1
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
2
|
Croft W, Pounds R, Jeevan D, Singh K, Balega J, Sundar S, Williams A, Ganesan R, Kehoe S, Ott S, Zuo J, Yap J, Moss P. The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory drivers in post-chemotherapy residual tumour cells. Commun Biol 2024; 7:1211. [PMID: 39341888 PMCID: PMC11438996 DOI: 10.1038/s42003-024-06909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Disease recurrence following chemotherapy is a major clinical challenge in ovarian cancer (OC), but little is known regarding how the tumour epigenome regulates transcriptional programs underpinning chemoresistance. We determine the single cell chromatin accessibility landscape of omental OC metastasis from treatment-naïve and neoadjuvant chemotherapy-treated patients and define the chromatin accessibility profiles of epithelial, fibroblast, myeloid and lymphoid cells. Epithelial tumour cells display open chromatin regions enriched with motifs for the oncogenic transcription factors MEIS and PBX. Post chemotherapy microenvironments show profound tumour heterogeneity and selection for cells with accessible chromatin enriched for TP53, TP63, TWIST1 and resistance-pathway-activating transcription factor binding motifs. An OC chemoresistant tumour subpopulation known to be present prior to treatment, and characterised by stress-associated gene expression, is enriched post chemotherapy. Nuclear receptors RORa, NR2F6 and HNF4G are uncovered as candidate transcriptional drivers of these cells whilst closure of binding sites for E2F2 and E2F4 indicate post-treated tumour having low proliferative capacity. Delineation of the gene regulatory landscape of ovarian cancer cells surviving chemotherapy treatment therefore reveals potential core transcriptional regulators of chemoresistance, suggesting novel therapeutic targets for improving clinical outcome.
Collapse
Affiliation(s)
- W Croft
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| | - R Pounds
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - D Jeevan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - K Singh
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - J Balega
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - S Sundar
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - A Williams
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - R Ganesan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - S Kehoe
- Department of Gynaecological Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - J Zuo
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - J Yap
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - P Moss
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK.
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK.
| |
Collapse
|
3
|
Li K, Yang H, Lin A, Xie J, Wang H, Zhou J, Carr SR, Liu Z, Li X, Zhang J, Cheng Q, Schrump DS, Luo P, Wei T. CPADS: a web tool for comprehensive pancancer analysis of drug sensitivity. Brief Bioinform 2024; 25:bbae237. [PMID: 38770717 PMCID: PMC11106634 DOI: 10.1093/bib/bbae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Drug therapy is vital in cancer treatment. Accurate analysis of drug sensitivity for specific cancers can guide healthcare professionals in prescribing drugs, leading to improved patient survival and quality of life. However, there is a lack of web-based tools that offer comprehensive visualization and analysis of pancancer drug sensitivity. We gathered cancer drug sensitivity data from publicly available databases (GEO, TCGA and GDSC) and developed a web tool called Comprehensive Pancancer Analysis of Drug Sensitivity (CPADS) using Shiny. CPADS currently includes transcriptomic data from over 29 000 samples, encompassing 44 types of cancer, 288 drugs and more than 9000 gene perturbations. It allows easy execution of various analyses related to cancer drug sensitivity. With its large sample size and diverse drug range, CPADS offers a range of analysis methods, such as differential gene expression, gene correlation, pathway analysis, drug analysis and gene perturbation analysis. Additionally, it provides several visualization approaches. CPADS significantly aids physicians and researchers in exploring primary and secondary drug resistance at both gene and pathway levels. The integration of drug resistance and gene perturbation data also presents novel perspectives for identifying pivotal genes influencing drug resistance. Access CPADS at https://smuonco.shinyapps.io/CPADS/ or https://robinl-lab.com/CPADS.
Collapse
Affiliation(s)
- Kexin Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| | - Hong Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| | - Jiayi Xie
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| | - Haitao Wang
- Thoracic Surgery Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jianguo Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi City 563000, China
| | - Shamus R Carr
- Thoracic Surgery Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 33, Life Park Road, Zhongguancun, Changping District, Beijing 102206, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, No. 16, Jianjian South Street, Chengdu, Sichuan Province 610051, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
- Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| | - David S Schrump
- Thoracic Surgery Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Zhong, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Mirjat D, Kashif M, Roberts CM. Shake It Up Baby Now: The Changing Focus on TWIST1 and Epithelial to Mesenchymal Transition in Cancer and Other Diseases. Int J Mol Sci 2023; 24:17539. [PMID: 38139368 PMCID: PMC10743446 DOI: 10.3390/ijms242417539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
TWIST1 is a transcription factor that is necessary for healthy neural crest migration, mesoderm development, and gastrulation. It functions as a key regulator of epithelial-to-mesenchymal transition (EMT), a process by which cells lose their polarity and gain the ability to migrate. EMT is often reactivated in cancers, where it is strongly associated with tumor cell invasion and metastasis. Early work on TWIST1 in adult tissues focused on its transcriptional targets and how EMT gave rise to metastatic cells. In recent years, the roles of TWIST1 and other EMT factors in cancer have expanded greatly as our understanding of tumor progression has advanced. TWIST1 and related factors are frequently tied to cancer cell stemness and changes in therapeutic responses and thus are now being viewed as attractive therapeutic targets. In this review, we highlight non-metastatic roles for TWIST1 and related EMT factors in cancer and other disorders, discuss recent findings in the areas of therapeutic resistance and stemness in cancer, and comment on the potential to target EMT for therapy. Further research into EMT will inform novel treatment combinations and strategies for advanced cancers and other diseases.
Collapse
Affiliation(s)
- Dureali Mirjat
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Muhammad Kashif
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Cai M. Roberts
- Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
5
|
Tan Z, Ko JMY, Yu VZ, Lam KO, Kwong DLW, Wong IYH, Chan FSY, Wong CLY, Chan KK, Law TT, Choy FSF, Ng HY, Law SYK, Lung ML. Multigene Profiling of Circulating Tumor Cells in Esophageal Squamous Cell Carcinoma Identifies Prognostic Cancer Driver Genes Associated with Epithelial-Mesenchymal-Transition Progression and Chemoresistance. Cancers (Basel) 2023; 15:5329. [PMID: 38001588 PMCID: PMC10670643 DOI: 10.3390/cancers15225329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
We investigated the clinical significance of CTCs in cancer progression by detecting multiple cancer driver genes associated with epithelial-to-mesenchymal transition (EMT) at the transcript level. The 10-gene panel, comprising CCND1, ECT2, EpCAM, FSCN1, KRT5, KRT18, MET, TFRC, TWIST1, and VEGFC, was established for characterizing CTCs from mouse ESCC xenograft models and clinical ESCC peripheral blood (PB) samples. Correlations between gene expression in CTCs from PB samples (n = 77) and clinicopathological features in ESCC patients (n = 55) were examined. The presence of CTCs at baseline was significantly correlated with tumor size (p = 0.031). The CTC-high patients were significantly correlated with advanced cancer stages (p = 0.013) and distant metastasis (p = 0.029). High mRNA levels of TWIST1 (Hazard Ratio (HR) = 5.44, p = 0.007), VEGFC (HR = 6.67, p < 0.001), TFRC (HR = 2.63, p = 0.034), and EpCAM (HR = 2.53, p = 0.041) at baseline were significantly associated with a shorter overall survival (OS) in ESCC patients. This study also revealed that TWIST1 facilitates EMT and enhances malignant potential by promoting tumor migration, invasion, and cisplatin chemoresistance through the TWIST1-TGFBI-ZEB1 axis in ESCC, highlighting the prognostic and therapeutic potential of TWIST1 in clinical ESCC treatment.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Ka-On Lam
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Ian Yu-Hong Wong
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Fion Siu-Yin Chan
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Claudia Lai-Yin Wong
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Kwan-Kit Chan
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Tsz-Ting Law
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Faith Sin-Fai Choy
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Hoi-Yan Ng
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Simon Ying-Kit Law
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Roberts CM, Rojas-Alexandre M, Hanna RE, Lin ZP, Ratner ES. Transforming Growth Factor Beta and Epithelial to Mesenchymal Transition Alter Homologous Recombination Repair Gene Expression and Sensitize BRCA Wild-Type Ovarian Cancer Cells to Olaparib. Cancers (Basel) 2023; 15:3919. [PMID: 37568736 PMCID: PMC10417836 DOI: 10.3390/cancers15153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, largely due to metastasis and drug resistant recurrences. Fifteen percent of ovarian tumors carry mutations in BRCA1 or BRCA2, rendering them vulnerable to treatment with PARP inhibitors such as olaparib. Recent studies have shown that TGFβ can induce "BRCAness" in BRCA wild-type cancer cells. Given that TGFβ is a known driver of epithelial to mesenchymal transition (EMT), and the connection between EMT and metastatic spread in EOC and other cancers, we asked if TGFβ and EMT alter the susceptibility of EOC to PARP inhibition. Epithelial EOC cells were transiently treated with soluble TGFβ, and their clonogenic potential, expression, and function of EMT and DNA repair genes, and response to PARP inhibitors compared with untreated controls. A second epithelial cell line was compared to its mesenchymal derivative for EMT and DNA repair gene expression and drug responses. We found that TGFβ and EMT resulted in the downregulation of genes responsible for homologous recombination (HR) and sensitized cells to olaparib. HR efficiency was reduced in a dose-dependent manner. Furthermore, mesenchymal cells displayed sensitivity to olaparib, cisplatin, and the DNA-PK inhibitor Nu-7441. Therefore, the treatment of disseminated, mesenchymal tumors may represent an opportunity to expand the clinical utility of PARP inhibitors and similar agents.
