotoxicity of CUR NPs with low IC50 values compared to free CUR. These results were further substantiated with ex vivo data where, a significant reduction was observed in CUR NPs treated tumor spheroid's size as compared to free CUR. Furthermore, the different doses of metal-free poly(CHO-alt-PA) nanomaterial were tested for its acute and systemic toxicity in BALB/c mice. We did not observe any significant toxicity of tested nanomaterial on vital organs, blood cells and the body weight of mice. Our study suggest that this metal-free SAP nanomaterial can be used for potential clinical application.
Collapse
Affiliation(s)
- Piyush Kumar Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology-Rourkela, Rourkela, 769008, Odisha, India
| | - Sreenath Pappuru
- Organometallic and Polymer Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Siva Chander Chabattula
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology-Rourkela, Rourkela, 769008, Odisha, India
| | - Debashis Chakraborty
- Organometallic and Polymer Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| |
Collapse
|
20
|
Gondim BL, Oshiro-Júnior JA, Fernanandes FH, Nóbrega FP, Castellano LR, Medeiros AC. Plant Extracts Loaded in Nanostructured Drug Delivery Systems for Treating Parasitic and Antimicrobial Diseases. Curr Pharm Des 2019; 25:1604-1615. [DOI: 10.2174/1381612825666190628153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
Background: Plant extracts loaded in nanostructured drug delivery systems (NDDSs) have been reported
as an alternative to current therapies for treating parasitic and antimicrobial diseases. Among their advantages,
plant extracts in NDSSs increase the stability of the drugs against environmental factors by promoting
protection against oxygen, humidity, and light, among other factors; improve the solubility of hydrophobic compounds;
enhance the low absorption of the active components of the extracts (i.e., biopharmaceutical classification
II), which results in greater bioavailability; and control the release rate of the substances, which is fundamental
to improving the therapeutic effectiveness. In this review, we present the most recent data on NDDSs using
plant extracts and report results obtained from studies related to in vitro and in vivo biological activities.
Collapse
Affiliation(s)
- Brenna L.C. Gondim
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - João A. Oshiro-Júnior
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Felipe H.A. Fernanandes
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Fernanda P. Nóbrega
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Lúcio R.C. Castellano
- Grupo de Estudos e Pesquisas em Imunologia Humana, Escola Tecnica de Saude, Universidade Federal da Paraiba, Joao Pessoa, PB, Brazil
| | - Ana C.D. Medeiros
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| |
Collapse
|
21
|
Hardiningtyas SD, Wakabayashi R, Ishiyama R, Owada Y, Goto M, Kamiya N. Enhanced Potential of Therapeutic Applications of Curcumin Using Solid-in-Water Nanodispersion Technique. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Ryutaro Ishiyama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Yuki Owada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
22
|
Fabrication of lecithin-gum tragacanth muco-adhesive hybrid nano-carrier system for in-vivo performance of Amphotericin B. Carbohydr Polym 2018; 194:89-96. [DOI: 10.1016/j.carbpol.2018.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
|
23
|
Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proc Natl Acad Sci U S A 2018; 115:8087-8092. [PMID: 30038010 DOI: 10.1073/pnas.1803800115] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Curcumin (Cur) is a naturally occurring anticancer drug isolated from the Curcuma longa plant. It is known to exhibit anticancer properties via inhibiting the STAT3 phosphorylation process. However, its poor water solubility and low bioavailability impede its clinical application. Herein, we used organoplatinum(II) ← pyridyl coordination-driven self-assembly and a cucurbit[8]uril (CB[8])-mediated heteroternary host-guest complex formation in concert to produce an effective delivery system that transports Cur into the cancer cells. Specifically, a hexagon 1, containing hydrophilic methyl viologen (MV) units and 3,4,5-Tris[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]benzoyl groups alternatively at the vertices, has been synthesized and characterized by several spectroscopic techniques. The MV units of 1 underwent noncovalent complexation with CB[8] to yield a host-guest complex 4. Cur can be encapsulated in 4, via a 1:1:1 heteroternary complex formation, resulting in a water-soluble host-guest complex 5. The host-guest complex 5 exhibited ca 100-fold improved IC50 values relative to free Cur against human melanoma (C32), melanoma of rodents (B16F10), and hormone-responsive (MCF-7) and triple-negative (MDA-MB231) breast cancer cells. Moreover, strong synergisms of Cur with 1 and 4 with combinatorial indexes of <1 across all of the cell lines were observed. An induced apoptosis with fragmented DNA pattern and inhibited expression of phosphor-STAT3 supported the improved therapeutic potential of Cur in heteroternary complex 5.