Collapse
Affiliation(s)
- Cai M. Roberts
- Department of Pharmacology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA
| | - Mehida Rojas-Alexandre
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Ruth E. Hanna
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Z. Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Elena S. Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| |
Collapse
|
7
|
You Y, Grasso E, Alvero A, Condon J, Dimova T, Hu A, Ding J, Alexandrova M, Manchorova D, Dimitrova V, Liao A, Mor G. Twist1-IRF9 Interaction Is Necessary for IFN-Stimulated Gene Anti-Zika Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1899-1912. [PMID: 37144865 PMCID: PMC10615665 DOI: 10.4049/jimmunol.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
An efficient immune defense against pathogens requires sufficient basal sensing mechanisms that can deliver prompt responses. Type I IFNs are protective against acute viral infections and respond to viral and bacterial infections, but their efficacy depends on constitutive basal activity that promotes the expression of downstream genes known as IFN-stimulated genes (ISGs). Type I IFNs and ISGs are constitutively produced at low quantities and yet exert profound effects essential for numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Although the canonical response pathway for type I IFNs has been extensively characterized, less is known regarding the transcriptional regulation of constitutive ISG expression. Zika virus (ZIKV) infection is a major risk for human pregnancy complications and fetal development and depends on an appropriate IFN-β response. However, it is poorly understood how ZIKV, despite an IFN-β response, causes miscarriages. We have uncovered a mechanism for this function specifically in the context of the early antiviral response. Our results demonstrate that IFN regulatory factor (IRF9) is critical in the early response to ZIKV infection in human trophoblast. This function is contingent on IRF9 binding to Twist1. In this signaling cascade, Twist1 was not only a required partner that promotes IRF9 binding to the IFN-stimulated response element but also an upstream regulator that controls basal levels of IRF9. The absence of Twist1 renders human trophoblast cells susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Yuan You
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Esteban Grasso
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
- School of Science, University of Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, 1428
| | - Ayesha Alvero
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jennifer Condon
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Hu
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jiahui Ding
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| |
Collapse
|
8
|
Pan B, Zhu X, Han B, Weng J, Wang Y, Liu Y. The SIK1/CRTC2/CREB1 and TWIST1/PI3K/Akt/GSK3β signaling pathways mediated by microRNA-25-3p are altered in the schizophrenic rat brain. Front Cell Neurosci 2023; 17:1087335. [PMID: 36744005 PMCID: PMC9896578 DOI: 10.3389/fncel.2023.1087335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Schizophrenia is a group of severe mental disorders. MiR-25-3p was shown to be involved in various neuropsychiatric diseases and can regulate SIK1 and TWIST1. The CRTC2/CREB1 and PI3K/Akt/GSK3β signaling pathways are downstream pathways of SIK1 and TWIST1, respectively. This study investigated whether miR-25-3p-mediated SIK1/CRTC2/CREB1 and TWIST1/PI3K/Akt/GSK3β signaling pathways are present in an animal model relevant to schizophrenia. A schizophrenic rat model was established by using sub-chronic MK-801 administration. An RNA-seq test was performed to examine the differentially expressed genes (DEGs) in the rat prefrontal cortex (PFC). The mRNA levels of miR-25-3p, SIK1, and TWIST in the PFC and caudate putamen (CPu) were assessed by qRT-PCR. Phosphorylation of the SIK1/CRTC2/CREB1 and TWIST1/PI3K/Akt/GSK3β pathways in the two brain regions was examined by Western blots. The RNA-seq data revealed down-regulated miR-25-3p expression and up-regulated SIK1 and TWIST1 mRNA expression induced by MK-801. Additionally, SIK1 and TWIST1 were shown to be possible downstream responders of miR-25-3p in previous studies. qRT-PCR confirmed the changes of miR-25-3p, SIK1, and TWIST1 induced by MK-801 in both brain regions, which, however, was reversed by risperidone. Furthermore, the phosphorylation of the SIK1/CRTC2/CREB1 pathway was repressed by MK-801, whereas the phosphorylation of the TWIST1/PI3K/Akt/GSK3β pathway was increased by MK-801 in either of the two brain regions. Moreover, the altered phosphorylation of these two signaling pathways induced by MK-801 can be restored by risperidone. In conclusion, this study suggests that altered SIK1/CRTC2/CREB1 and TWIST1/PI3K/Akt/GSK3β signaling pathways mediated by miR-25-3p is very likely to be associated with schizophrenia, revealing potential targets for the treatment and clinical diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China,Bo Pan,
| | - Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Bing Han
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Jianjun Weng
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Yuting Wang
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China,*Correspondence: Yanqing Liu,
| |
Collapse
|
9
|
FOXA2 and STAT5A regulate oncogenic activity of KIF5B-RET fusion. Am J Cancer Res 2023; 13:638-653. [PMID: 36895965 PMCID: PMC9989603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/19/2023] [Indexed: 03/11/2023] Open
Abstract
KIF5B-RET gene rearrangement occurs in ~1% of lung adenocarcinomas. Recently, targeted agents that inhibit RET phosphorylation have been evaluated in several clinical studies; however, little is known about the role of this gene fusion in driving lung cancer. Immunohistochemistry was used to evaluate the expression of the FOXA2 protein in tumor tissues of patients with lung adenocarcinoma. KIF5B-RET fusion cells proliferated in a cohesive form and grew tightly packed with variable-sized colonies. The expression of RET and its downstream signaling molecules, including p-BRAF, p-ERK, and p-AKT, increased. In KIF5B-RET fusion cells, the intracellular expression of p-ERK was higher in the cytoplasm than in the nucleus. Two transcription factors, STAT5A and FOXA2, exhibiting significantly different expressions at the mRNA level, were finally selected. p-STAT5A was highly expressed in the nucleus and cytoplasm, whereas the expression of the FOXA2 protein was lower; however, it was much higher in the nucleus than in the cytoplasm. Compared with the expression of FOXA2 in the RET rearrangement-wild NSCLC (45.0%), high expression (3+) were observed in most RET rearrangement NSCLCs (94.4%). Meanwhile, KIF5B-RET fusion cells began to increase belatedly from day 7 and only doubled on day 9 in 2D cell culture. However, tumors in mice injected with KIF5B-RET fusion cells began to rapidly increase from day 26. In cell cycle analyses, the KIF5B-RET fusion cells in G0/G1 were increased on day 4 (50.3 ± 2.6%) compared with the empty cells (39.3 ± 5.2%; P = 0.096). Cyclin D1 and E2 expressions were reduced, whereas CDK2 expression slightly increased. pRb and p21 expression was diminished compared with the empty cells, TGF-β1 mRNA was highly expressed, and the proteins were accumulated mostly in the nucleus. Twist mRNA and protein expression was increased, whereas Snail mRNA and protein expression was decreased. Particularly, in KIF5B-RET fusion cells treated with FOXA2 siRNA, the expression of TGF-β 1 mRNA was remarkably reduced but Twist1 and Snail mRNA were increased. Our data suggest that cell proliferation and invasiveness in KIF5B-RET fusion cells are regulated by the upregulation of STAT5A and FOXA2 through the continuous activation of multiple RET downstream signal cascades, including the ERK and AKT signaling pathways. We found that TGF-β1 mRNA, where significant increments were observed in KIF5B-RET fusion cells, is regulated at the transcriptional level by FOXA2.
Collapse
|
10
|
Qiu Z, Guo S, Liu G, Pei M, Liao Y, Wang J, Zhang J, Yang D, Qiao Z, Li Z, Ma Z, Liu Z, Yang X. TGM2 inhibits the proliferation, migration and tumorigenesis of MDCK cells. PLoS One 2023; 18:e0285136. [PMID: 37115802 PMCID: PMC10146566 DOI: 10.1371/journal.pone.0285136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Madin-Darby canine kidney (MDCK) cells are one of the main cell lines used for influenza vaccine production due to their high virus yield and low mutation resistance. Due to their high tumorigenicity, the safety of vaccines produced from these cells is controversial. TGM2 is a multifunctional protein that plays an important role in the adhesion and migration of cells and is associated with tumor formation. We found that the expression level of TGM2 was significantly up-regulated in low tumorigenic MDCK cells. We first analyzed TGM2-overexpressed and knockout MDCK cells in vitro. Scratch-wound assay and Transwell chamber experiments showed that TGM2 overexpression significantly inhibited the migration and invasion of MDCK cells and significantly reduced their proliferation. TGM2 knockout significantly enhanced cell migration, invasion, and proliferation. The tumorigenesis results in nude mice were consistent with those in vitro. TGM2 knockout significantly enhanced the tumorigenesis rate of MDCK cells in nude mice. We also investigated the effects of TGM2 gene expression on the replication of the H1N1 influenza A virus in MDCK cells. The results showed that TGM2 induced the negative regulation of H1N1 replication. These findings contribute to a comprehensive understanding of the tumor regulation mechanism and biological functions of TGM2.
Collapse
Affiliation(s)
- Zhenyu Qiu
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Shouqing Guo
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Geng Liu
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Mengyuan Pei
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Yuejiao Liao
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Jiamin Wang
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Northwest Minzu University, Biomedical Research Center, Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Lanzhou, China
| | - Jiayou Zhang
- National Engineering Technology Research Center of Combined Vaccines, Wuhan, China
- China National Biotec Group Company Limited, Beijing, China
| | - Di Yang
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Northwest Minzu University, Biomedical Research Center, Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Lanzhou, China
| | - Zilin Qiao
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Northwest Minzu University, Biomedical Research Center, Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Lanzhou, China
| | - Zhuo Li
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Northwest Minzu University, Biomedical Research Center, Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Lanzhou, China
| | - Zhongren Ma
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Northwest Minzu University, Biomedical Research Center, Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Lanzhou, China
| | - Zhenbin Liu
- Northwest Minzu University, Biomedical Research Center, Gansu Tech Innovation Center of Animal Cell, Lanzhou, China
- Northwest Minzu University, Biomedical Research Center, Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Lanzhou, China
| | - Xiaoming Yang
- National Engineering Technology Research Center of Combined Vaccines, Wuhan, China
- China National Biotec Group Company Limited, Beijing, China
| |
Collapse
|
11
|
lncRNA SNHG26 promoted the growth, metastasis, and cisplatin resistance of tongue squamous cell carcinoma through PGK1/Akt/mTOR signal pathway. Mol Ther Oncolytics 2022; 24:355-370. [PMID: 35118193 PMCID: PMC8783117 DOI: 10.1016/j.omto.2021.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is closely linked to head and neck cancers. Here, we sought to explore the role and mechanism of lncRNAs in the occurrence and progression of TSCC and cisplatin resistance. The results of next-generation transcriptomic sequencing revealed that lncRNA-SNHG26 was differentially expressed and was associated with TSCC cisplatin resistance. The Cancer Genome Atlas dataset and tumor tissue analysis revealed that high SHNG26 expression was associated with the occurrence, progression, and poor prognosis of TSCC. Evidence from cell and animal experiments showed that SNHG26 expression was positively correlated with TSCC proliferation, epithelial-mesenchymal transformation, migration, invasion, and cisplatin resistance. Furthermore, in TSCC cells, SNHG26 was found to bind directly to the PGK1 protein, inhibiting its ubiquitination and activating the Akt/mTOR signaling pathway. These findings suggest that lncRNA-SNHG26 may be a promising target for inhibiting TSCC progression and improving sensitivity to cisplatin chemotherapy in TSCC.
Collapse
|
12
|
Zhang LY, Shen ZX, Guo L. Inhibiting L1CAM Reverses Cisplatin Resistance of Triple Negative Breast Cancer Cells by Blocking AKT Signaling Pathway. Cancer Invest 2022; 40:313-324. [PMID: 35040385 DOI: 10.1080/07357907.2021.2016801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DDP-resistant MDA-MB-231 cells (MDA-MB-231/DDP) cells had higher expression of L1CAM than their parental cells. L1CAM siRNA decreased the IC50 of MDA-MB-231/DDP cells to DDP. L1CAM inhibition down-regulated p-AKT/AKT in MDA-MB-231/DDP cells; meanwhile, it could promote MDA-MB-231/DDP cell apoptosis, inhibit cell EMT, invasion, and migration. Moreover, SC79 (an AKT activator) increased the DDP-resistance of MDA-MB-231/DDP cells, which was reversed by L1CAM inhibition. Furthermore, co-treatment of L1CAM shRNA and cisplatin injection had better anti-tumor effects in vivo than these two single treatments with decreased p-AKT/AKT. Thus, silencing L1CAM reversed the DDP resistance by inhibiting the AKT pathway.
Collapse
Affiliation(s)
- Lu-Yao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhi-Xin Shen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lu Guo
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
13
|
Giordano M, Decio A, Battistini C, Baronio M, Bianchi F, Villa A, Bertalot G, Freddi S, Lupia M, Jodice MG, Ubezio P, Colombo N, Giavazzi R, Cavallaro U. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:319. [PMID: 34645505 PMCID: PMC8513260 DOI: 10.1186/s13046-021-02117-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. METHODS The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. RESULTS We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. CONCLUSIONS Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.
Collapse
Affiliation(s)
- Marco Giordano
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Tumor Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, Milan, Italy
| | - Chiara Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Micol Baronio
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Alessandra Villa
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.,Philochem AG, Otelfingen, Switzerland
| | - Giovanni Bertalot
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy.,Division of Anatomical Pathology, Santa Chiara Hospital, Trento, Italy
| | - Stefano Freddi
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy
| | - Michela Lupia
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Maria Giovanna Jodice
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy
| | - Paolo Ubezio
- Laboratory of Tumor Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, Milan, Italy
| | - Nicoletta Colombo
- Division of Gynecologic Oncology, European Institute of Oncology IRCSS, Milan, Italy.,University of Milan-Bicocca, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Tumor Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.
| |
Collapse
|
14
|
Wu Y, Kröller L, Miao B, Boekhoff H, Bauer AS, Büchler MW, Hackert T, Giese NA, Taipale J, Hoheisel JD. Promoter Hypermethylation Promotes the Binding of Transcription Factor NFATc1, Triggering Oncogenic Gene Activation in Pancreatic Cancer. Cancers (Basel) 2021; 13:4569. [PMID: 34572796 PMCID: PMC8471171 DOI: 10.3390/cancers13184569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Studies have indicated that some genes involved in carcinogenesis are highly methylated in their promoter regions but nevertheless strongly transcribed. It has been proposed that transcription factors could bind specifically to methylated promoters and trigger transcription. We looked at this rather comprehensively for pancreatic ductal adenocarcinoma (PDAC) and studied some cases in more detail. Some 2% of regulated genes in PDAC exhibited higher transcription coupled to promoter hypermethylation in comparison to healthy tissue. Screening 661 transcription factors, several were found to bind specifically to methylated promoters, in particular molecules of the NFAT family. One of them-NFATc1-was substantially more strongly expressed in PDAC than control tissue and exhibited a strong oncogenic role. Functional studies combined with computational analyses allowed determining affected genes. A prominent one was gene ALDH1A3, which accelerates PDAC metastasis and correlates with a bad prognosis. Further studies confirmed the direct up-regulation of ALDH1A3 transcription by NFATc1 promoter binding in a methylation-dependent process, providing insights into the oncogenic role of transcription activation in PDAC that is promoted by DNA methylation.
Collapse
Affiliation(s)
- Yenan Wu
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Lea Kröller
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Beiping Miao
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
| | - Markus W. Büchler
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Nathalia A. Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Jussi Taipale
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Solna, Sweden;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
| |
Collapse
|
15
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Mokhtari M. A review on the role of GAS6 and GAS6-AS1 in the carcinogenesis. Pathol Res Pract 2021; 226:153596. [PMID: 34481213 DOI: 10.1016/j.prp.2021.153596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Growth arrest specific 6 (GAS6) encodes a protein that serves as a ligand for AXL receptor tyrosine kinase and stimulates cell proliferation. Notably, an antisense RNA, namely GAS6-AS1 is transcribed from chromosome 13q34, near GAS6 gene. In vitro functional experiments have demonstrated that GAS6-AS1 can promote proliferation, migration and invasive properties of transformed cells through enhancing entry into S-phase. Notably, mechanistic investigations have shown that GAS6-AS1 can regulate expression of GAS6 at the transcriptional or translational stages through constructing a RNA-RNA duplex, thus enhancing expression of AXL and inducing AXL signaling. Both GAS6 and its antisense transcript contribute in the pathogenesis of human malignancies. In the current review, we provide a summary of studies that appraised the role of these genes in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Ha J, Lee S, Park J, Seo J, Kang E, Yoon H, Kim BR, Lee HK, Ryu SE, Cho S. Identification of a novel inhibitor of liver cancer cell invasion and proliferation through regulation of Akt and Twist1. Sci Rep 2021; 11:16765. [PMID: 34408201 PMCID: PMC8373934 DOI: 10.1038/s41598-021-95933-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
When primary cancer faces limited oxygen and nutrient supply, it undergoes an epithelial–mesenchymal transition, which increases cancer cell motility and invasiveness. The migratory and invasive cancer cells often exert aggressive cancer development or even cancer metastasis. In this study, we investigated a novel compound, 3-acetyl-5,8-dichloro-2-((2,4-dichlorophenyl)amino)quinolin-4(1H)-one (ADQ), that showed significant suppression of wound healing and cellular invasion. This compound also inhibited anchorage-independent cell growth, multicellular tumor spheroid survival/invasion, and metalloprotease activities. The anti-proliferative effects of ADQ were mediated by inhibition of the Akt pathway. In addition, ADQ reduced the expression of mesenchymal markers of cancer cells, which was associated with the suppressed expression of Twist1. In conclusion, ADQ successfully suppressed carcinogenic activity by inhibiting the Akt signaling pathway and Twist1, which suggests that ADQ may be an efficient candidate for cancer drug development.
Collapse
Affiliation(s)
- Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jihye Seo
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haelim Yoon
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Kyu Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Yuseong, P.O. Box 107, Daejeon, 34114, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
17
|
Bahar E, Kim JY, Kim DC, Kim HS, Yoon H. Combination of Niraparib, Cisplatin and Twist Knockdown in Cisplatin-Resistant Ovarian Cancer Cells Potentially Enhances Synthetic Lethality through ER-Stress Mediated Mitochondrial Apoptosis Pathway. Int J Mol Sci 2021; 22:ijms22083916. [PMID: 33920140 PMCID: PMC8070209 DOI: 10.3390/ijms22083916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 inhibitors (PARPi) are used to treat recurrent ovarian cancer (OC) patients due to greater survival benefits and minimal side effects, especially in those patients with complete or partial response to platinum-based chemotherapy. However, acquired resistance of platinum-based chemotherapy leads to the limited efficacy of PARPi monotherapy in most patients. Twist is recognized as a possible oncogene and contributes to acquired cisplatin resistance in OC cells. In this study, we show how Twist knockdown cisplatin-resistant (CisR) OC cells blocked DNA damage response (DDR) to sensitize these cells to a concurrent treatment of cisplatin as a platinum-based chemotherapy agent and niraparib as a PARPi on in vitro two-dimensional (2D) and three-dimensional (3D) cell culture. To investigate the lethality of PARPi and cisplatin on Twist knockdown CisR OC cells, two CisR cell lines (OV90 and SKOV3) were established using step-wise dose escalation method. In addition, in vitro 3D spheroidal cell model was generated using modified hanging drop and hydrogel scaffolds techniques on poly-2-hydroxylethly methacrylate (poly-HEMA) coated plates. Twist expression was strongly correlated with the expression of DDR proteins, PARP1 and XRCC1 and overexpression of both proteins was associated with cisplatin resistance in OC cells. Moreover, combination of cisplatin (Cis) and niraparib (Nira) produced lethality on Twist-knockdown CisR OC cells, according to combination index (CI). We found that Cis alone, Nira alone, or a combination of Cis+Nira therapy increased cell death by suppressing DDR proteins in 2D monolayer cell culture. Notably, the combination of Nira and Cis was considerably effective against 3D-cultures of Twist knockdown CisR OC cells in which Endoplasmic reticulum (ER) stress is upregulated, leading to initiation of mitochondrial-mediated cell death. In addition, immunohistochemically, Cis alone, Nira alone or Cis+Nira showed lower ki-67 (cell proliferative marker) expression and higher cleaved caspase-3 (apoptotic marker) immuno-reactivity. Hence, lethality of PARPi with the combination of Cis on Twist knockdown CisR OC cells may provide an effective way to expand the therapeutic potential to overcome platinum-based chemotherapy resistance and PARPi cross resistance in OC.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Ji-Ye Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang 10380, Korea;
| | - Dong-Chul Kim
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52828, Korea;
| | - Hyun-Soo Kim
- Samsung Medical Center, Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (H.-S.K.); (H.Y.); Tel.: +82-2-3410-1243 (H.-S.K.); +82-55-772-2422 (H.Y.)