Collapse
|
24
|
Su CY, Liu JJ, Ho YS, Huang YY, Chang VHS, Liu DZ, Chen LC, Ho HO, Sheu MT. Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (L sb MDDs) for improving the therapeutic efficacy and reducing systemic toxicity. Eur J Pharm Biopharm 2018; 123:9-19. [DOI: 10.1016/j.ejpb.2017.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
|
25
|
Curcumin-Loaded Mixed Micelles: Preparation, Characterization, and In Vitro Antitumor Activity. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/9103120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to prepare curcumin-loaded mixed Soluplus/TPGS micelles (Cur-TPGS-PMs) for oral administration. The Cur-TPGS-PMs showed a mean size of 65.54 ± 2.57 nm, drug encapsulation efficiency over 85%, and drug loading of 8.17%. The Cur-TPGS-PMs were found to be stable in various pH media (pH 1.2 for 2 h, pH 6.8 for 2 h, and pH 7.4 for 6 h). The X-ray diffraction (XRD) patterns illustrated that curcumin was in the amorphous or molecular state within PMs. The In vitro release test indicated that Cur-TPGS-PMs possessed a significant sustained-release property. The cell viability in MCF-7 cells was found to be relatively lower in Cur-TPGS-PM-treated cells as compared to free Cur-treated cells. CLSM imaging revealed that mixed micelles were efficiently absorbed into the cytoplasm region of MCF-7 cells. Therefore, Cur-TPGS-PMs could have the significant value for the chronic breast cancer therapy.
Collapse
|
26
|
Vasconcelos T, Marques S, Sarmento B. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems. Eur J Pharm Biopharm 2017; 123:1-8. [PMID: 29133172 DOI: 10.1016/j.ejpb.2017.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 11/19/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance.
Collapse
Affiliation(s)
- Teófilo Vasconcelos
- BIAL-Portela & Cª, S.A., Avenida da Siderugia Nacional, 4745-457 Trofa, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sara Marques
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIBIO/InBIO-UP - Research Centre in Biodiversity and Genetic Resources, University of Porto, Rua Padre Armando Quintas, 7, 4485-661 Vairão, Portugal
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
27
|
Li TP, Wong WP, Chen LC, Su CY, Chen LG, Liu DZ, Ho HO, Sheu MT. Physical and Pharmacokinetic Characterizations of trans-Resveratrol (t-Rev) Encapsulated with Self-Assembling Lecithin-based Mixed Polymeric Micelles (saLMPMs). Sci Rep 2017; 7:10674. [PMID: 28878397 PMCID: PMC5587738 DOI: 10.1038/s41598-017-11320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
This study involved physical and pharmacokinetic characterizations of trans-resveratrol (t-Rev)-loaded saLMPMs which attempted to improve t-Rev’s pharmacokinetic profiles and bioavailability resolving hurdles limiting its potential health benefits. The optimal formulation consisted of t-Rev, lecithin, and Pluronic® P123 at 5:2:20 (t-Rev-loaded PP123 saLMPMs) provided mean particle size <200 nm, encapsulation efficiency >90%, and drug loading >15%. Compared to t-Rev solubilized with HP-β-CD, t-Rev-loaded PP123 saLMPMs enhanced t-Rev’s stability in PBS at RT, 4 °C, and 37 °C and in FBS at 37 °C, and retarded the in vitro release. Intravenous administration of t-Rev-loaded PP123 saLMPMs was able to enhance 40% absolute bioavailability and a greater portion of t-Rev was found to preferably distribute into peripheral compartment potentially establishing a therapeutic level at the targeted site. With oral administration, t-Rev-loaded LMPMs increases 2.17-fold absolute bioavailability and furnished a 3-h period of time in which the plasma concentration maintained above the desirable concentration for chemoprevention and accomplished a higher value of the dose-normalized area under the curve for potentially establishing an effective level at the target site. Therefore, intravenous and oral pharmacokinetic characteristics of t-Rev encapsulated with PP123 saLMPMs indicate that t-Rev can be translated into a clinically useful therapeutic agent.
Collapse
Affiliation(s)
- Tzu-Pin Li
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wan-Ping Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ling-Chun Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Chia-Yu Su
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, Taiwan, ROC
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC. .,Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|