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (H.-S.K.); (H.Y.); Tel.: +82-2-3410-1243 (H.-S.K.); +82-55-772-2422 (H.Y.)
| |
Collapse
|
18
|
The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res 2021; 44:281-292. [PMID: 33768509 PMCID: PMC8009775 DOI: 10.1007/s12272-021-01321-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
The complex orchestration of gene expression that mediates the transition of epithelial cells into mesenchymal cells is implicated in cancer development and metastasis. As the primary regulator of the process, epithelial-mesenchymal transition-regulating transcription factors (EMT-TFs) play key roles in metastasis. They are also highlighted in recent preclinical studies on resistance to cancer therapy. This review describes the role of three main EMT-TFs, including Snail, Twist1, and zinc-finger E homeobox-binding 1 (ZEB1), relating to drug resistance and current possible approaches for future challenges targeting EMT-TFs.
Collapse
|
19
|
Tendulkar S, Dodamani S. Chemoresistance in Ovarian Cancer: Prospects for New Drugs. Anticancer Agents Med Chem 2021; 21:668-678. [PMID: 32900355 DOI: 10.2174/1871520620666200908104835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/09/2022]
Abstract
This review focuses on the conventional treatment, signaling pathways and various reasons for drug resistance with an understanding of novel methods that can lead to effective therapies. Ovarian cancer is amongst the most common gynecological and lethal cancers in women affecting different age groups (20-60). The survival rate is limited to 5 years due to diagnosis in subsequent stages with a reoccurrence of tumor and resistance to chemotherapeutic therapy. The recent clinical trials use the combinatorial treatment of carboplatin and paclitaxel on ovarian cancer after the cytoreduction of the tumor. Predominantly, patients are responsive initially to therapy and later develop metastases due to drug resistance. Chemotherapy also leads to drug resistance causing enormous variations at the cellular level. Multifaceted mechanisms like drug resistance are associated with a number of genes and signaling pathways that process the proliferation of cells. Reasons for resistance include epithelial-mesenchyme, DNA repair activation, autophagy, drug efflux, pathway activation, and so on. Determining the routes on the molecular mechanism that target chemoresistance pathways are necessary for controlling the treatment and understanding efficient drug targets can open light on improving therapeutic outcomes. The most common drug used for ovarian cancer is Cisplatin that activates various chemoresistance pathways, ultimately causing drug resistance. There have been substantial improvements in understanding the mechanisms of cisplatin resistance or chemo sensitizing cisplatin for effective treatment. Therefore, using therapies that involve a combination of phytochemical or novel drug delivery system would be a novel treatment for cancer. Phytochemicals are plant-derived compounds that exhibit anti-cancer, anti-oxidative, anti-inflammatory properties and reduce side effects exerted by chemotherapeutics.
Collapse
Affiliation(s)
- Shivani Tendulkar
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi- 590010, Karnataka, India
| | - Suneel Dodamani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi- 590010, Karnataka, India
| |
Collapse
|
20
|
Establishment of Acquired Cisplatin Resistance in Ovarian Cancer Cell Lines Characterized by Enriched Metastatic Properties with Increased Twist Expression. Int J Mol Sci 2020; 21:ijms21207613. [PMID: 33076245 PMCID: PMC7589258 DOI: 10.3390/ijms21207613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of the gynecologic cancers, and platinum-based treatment is a part of the standard first-line chemotherapy regimen. However, rapid development of acquired cisplatin resistance remains the main cause of treatment failure, and the underlying mechanism of resistance in OC treatment remains poorly understood. Faced with this problem, our aim in this study was to generate cisplatin-resistant (CisR) OC cell models in vitro and investigate the role of epithelial–mesenchymal transition (EMT) transcription factor Twist on acquired cisplatin resistance in OC cell models. To achieve this aim, OC cell lines OV-90 and SKOV-3 were exposed to cisplatin using pulse dosing and stepwise dose escalation methods for a duration of eight months, and a total of four CisR sublines were generated, two for each cell line. The acquired cisplatin resistance was confirmed by determination of 50% inhibitory concentration (IC50) and clonogenic survival assay. Furthermore, the CisR cells were studied to assess their respective characteristics of metastasis, EMT phenotype, DNA repair and endoplasmic reticulum stress-mediated cell death. We found the IC50 of CisR cells to cisplatin was 3–5 times higher than parental cells. The expression of Twist and metastatic ability of CisR cells were significantly greater than those of sensitive cells. The CisR cells displayed an EMT phenotype with decreased epithelial cell marker E-cadherin and increased mesenchymal proteins N-cadherin and vimentin. We observed that CisR cells showed significantly higher expression of DNA repair proteins, X-ray repair cross-complementing protein 1 (XRCC1) and poly (ADP-ribose) polymerases 1 (PARP1), with significantly reduced endoplasmic reticulum (ER) stress-mediated cell death. Moreover, Twist knockdown reduced metastatic ability of CisR cells by suppressing EMT, DNA repair and inducing ER stress-induced cell death. In conclusion, we highlighted the utilization of an acquired cisplatin resistance model to identify the potential role of Twist as a therapeutic target to reverse acquired cisplatin resistance in OC.
Collapse
|
21
|
MYB Proto-oncogene-like 1-TWIST1 Axis Promotes Growth and Metastasis of Hepatocellular Carcinoma Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:58-69. [PMID: 32637581 PMCID: PMC7327431 DOI: 10.1016/j.omto.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022]
Abstract
MYB proto-oncogene-like 1 (MYBL1) has been reported to be a strong activator of transcription and plays an important role in the development of cancer. However, the precise biological function and molecular mechanism of MYBL1 in hepatocellular carcinoma (HCC) cells remain unclear. In the present study, we found that the expression of MYBL1 was markedly overexpressed in HCC cell lines and HCC samples, respectively. Moreover, MYBL1 expression positively correlated with tumor progression and inversely correlated with patient survival in 368 human HCC tissue samples. Overexpression of MYBL1 induced, whereas knockdown of MYBL1 reduced, HCC proliferation and metastasis both in vitro and in vivo. Furthermore, we demonstrated that HCC patients with high MYBL1 expression had significantly shorter overall and poorer disease-free survival than those with low MYBL1 expression. MYBL1 transcriptionally upregulated TWIST1 expression by directly targeting the TWIST1 promoter. More importantly, the in vitro analysis was consistent with the significant correlation between MYBL1 and TWIST1 expression observed in a large cohort of human HCC specimens. Taken together, our results demonstrate that MYBL1 plays an important role in HCC growth and metastasis and reveal a plausible mechanism for upregulation of TWIST1 in HCC.
Collapse
|
22
|
Altevogt P, Ben-Ze'ev A, Gavert N, Schumacher U, Schäfer H, Sebens S. Recent insights into the role of L1CAM in cancer initiation and progression. Int J Cancer 2020; 147:3292-3296. [PMID: 32588424 DOI: 10.1002/ijc.33177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
First described as a neuronal cell adhesion molecule, L1CAM was later identified to be present at increased levels in primary tumors and metastases of various types of cancer. Here, we describe the multifaceted roles of L1CAM that are involved in diverse fundamental steps during tumor initiation and progression, as well as in chemoresistance. Recently, Ganesh et al reported that L1CAM identifies metastasis-initiating cells in colorectal carcinoma exhibiting stem-like cell features, increased tumorigenic potential and enhanced chemoresistance. In this review, we highlight recent advances in L1CAM research with particular emphasis on its role in de-differentiation processes and cancer cell stemness supporting the view that L1CAM is a powerful prognostic factor and a suitable target for improved therapy of metastatic and drug-resistant tumors.
Collapse
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg, Germany
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
23
|
Belulescu IC, Mărgăritescu C, Dumitrescu CI, Munteanu MC, Dăguci L, Mărgăritescu OC, Matei M. The immunophenotype of epithelial to mesenchymal transition inducing transcription factors in salivary gland adenoid cystic carcinomas. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:769-782. [PMID: 33817718 PMCID: PMC8112789 DOI: 10.47162/rjme.61.3.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
Adenoid cystic carcinoma (ACC) is the second most common malignant salivary glands neoplasms with a controversial biological behavior. Even though these tumors grow slowly, they have increased potential for recurrence and distant metastasis. In order to elucidate this behavior, our study aimed to investigate the immunoexpression in such tumors of the most important transcriptional factors [Twist, Snail, Slug, and zinc finger E-box binding homeobox 1 (ZEB1)] involved in the epithelial-mesenchymal transition process. The highest level of expression was recorded for Twist, present in all the investigated cases, followed by the Slug and Snail, while no tumor parenchyma reactivity was noticed for the ZEB1 factor. There were tumor reactivity differences regarding topography, histopathological variant, and nerve and lymph node invasion status. Thus, tumors developed from the intraoral minor salivary glands, with solid pattern, perineural invasion, locally aggressive and with lymph node metastasis were the most reactive. Therefore, these transcription factors could be useful as prognostic biomarkers and efficient therapeutic targets in such salivary malignancies.
Collapse
Affiliation(s)
| | - Claudiu Mărgăritescu
- Department of Pathology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Maria Cristina Munteanu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Romania
| | - Luminiţa Dăguci
- Department of Prosthodontics, University of Medicine and Pharmacy of Craiova, Romania
| | - Otilia Clara Mărgăritescu
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Marius Matei
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
24
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
25
|
Giordano M, Cavallaro U. Different Shades of L1CAM in the Pathophysiology of Cancer Stem Cells. J Clin Med 2020; 9:E1502. [PMID: 32429448 PMCID: PMC7291284 DOI: 10.3390/jcm9051502] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in several tumor types where it is causally linked to malignancy and therapy resistance, acting also as a poor prognosis factor. Accordingly, several approaches have been developed to interfere with L1CAM function or to deliver cytotoxic agents to L1CAM-expressing tumors. Metastatic dissemination, tumor relapse and drug resistance can be fueled by a subpopulation of neoplastic cells endowed with peculiar biological properties that include self-renewal, efficient DNA repair, drug efflux machineries, quiescence, and immune evasion. These cells, known as cancer stem cells (CSC) or tumor-initiating cells, represent, therefore, an ideal target for tumor eradication. However, the molecular and functional traits of CSC have been unveiled only to a limited extent. In this context, it appears that L1CAM is expressed in the CSC compartment of certain tumors, where it plays a causal role in stemness itself and/or in biological processes intimately associated with CSC (e.g., epithelial-mesenchymal transition (EMT) and chemoresistance). This review summarizes the role of L1CAM in cancer focusing on its functional contribution to CSC pathophysiology. We also discuss the clinical usefulness of therapeutic strategies aimed at targeting L1CAM in the context of anti-CSC treatments.
Collapse
Affiliation(s)
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, 20128 Milan, Italy;
| |
Collapse
|
26
|
Zhu ST, Wang X, Wang JY, Xi GH, Liu Y. Downregulation of miR-22 Contributes to Epithelial-Mesenchymal Transition in Osteosarcoma by Targeting Twist1. Front Oncol 2020; 10:406. [PMID: 32391253 PMCID: PMC7193700 DOI: 10.3389/fonc.2020.00406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a vital step in osteosarcoma (OS) progression toward metastasis, but the specific molecular events governing this process are incompletely characterized, with miRNAs having increasingly been found to regulate the EMT. In this study, We assessed levels of miR-22 and its target, Twist1, via real-time PCR (qRT-PCR). We further used functional proliferation assays, measures of cell morphology, and western blotting to assess the functional relevance of miR-22 in OS and confirmed Twist1 as a miR-22 target via luciferase reporter assay. We observed a significant decrease in miR-22 levels in OS tumor samples relative to normal tissue, with such downregulating being significantly associated with tumor histological grade. When overexpressed, miR-22 impaired OS cell proliferation and EMT progression. We found Twist1 to be a direct miR-22 target, with levels of miR-22 and Twist1 mRNA being inversely correlated in patient samples. When overexpressed, miR-22 suppressed Twist1 translation and thereby attenuated the EMT in OS cells. These results clearly demonstrate that miR-22 can regulate the EMT in OS cells via targeting Twist1, thus highlighting a potentially novel pathway that can be therapeutically targeted in order to treat OS.
Collapse
Affiliation(s)
- Shu-Tao Zhu
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiao Wang
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jun-Yi Wang
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Guang-Hui Xi
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yang Liu
- Department of Orthopedics, Huaihe Hospital, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
27
|
Forghanifard MM, Azaraz S, Ardalan Khales S, Morshedi Rad D, Abbaszadegan MR. MAML1 promotes ESCC aggressiveness through upregulation of EMT marker TWIST1. Mol Biol Rep 2020; 47:2659-2668. [PMID: 32180088 DOI: 10.1007/s11033-020-05356-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mastermind-like 1 (MAML1) is the main transcriptional co-activator of Notch signaling pathway. It plays essential roles in several pathways including MEF2C, p53, Nf-кB and Wnt/β-catenin. TWIST1 is known as a regulator of epithelial mesenchymal transition (EMT), which is considered as a primary step in promotion of tumor cell metastasis. Since concomitant expression of these genes was observed in tumors, our aim in this study was to elucidate the linkage between MAML1 and TWIST1 co-overexpression in esophageal squamous cell carcinoma (ESCC). RESULTS While MAML1 silencing significantly down-regulated TWIST1, its ectopic expression up-regulated TWIST1 expression in both mRNA and protein levels in KYSE-30 cells. Expression of mesenchymal markers was increased significantly after MAML1 and TWIST1 ectopic expression, while epithelial markers expression was significantly decreased after silencing of both genes. Concomitant protein expression of MAML1 and TWIST1 was significantly observed in ESCC patients. Enforced expression of TWIST1 had no impact on MAML1 gene expression in KYSE-30 cells. CONCLUSION The results clearly suggest transcriptional regulation of TWIST1 by MAML1 transcription factor in ESCC cells KYSE-30. Since TWIST1 is known as an EMT inducing marker, our results may revealed the mastermind behind TWIST1 function and introduced MAML1 as an upstream master regulator of TWIST1 and EMT in KYSE-30 cells.
Collapse
Affiliation(s)
| | - Shirin Azaraz
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Ardalan Khales
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
28
|
Zahoor A, Yang Y, Yang C, Akhtar M, Guo Y, Shaukat A, Guo MY, Deng G. Gas6 negatively regulates the Staphylococcus aureus-induced inflammatory response via TLR signaling in the mouse mammary gland. J Cell Physiol 2020; 235:7081-7093. [PMID: 32052456 DOI: 10.1002/jcp.29604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus (S. aureus)-induced mastitis is the most frequent, pathogenic, and prevalent infection of the mammary gland. The ligand growth arrest-specific 6 (Gas6) is a secretory protein that binds to and activates Tyro3, Axl, and MerTK receptors. This study explored the role of Gas6 in S. aureus-induced mastitis. Our results revealed that TLR receptors initiate the innate immune response in mammary gland tissues and epithelial cells and that introducing S. aureus activates TLR2 and TLR6 to drive multiple intracellular mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways. Moreover, S. aureus also induces Gas6, which then activates the TAM receptor kinase pathway, which is related to the inhibition of TLR2- and TLR6-mediated inflammatory pathways through SOCS1 and SOCS3 induction. Gas6 absence alone was found to be involved in the downregulation of TAM receptor-mediated anti-inflammatory effects by inducing significantly prominent expression of TRAF6 and low protein and messenger RNA expression of SOCS1 and SOCS3. S. aureus-induced MAPK and NF-ĸB p65 phosphorylation were also dependent on Gas6, which negatively regulated the production of Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in S. aureus-treated mammary tissues and mammary epithelial cells. Our in vivo and in vitro study uncovered the Gas6-mediated negative feedback mechanism, which inhibits TLR2- and TLR6-mediated MAPK and NF-ĸB signaling by activating TAM receptor kinase (MerTK, Axl, and Tyro3) through the induction of SOCS1/SOCS3 proteins.
Collapse
Affiliation(s)
- Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yingfang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Asano H, Hatanaka KC, Matsuoka R, Dong P, Mitamura T, Konno Y, Kato T, Kobayashi N, Ihira K, Nozaki A, Oku A, Matsuno Y, Hatanaka Y, Watari H. L1CAM Predicts Adverse Outcomes in Patients with Endometrial Cancer Undergoing Full Lymphadenectomy and Adjuvant Chemotherapy. Ann Surg Oncol 2019; 27:2159-2168. [PMID: 31792716 DOI: 10.1245/s10434-019-08103-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND L1 cell adhesion molecule (L1CAM) has been established as an important predictor of poor survival of early-stage endometrial cancer patients. We investigated whether L1CAM remains a significant predictor of poor survival of patients with advanced-stage endometrial cancer undergoing extensive surgical staging and adjuvant chemotherapy. METHODS We prepared tissue microarray (TMA) from surgical tissue specimens of 161 endometrial cancer patients who underwent full lymphadenectomy combined with adjuvant chemotherapy for patients at risk for recurrence, and evaluated expression of L1CAM using immunohistochemistry. The correlation between L1CAM positivity and clinicopathological factors and the prognostic significance of L1CAM expression was investigated. RESULTS Among 161 cases who had a follow-up duration of over 3 years, 48 cases (29.8%) showed positive staining for L1CAM. L1CAM positivity was significantly correlated with non-endometrioid histology (p < 0.0001), vascular invasion (p = 0.0157), and positive cytology (p = 0.005), and was a significant predictor of poor survival among advanced-stage patients, but not early-stage patients in our cohort. L1CAM-positive patients showed a higher recurrence rate and frequency of distant failure than L1CAM-negative patients. Multivariate analysis revealed that para-aortic lymph node metastasis (PANM) and L1CAM positivity were independent predictors of poor survival. Overall survival can be stratified into three groups by the combination of PANM and L1CAM positivity. CONCLUSION L1CAM is an independent predictor of poor survival in endometrial cancer patients undergoing full lymphadenectomy and adjuvant chemotherapy, thus indicating that L1CAM can be clinically used as a biomarker to identify those patients at increased risk of recurrence.
Collapse
Affiliation(s)
- Hiroshi Asano
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako C Hatanaka
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapparo, Japan.,Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ryosuke Matsuoka
- Department of Pathology, International University of Health and Welfare - Narita Campus, Narita, Japan
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Mitamura
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Kato
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ayako Nozaki
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Oku
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
30
|
Gong M, Luo C, Meng H, Li S, Nie S, Jiang Y, Wan Y, Li H, Cheng W. Upregulated LINC00565 Accelerates Ovarian Cancer Progression By Targeting GAS6. Onco Targets Ther 2019; 12:10011-10022. [PMID: 31819497 PMCID: PMC6875503 DOI: 10.2147/ott.s227758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been identified to participate in tumorigenesis. However, the underlying mechanisms of differentially expressed lncRNAs engaged in diseases remain indistinct and need further exploration. Methods Raw data files downloaded from TCGA and GEO dataset were used to analyze the differentially expressed lncRNAs and LINC00565 was picked out as the potential oncogene. qRT-PCR was used to analyze the LINC00565 level in ovarian tissues and cell lines. Subsequently, the selected ovarian tumor cells were then transfected with LINC00565 siRNA by Lipofectamine 2000 and the cell cycle was detected by flow cytometry. Effect of LINC00565 on tumor growth and cell cycle was verified by tumor formation assay in nude mice. The mechanism of LINC00565 involving in cell cycle regulation was further explored by Western blot. Results In this research, we discovered that LINC00565, a novel lncRNA, was highly expressed in ovarian cancer (OC). LINC00565 expression level was negatively associated with outcomes of OC patients. Further analysis showed that LINC00565 expression was closely correlated to tumor size, FIGO stage, but not related to other clinical features. In vitro experiments indicated that knockdown of LINC00565 significantly inhibited proliferative, invasive and migratory abilities of ovarian cancer cells. Besides, knockdown of LINC00565 can induce cell cycle arrest in G0/G1 phase. In addition, in vivo assay showed that low expression of LINC00565 inhibited the growth of OC. Further study found that LINC00565 knockdown markedly downregulated the protein expressions of CyclinD1, CyclinE1 and CDK4, but upregulated the expression of P16 and P21. Subsequently, we confirmed that LINC00565 promoted the progression of OC via upregulating GAS6, which has been confirmed to promote tumor progression. Conclusion In summary, our study firstly reported that the LINC00565 functioned as an oncogene to promote the progression of OC by interacting with GAS6.
Collapse
Affiliation(s)
- Mi Gong
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China.,Department of Gynecology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Chengyan Luo
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Huijian Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China.,Department of Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi, Jiangsu 214002, People's Republic of China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| |
Collapse
|
31
|
Zhu H, Wu C, Wu T, Xia W, Ci S, He W, Zhang Y, Li L, Zhou S, Zhang J, Edick AM, Zhang A, Pan FY, Hu Z, He L, Guo Z. Inhibition of AKT Sensitizes Cancer Cells to Antineoplastic Drugs by Downregulating Flap Endonuclease 1. Mol Cancer Ther 2019; 18:2407-2420. [DOI: 10.1158/1535-7163.mct-18-1215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/10/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
32
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Herreño AM, Ramírez AC, Chaparro VP, Fernandez MJ, Cañas A, Morantes CF, Moreno OM, Brugés RE, Mejía JA, Bustos FJ, Montecino M, Rojas AP. Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer: Epigenetic control of the RUNX2 P1 promoter. Tumour Biol 2019; 41:1010428319851014. [DOI: 10.1177/1010428319851014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lung cancer has a high mortality rate in men and women worldwide. Approximately 15% of diagnosed patients with this type of cancer do not exceed the 5-year survival rate. Unfortunately, diagnosis is established in advanced stages, where other tissues or organs can be affected. In recent years, lineage-specific transcription factors have been associated with a variety of cancers. One such transcription factor possibly regulating cancer is RUNX2, the master gene of early and late osteogenesis. In thyroid and prostate cancer, it has been reported that RUNX2 regulates expression of genes important in tumor cell migration and invasion. In this study, we report on RUNX2/ p57 overexpression in 16 patients with primary non-small cell lung cancer and/or metastatic lung cancer associated with H3K27Ac at P1 gene promoter region. In some patients, H3K4Me3 enrichment was also detected, in addition to WDR5, MLL2, MLL4, and UTX enzyme recruitment, members of the COMPASS-LIKE complex. Moreover, transforming growth factor-β induced RUNX2/ p57 overexpression and specific RUNX2 knockdown supported a role for RUNX2 in epithelial mesenchymal transition, which was demonstrated through loss of function assays in adenocarcinoma A549 lung cancer cell line. Furthermore, RUNX2 increased expression of epithelial mesenchymal transition genes VIMENTIN, TWIST1, and SNAIL1, which reflected increased migratory capacity in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Angélica María Herreño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea Carolina Ramírez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Viviana Paola Chaparro
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María José Fernandez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alejandra Cañas
- Departamento de Medicina Interna, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Olga María Moreno
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ricardo Elias Brugés
- Departamento de Medicina Interna, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Juan Andrés Mejía
- Servicio de Radiología e Imágenes Diagnósticas, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Fernando José Bustos
- Institute of Biomedical Sciences, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Adriana P Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
34
|
Chen YY, Lin YJ, Huang WT, Hung CC, Lin HY, Tu YC, Liu DM, Lan SJ, Sheu MJ. Demethoxycurcumin-Loaded Chitosan Nanoparticle Downregulates DNA Repair Pathway to Improve Cisplatin-Induced Apoptosis in Non-Small Cell Lung Cancer. Molecules 2018; 23:E3217. [PMID: 30563166 PMCID: PMC6320861 DOI: 10.3390/molecules23123217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
Demethoxycurcumin (DMC), through a self-assembled amphiphilic carbomethyl-hexanoyl chitosan (CHC) nanomatrix has been successfully developed and used as a therapeutic approach to inhibit cisplatin-induced drug resistance by suppressing excision repair cross-complementary 1 (ERCC1) in non-small cell lung carcinoma cells (NSCLC). Previously, DMC significantly inhibited on-target cisplatin resistance protein, ERCC1, via PI3K-Akt-snail pathways in NSCLC. However, low water solubility and bioavailability of DMC causes systemic elimination and prevents its clinical application. To increase its bioavailability and targeting capacity toward cancer cells, a DMC-polyvinylpyrrolidone core phase was prepared, followed by encapsulating in a CHC shell to form a DMC-loaded core-shell hydrogel nanoparticles (DMC-CHC NPs). We aimed to understand whether DMC-CHC NPs efficiently potentiate cisplatin-induced apoptosis through downregulation of ERCC1 in NSCLC. DMC-CHC NPs displayed good cellular uptake efficiency. Dissolved in water, DMC-CHC NPs showed comparable cytotoxic potency with free DMC (dissolved in DMSO). A sulforhodamine B (SRB) assay indicated that DMC-CHC NPs significantly increased cisplatin-induced cytotoxicity by highly efficient intracellular delivery of the encapsulated DMC. A combination of DMC-CHC NPs and cisplatin significantly inhibited on-target cisplatin resistance protein, ERCC1, via the PI3K-Akt pathway. Also, this combination treatment markedly increased the post-target cisplatin resistance pathway including bax, and cytochrome c expressions. Thymidine phosphorylase (TP), a main role of the pyrimidine salvage pathway, was also highly inhibited by the combination treatment. The results suggested that enhancement of the cytotoxicity to cisplatin via administration of DMC-CHC NPs was mediated by down-regulation of the expression of TP, and ERCC1, regulated via the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Ying-Yi Chen
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Yu-Jung Lin
- Department of Pharmacy, Chang Bing Show Chwan Memorial Hospital, No.6, Lugong Rd. Lugang Town, Changhua County 505, Taiwan.
| | - Wei-Ting Huang
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.
| | - Chin-Chuan Hung
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Yu-Chen Tu
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| | - Dean-Mo Liu
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan.
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Hsueh-Hsih Road, Taichung 40402, Taiwan.
| |
Collapse
|
35
|
Quinn JM, Greenwade MM, Palisoul ML, Opara G, Massad K, Guo L, Zhao P, Beck-Noia H, Hagemann IS, Hagemann AR, McCourt CK, Thaker PH, Powell MA, Mutch DG, Fuh KC. Therapeutic Inhibition of the Receptor Tyrosine Kinase AXL Improves Sensitivity to Platinum and Taxane in Ovarian Cancer. Mol Cancer Ther 2018; 18:389-398. [PMID: 30478151 DOI: 10.1158/1535-7163.mct-18-0537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/11/2018] [Accepted: 11/13/2018] [Indexed: 02/03/2023]
Abstract
Ovarian cancer, one of the deadliest malignancies in female cancer patients, is characterized by recurrence and poor response to cytotoxic chemotherapies. Fewer than 30% of patients with resistant disease will respond to additional chemotherapy treatments. This study aims to determine whether and how inhibition of the receptor tyrosine kinase AXL can restore sensitivity to first-line platinum and taxane therapy in ovarian cancer. AXL staining was quantified in a patient tissue microarray and correlated with chemoresponse of patients. We used small hairpin RNAs to knock down AXL expression and the small-molecule inhibitor BGB324 to inhibit AXL and assessed sensitivity of cell lines and primary patient-derived cells to chemotherapy. We quantified platinum accumulation by inductivity-coupled plasma phase mass spectrometry. Finally, we treated chemoresistant patient-derived xenografts with chemotherapy, BGB324, or chemotherapy plus BGB324 and monitored tumor burden. AXL expression was higher in chemoresistant patient tumors and cell lines than in chemosensitive tumors and cell lines. AXL staining significantly predicted chemoresponse. Knockdown and inhibition of AXL dose-dependently improved response to paclitaxel and carboplatin in both cell lines and primary cells. AXL inhibition increased platinum accumulation by 2-fold (*, P < 0.05). In vivo studies indicated that AXL inhibition enhanced the ability of chemotherapy to prevent tumor growth (****, P < 0.0001). AXL contributes to platinum and taxane resistance in ovarian cancer, and inhibition of AXL improves chemoresponse and accumulation of chemotherapy drugs. This study supports continued investigation into AXL as a clinical target.
Collapse
Affiliation(s)
- Jeanne M Quinn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Molly M Greenwade
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Marguerite L Palisoul
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory Opara
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Katina Massad
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Lei Guo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Peinan Zhao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Hollie Beck-Noia
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn K McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - David G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine C Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri. .,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
36
|
Liu J, Zheng M, Qi Y, Wang H, Liu M, Liu Q, Lin B. Lewis(y) antigen-mediated positive feedback loop induces and promotes chemotherapeutic resistance in ovarian cancer. Int J Oncol 2018; 53:1774-1786. [PMID: 30066907 DOI: 10.3892/ijo.2018.4496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/25/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the association between Lewis(y) antigen and chemoresistance in ovarian cancer and to elucidate the underlying molecular mechanisms. Lewis(y) expression in chemoresistant ovarian cancer tissues and cells was detected by immunohistochemistry. α1,2‑fucosyltransferase (FUT1) expression in different ovarian cancer chemotherapy-resistant cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR). Genes differentially expressed in the chemoresistant and sensitive groups were screened using a gene chip followed by validation using RT-qPCR and western blot analysis. We found that Lewis(y) and FUT1 expression in ovarian cancer cells was significantly increased following the induction of drug resistance. The positive expression rate and intensity of Lewis(y) in ovarian cancer chemoresistant tissues were also significantly higher than those in the sensitive group. Compared with the non-resistant cell lines, the differentially expressed genes were mainly enriched in the terms related to the transmembrane receptor protein tyrosine kinase signaling pathway and positive regulation of cell proliferation. Interaction network analysis predicted genes participating in the regulation of apoptotic processes. The highly differential expression of Annexin A4 (ANXA4), BCL2 interacting killer (BIK), transmembrane 4 L six family member 4 (TM4SF4) and pleckstrin homology-like domain family A member 1 (PHLDA1) was validated using RT-qPCR in ovarian cancer cell lines. Finally, ANXA4 expression was increased at both the mRNA and protein level in the drug‑resistant cells, and in addition, ANXA4 contained a Lewis(y) structure. The expression of Bcl-2 and other anti-apoptotic proteins increased with the increase of Lewis(y) expression. After blocking Lewis(y) using an antibody, the expression of the involved signaling pathway and apoptosis-related proteins decreased significantly. These findings provide strong evidence that Lewis(y) is a component of the structure of the ANXA4 membrane protein. Its overexpression can abnormally activate signaling pathways and regulate the expression of a number of factors, forming a positive feedback loop to induce the chemoresistance of ovarian cancer cells, and ultimately promoting the progression of ovarian cancer.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Yue Qi
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Miao Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Qing Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
37
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
38
|
Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 2018; 38:656-670. [PMID: 30171258 PMCID: PMC6358506 DOI: 10.1038/s41388-018-0482-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Patients with EGFR-mutant non-small-cell lung cancer (NSCLC) have significantly benefited from the use of EGFR tyrosine kinase inhibitors (TKIs). However, long-term efficacy of these therapies is limited due to de novo resistance (~30%) as well as acquired resistance. Epithelial-mesenchymal transition transcription factors (EMT-TFs), have been identified as drivers of EMT-mediated resistance to EGFR TKIs, however, strategies to target EMT-TFs are lacking. As the third generation EGFR TKI, osimertinib, has now been adopted in the first-line setting, the frequency of T790M mutations will significantly decrease in the acquired resistance setting. Previously less common mechanisms of acquired resistance to first generation EGFR TKIs including EMT are now being observed at an increased frequency after osimertinib. Importantly, there are no other FDA approved targeted therapies after progression on osimertinib. Here, we investigated a novel strategy to overcome EGFR TKI resistance through targeting the EMT-TF, TWIST1, in EGFR-mutant NSCLC. We demonstrated that genetic silencing of TWIST1 or treatment with the TWIST1 inhibitor, harmine, resulted in growth inhibition and apoptosis in EGFR-mutant NSCLC. TWIST1 overexpression resulted in erlotinib and osimertinib resistance in EGFR-mutant NSCLC cells. Conversely, genetic and pharmacological inhibition of TWIST1 in EGFR TKI-resistant EGFR-mutant cells increased sensitivity to EGFR TKIs. TWIST1-mediated EGFR TKI resistance was due in part to TWIST1 suppression of transcription of the pro-apoptotic BH3-only gene, BCL2L11 (BIM), by directly binding to BCL2L11 intronic regions and promoter. As such, pan-BCL2 inhibitor treatment overcame TWIST1-mediated EGFR TKI resistance and were more effective in the setting of TWIST1 overexpression. Finally, in a mouse model of autochthonous EGFR-mutant lung cancer, Twist1 overexpression resulted in erlotinib resistance and suppression of erlotinib-induced apoptosis. These studies establish TWIST1 as a driver of resistance to EGFR TKIs and provide rationale for use of TWIST1 inhibitors or BCL2 inhibitors as means to overcome EMT-mediated resistance to EGFR TKIs.
Collapse
|
39
|
Yang-Hartwich Y, Tedja R, Roberts CM, Goodner-Bingham J, Cardenas C, Gurea M, Sumi NJ, Alvero AB, Glackin CA, Mor G. p53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Mol Cancer Res 2018; 17:153-164. [PMID: 30131448 DOI: 10.1158/1541-7786.mcr-18-0238] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process involved in cancer metastasis and chemoresistance. Twist1 is a key EMT-inducing transcription factor, which is upregulated in multiple types of cancers and has been shown to promote tumor cell invasiveness and support tumor progression. Conversely, p53 is a tumor suppressor gene that is frequently mutated in cancers. This study demonstrates the ability of wild-type (WT) p53 to promote the degradation of Twist1 protein. By forming a complex with Twist1 and the E3 ligase Pirh2, WT p53 promotes the ubiquitination and proteasomal degradation of Twist1, thus inhibiting EMT and maintaining the epithelial phenotype. The ability of p53 to induce Twist1 degradation is abrogated when p53 is mutated. Consequently, the loss of p53-induced Twist1 degradation leads to EMT and the acquisition of a more invasive cancer phenotype.Implication: These data provide new insight into the metastatic process at the molecular level and suggest a signaling pathway that can potentially be used to develop new prognostic markers and therapeutic targets to curtail cancer progression.
Collapse
Affiliation(s)
- Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Roslyn Tedja
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cai M Roberts
- Department of Stem Cell and Developmental Biology, City of Hope Beckman Research Institute, Duarte, California
| | - Jamie Goodner-Bingham
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Carlos Cardenas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Marta Gurea
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Natalia J Sumi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ayesha B Alvero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Carlotta A Glackin
- Department of Stem Cell and Developmental Biology, City of Hope Beckman Research Institute, Duarte, California
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
40
|
Mikheev AM, Mikheeva SA, Severs LJ, Funk CC, Huang L, McFaline-Figueroa JL, Schwensen J, Trapnell C, Price ND, Wong S, Rostomily RC. Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma. Mol Oncol 2018; 12:1188-1202. [PMID: 29754406 PMCID: PMC6026950 DOI: 10.1002/1878-0261.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022] Open
Abstract
TWIST1 (TW) is a bHLH transcription factor (TF) and master regulator of the epithelial-to-mesenchymal transition (EMT). In vitro, TW promotes mesenchymal change, invasion, and self-renewal in glioblastoma (GBM) cells. However, the potential therapeutic relevance of TW has not been established through loss-of-function studies in human GBM cell xenograft models. The effects of TW loss of function (gene editing and knockdown) on inhibition of tumorigenicity of U87MG and GBM4 glioma stem cells were tested in orthotopic xenograft models and conditional knockdown in established flank xenograft tumors. RNAseq and the analysis of tumors investigated putative TW-associated mechanisms. Multiple bioinformatic tools revealed significant alteration of ECM, membrane receptors, signaling transduction kinases, and cytoskeleton dynamics leading to identification of PI3K/AKT signaling. We experimentally show alteration of AKT activity and periostin (POSTN) expression in vivo and/or in vitro. For the first time, we show that effect of TW knockout inhibits AKT activity in U87MG cells in vivo independent of PTEN mutation. The clinical relevance of TW and candidate mechanisms was established by analysis of the TCGA and ENCODE databases. TW expression was associated with decreased patient survival and LASSO regression analysis identified POSTN as one of top targets of TW in human GBM. While we previously demonstrated the role of TW in promoting EMT and invasion of glioma cells, these studies provide direct experimental evidence supporting protumorigenic role of TW independent of invasion in vivo and the therapeutic relevance of targeting TW in human GBM. Further, the role of TW driving POSTN expression and AKT signaling suggests actionable targets, which could be leveraged to mitigate the oncogenic effects of TW in GBM.
Collapse
Affiliation(s)
- Andrei M Mikheev
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Svetlana A Mikheeva
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Liza J Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | - Lei Huang
- Department of Systems Medicine& Bioengineering, Houston Methodist Hospital and Research Institute, Weil Cornell Medical College, Houston, TX, USA
| | | | - Jeanette Schwensen
- Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Stephen Wong
- Department of Systems Medicine& Bioengineering, Houston Methodist Hospital and Research Institute, Weil Cornell Medical College, Houston, TX, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Wang M, Zhang L, Liu Z, Zhou J, Pan Q, Fan J, Zang R, Wang L. AGO1 may influence the prognosis of hepatocellular carcinoma through TGF-β pathway. Cell Death Dis 2018; 9:324. [PMID: 29487329 PMCID: PMC5832432 DOI: 10.1038/s41419-018-0338-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
AGO1 is a major component of RNA-induced silencing complexes and plays a crucial role in solid tumors. The aim of our study was to investigate AGO1 functions in hepatocellular carcinoma (HCC). Using small interfering RNA, AGO1 functions were investigated in HCCLM3 cell lines. Cell proliferation, immigration, and invasion significantly decreased after AGO1 depletion using MTT, wound-healing, and transwell assay. The associated proteins in the epithelial–mesenchymal transition (EMT) and the activation of its signal pathways were measured using western blot. After AGO1 depleted, increased E-cadherin and decreased N-cadherin, Vimentin, Snail, and Zeb1 were founded. In its upstream pathway, the phosphorylation of ERK1/2(Thr202/Tyr204), Smad2(S425/250/255), and Smad4 were significantly inhibited. Meanwhile, inhibitor of ERK1/2(LY3214996) significantly inhibited the growth and migration of the AGO1 cells. The nuclear importing of Smad4 was blocked and furthermore, the transcription of Snail was also influenced for the decrease of combination between Smad4 and the promotor region of Snail. After Snail was overexpressed, the invasion of HCCLM3 cells was significantly rescued. Immunohistochemistry in tissue microarrays consisting of 200 HCC patients was used to analyze the associations between AGO1 expression and prognosis. Intratumoral AGO1 expression was an independent risk factor for overall survival (P = 0.008) and recurrence-free survival (P < 0.001). In conclusion, AGO1 may promote HCC metastasis through TGF-β pathway, and AGO1 may be a reliable prognostic factor in HCC.
Collapse
Affiliation(s)
- Miao Wang
- Department of Liver Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, China
| | - Lyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyang Liu
- Department of Liver Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, China
| | - Jiamin Zhou
- Department of Liver Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, China
| | - Qi Pan
- Department of Liver Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Rongyu Zang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Lu Wang
- Department of Liver Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, China.
| |
Collapse
|
42
|
Luo J, Yao JF, Deng XF, Zheng XD, Jia M, Wang YQ, Huang Y, Zhu JH. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:23. [PMID: 29426357 PMCID: PMC5807756 DOI: 10.1186/s13046-018-0694-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Background 14,15-epoxyeicosatrienoic acid (14,15-EET) is an important lipid signaling molecule involved in the regulation of tumor metastasis, however, the role and molecular mechanisms of 14,15-EET activity in breast cancer cell epithelial-mesenchymal transition (EMT) and drug resistance remain enigmatic. Methods The 14, 15-EET level in serum and in tumor or non-cancerous tissue from breast cancer patients was measured by ELISA. qRT-PCR and western blot analyses were used to examine expression of integrin αvβ3. The role of 14, 15-EET in breast cancer cell adhesion, invasion was explored by adhesion and Transwell assays. The role of 14, 15-EET in breast cancer cell cisplatin resistance in vitro was determined by MTT assay. Western blot was conducted to detect the protein expressions of EMT-related markers and FAK/PI3K/AKT signaling. Xenograft models in nude mice were established to explore the roles of 14, 15-EET in breast cancer cells EMT and cisplatin resistance in vivo. Results In the present study, we show that serum level of 14, 15-EET increases in breast cancer patients and 14, 15-EET level of tumor tissue is higher than that of non-cancerous tissue. Moreover, 14, 15-EET increases integrin αvβ3 expression, leading to FAK activation. 14, 15-EET induces breast cancer cell EMT via integrin αvβ3 and FAK/PI3K/AKT cascade activation in vitro. Furthermore, we find that 14, 15-EET induces breast cancer cells EMT and cisplatin resistance in vivo, αvβ3 integrin and the resulting FAK/PI3K/AKT signaling pathway are responsible for 14, 15-EET induced-breast cancer cells cisplatin resistance. Conclusions Our findings suggest that inhibition of 14, 15-EET or inactivation of integrin αvβ3/FAK/PI3K/AKT pathway could serve as a novel approach to reverse EMT and cisplatin resistance in breast cancer cells.
Collapse
Affiliation(s)
- Jing Luo
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, People's Republic of China
| | - Jian-Feng Yao
- Quanzhou Maternal and Child Health Care Hospital, Quanzhou, People's Republic of China
| | - Xiao-Fei Deng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, People's Republic of China
| | - Xiao-Dan Zheng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, People's Republic of China
| | - Min Jia
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), 215 Zhongshan Dadao, Wuhan, Hubei, 430022, People's Republic of China
| | - Yue-Qin Wang
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), 215 Zhongshan Dadao, Wuhan, Hubei, 430022, People's Republic of China
| | - Yan Huang
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), 215 Zhongshan Dadao, Wuhan, Hubei, 430022, People's Republic of China
| | - Jian-Hua Zhu
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), 215 Zhongshan Dadao, Wuhan, Hubei, 430022, People's Republic of China.
| |
Collapse
|
43
|
Mikheev AM, Mikheeva SA, Tokita M, Severs LJ, Rostomily RC. Twist1 mediated regulation of glioma tumorigenicity is dependent on mode of mouse neural progenitor transformation. Oncotarget 2017; 8:107716-107729. [PMID: 29296200 PMCID: PMC5746102 DOI: 10.18632/oncotarget.22593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Twist1 is a master regulator of epithelial mesenchymal transition and carcinoma metastasis. Twist1 has also been associated with increased malignancy of human glioma. However, the impact of inhibiting Twist1 on tumorigenicity has not been characterized in glioma models in the context of different oncogenic transformation paradigms. Here we used an orthotopic mouse glioma model of transplanted transformed neural progenitor cells (NPCs) to demonstrate the effects of Twist1 loss of function on tumorigenicity. Decreased tumorigenicity was observed after shRNA mediated Twist knockdown in HPV E6/7 Ha-RasV12 transformed NPCs and Cre mediated Twist1 deletion in Twist1 fl/fl NPCs transformed by p53 knockdown and Ha-RasV12 expression. By contrast, Twist1 deletion had no effect on tumorigenicity of NPCs transformed by co-expression of Akt and Ha-RasV12. We demonstrated a dramatic off-target effect of Twist1 deletion with constitutive Cre expression, which was completely reversed when Twist1 deletion was achieved by transient administration of recombinant Cre protein. Together these findings demonstrate that the function of Twist1 in these models is highly dependent on specific oncogenic contexts of NPC transformation. Therefore, the driver mutational context in which Twist1 functions may need to be taken into account when evaluating mechanisms of action and developing therapeutic approaches to target Twist1 in human gliomas.
Collapse
Affiliation(s)
- Andrei M. Mikheev
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Svetlana A. Mikheeva
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Mari Tokita
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Liza J. Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Robert C. Rostomily
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
44
|
Wei C, Zhang X, He S, Liu B, Han H, Sun X. MicroRNA-219-5p inhibits the proliferation, migration, and invasion of epithelial ovarian cancer cells by targeting the Twist/Wnt/β-catenin signaling pathway. Gene 2017; 637:25-32. [DOI: 10.1016/j.gene.2017.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022]
|
45
|
Abstract
TMED2 is involved in morphogenesis of the mouse embryo and placenta. We found that expression of TMED2 was higher in epithelial ovarian cancer tissues than normal ovarian tissues. Silencing TMED2 decreased cell proliferation, migration, and invasion. Ectopic expression of TMED2 increased cell proliferation, migration and invasion. Silencing TMED2 inhibited ovarian cancer growth in mice. Silencing TMED2 inhibited IGF2/IGF1R/PI3K/Akt pathway. In agreement, ectopically expressed TMED2 activated IGF2/IGF1R/PI3K/Akt pathway. Mechanistic study revealed that TMED2 directly binds to AKT2, thereby facilitating its phosphorylation. We also found that TMED2 increased IGF1R expression by competing for miR-30a. Thus, TMED2 is oncogenic and a potential target for epithelial ovarian cancer therapy.
Collapse
|
46
|
Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol 2017; 11:1430-1447. [PMID: 28675785 PMCID: PMC5623821 DOI: 10.1002/1878-0261.12109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
AXL receptor tyrosine kinase (RTK) inhibition presents a promising therapeutic strategy for aggressive tumor subtypes, as AXL signaling is upregulated in many cancers resistant to first-line treatments. Furthermore, the AXL ligand growth arrest-specific gene 6 (GAS6) has recently been linked to cancer drug resistance. Here, we established that challenging conditions, such as serum deprivation, divide AXL-overexpressing tumor cell lines into non-self-sustaining and self-sustaining subtypes in 3D spheroid culture. Self-sustaining cells are characterized by excessive GAS6 secretion and TAM-PDK-RSK-mTOR pathway activation. In 3D spheroid culture, the activation of the TAM-PDK-RSK-mTOR pathway proves crucial following treatment with AXL/MET inhibitor BMS777607, when the self-sustaining tumor cells react with TAM-RSK hyperactivation and enhanced SRC-AKT-mTOR signaling. Thus, bidirectional activated mTOR leads to enhanced proliferation and counteracts the drug effect. mTOR activation is accompanied by an enhanced AXL expression and hyperphosphorylation following 24 h of treatment with BMS777607. Therefore, we elucidate a double role of AXL that can be assigned to RSK-mTOR as well as SRC-AKT-mTOR pathway activation, specifically through AXL Y779 phosphorylation. This phosphosite fuels the resistance mechanism in 3D spheroids, alongside further SRC-dependent EGFR Y1173 and/or MET Y1349 phosphorylation which is defined by the cell-specific addiction. In conclusion, self-sustenance in cancer cells is based on a signaling synergy, individually balanced between GAS6 TAM-dependent PDK-RSK-mTOR survival pathway and the AXLY779/EGFR/MET-driven SRC-mTOR pathway.
Collapse
Affiliation(s)
- Christine Baumann
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Axel Ullrich
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Robert Torka
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany,Institute of Physiological ChemistryUniversity Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
47
|
Wu YH, Huang YF, Chang TH, Chou CY. Activation of TWIST1 by COL11A1 promotes chemoresistance and inhibits apoptosis in ovarian cancer cells by modulating NF-κB-mediated IKKβ expression. Int J Cancer 2017; 141:2305-2317. [PMID: 28815582 DOI: 10.1002/ijc.30932] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
We have shown that collagen type XI alpha 1 (COL11A1) promotes ovarian cancer progression and is associated with chemoresistance to cisplatin and paclitaxel in ovarian cancer cells. Here, we demonstrate how COL11A1 regulates twist family basic helix-loop-helix transcription factor 1-related protein 1 (TWIST1) to induce chemoresistance and inhibit apoptosis in ovarian cancer cells. Small interfering RNA-mediated reduction in COL11A1 protein levels increased the chemosensitivity to cisplatin and paclitaxel via downregulated TWIST1 expression. TWIST1 messenger RNA levels positively associated with COL11A1 messenger RNA expression levels in ovarian tumors. High TWIST1 expression levels were significantly associated with a progression-free interval of ≤ 6 months (p = 0.001) and death (p = 0.040). In addition, patients with high TWIST1 mRNA levels had significantly shorter 5-year overall-survival (p = 0.004) and progression-free survival (p = 0.009) rates, compared to patients with low TWIST1 levels. Increased TWIST1 expression caused by COL11A1-induced transcription of the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) gene occurred via increased SP1 phosphorylation and binding to the IKKβ promoter. COL11A1-mediated nuclear factor-kappa B activation, via transcriptional activation of IKKβ, promoted TWIST1, Mcl-1, and GAS6 expression, which were associated with chemoresistance and anti-apoptosis in ovarian cancer cells. We suggest that IKKβ and TWIST1 can potentially be targeted in patients with COL11A1-positive ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
48
|
Qin X, Sun L, Wang J. Restoration of microRNA-708 sensitizes ovarian cancer cells to cisplatin via IGF2BP1/Akt pathway. Cell Biol Int 2017; 41:1110-1118. [PMID: 28685895 DOI: 10.1002/cbin.10819] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
Abstract
A previous study has shown that microRNA-708 (miR-708) functions as a metastasis suppressor in ovarian cancer. In this study, we aimed to explore its implication in regulating cisplatin sensitivity in ovarian cancer cells. To this end, ovarian cancer cells were transfected with miR-708-expressing plasmids or vector before treatment with different concentrations of cisplatin for 48 h. The 50% inhibitory concentration (IC50 ) value was calculated. Apoptosis was analyzed by measuring caspase-3 activity. The target gene mediating the function of miR-708 was identified. Ectopic expression of miR-708 sensitized SKOV3 and A2780 cells to cisplatin, decreasing the IC50 value by two- to threefold. miR-708 overexpression significantly augmented cisplatin-induced apoptosis in ovarian cancer cells, which was coupled with increased caspase-3 activity by two- to fourfold. Similarly, overexpression of miR-708 increased the sensitivity of cisplatin-resistant SKOV3/DDP and A2780/DDP cells to cisplatin-induced toxicity, reducing the IC50 by three- and fivefold, respectively. Delivery of miR-708 enhanced cisplatin-induced elevation in caspase-3 activity in both cisplatin-resistant and parental ovarian cancer cells. Mechanistically, miR-708 downregulated the expression of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and suppressed Akt phosphorylation. Silencing of IGF2BP1 markedly blocked the phosphorylation of Akt. Overexpression of IGF2BP1 restored cisplatin resistance and Akt phosphorylation in miR-708-overexpressing ovarian cancer cells. Collectively, miR-708 increases the susceptibility of ovarian cancer cells to cisplatin by targeting IGF2BP1 and inhibiting Akt signaling. Delivery of miR-708 may represent a promising strategy for improving cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xuying Qin
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Linlin Sun
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, People's Republic of China
| |
Collapse
|
49
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
50
|
Li X, Chen M, Lei X, Huang M, Ye W, Zhang R, Zhang D. Luteolin inhibits angiogenesis by blocking Gas6/Axl signaling pathway. Int J Oncol 2017. [DOI: 10.3892/ijo.2017.4041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|