1
|
Valvi D, Christiani DC, Coull B, Højlund K, Nielsen F, Audouze K, Su L, Weihe P, Grandjean P. Gene-environment interactions in the associations of PFAS exposure with insulin sensitivity and beta-cell function in a Faroese cohort followed from birth to adulthood. ENVIRONMENTAL RESEARCH 2023; 226:115600. [PMID: 36868448 PMCID: PMC10101920 DOI: 10.1016/j.envres.2023.115600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) has been associated with changes in insulin sensitivity and pancreatic beta-cell function in humans. Genetic predisposition to diabetes may modify these associations; however, this hypothesis has not been yet studied. OBJECTIVES To evaluate genetic heterogeneity as a modifier in the PFAS association with insulin sensitivity and pancreatic beta-cell function, using a targeted gene-environment (GxE) approach. METHODS We studied 85 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes, in 665 Faroese adults born in 1986-1987. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were measured in cord whole blood at birth and in participants' serum from age 28 years. We calculated the Matsuda-insulin sensitivity index (ISI) and the insulinogenic index (IGI) based on a 2 h-oral glucose tolerance test performed at age 28. Effect modification was evaluated in linear regression models adjusted for cross-product terms (PFAS*SNP) and important covariates. RESULTS Prenatal and adult PFOS exposures were significantly associated with decreased insulin sensitivity and increased beta-cell function. PFOA associations were in the same direction but attenuated compared to PFOS. A total of 58 SNPs were associated with at least one PFAS exposure variable and/or Matsuda-ISI or IGI in the Faroese population and were subsequently tested as modifiers in the PFAS-clinical outcome associations. Eighteen SNPs showed interaction p-values (PGxE) < 0.05 in at least one PFAS-clinical outcome association, five of which passed False Discovery Rate (FDR) correction (PGxE-FDR<0.20). SNPs for which we found stronger evidence for GxE interactions included ABCA1 rs3890182, FTO rs9939609, FTO rs3751812, PPARG rs170036314 and SLC12A3 rs2289116 and were more clearly shown to modify the PFAS associations with insulin sensitivity, rather than with beta-cell function. DISCUSSION Findings from this study suggest that PFAS-associated changes in insulin sensitivity could vary between individuals as a result of genetic predisposition and warrant replication in independent larger populations.
Collapse
Affiliation(s)
- Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Flemming Nielsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands; Centre of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Xu S, Yang X, Qian Y, Luo Q, Song Y, Xiao Q. Analysis of serum levels of organochlorine pesticides and related factors in Parkinson's disease. Neurotoxicology 2021; 88:216-223. [PMID: 34864106 DOI: 10.1016/j.neuro.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/31/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND There is evidence that environmental factors contribute to the onset and progression of Parkinson's disease (PD). Pesticides are a class of environmental toxins that are linked to increased risk of developing PD. However, few studies have investigated the association between specific pesticides and PD, especially in China, which was one of the first countries to adopt the use of pesticides. METHODS In this study, serum levels of 19 pesticides were measured in 90 patients with PD and 90 healthy spouse controls. We also analyzed the interaction between specific pesticides and PD. In addition, the association between pesticides and clinical features of PD was also investigated. Finally, we investigated the underlying mechanism of the association between pesticides and PD. RESULTS Serum levels of organochlorine pesticides, which included α-hexachlorocyclohexane (HCH), β-HCH, γ-HCH, δ-HCH, propanil, heptachlor, dieldrin, hexachlorobenzene, p,p'-dichlorodiphenyltrichloroethane and o,p'-dichloro-diphenyl-trichloroethane were higher in PD patients than controls. Moreover, α-HCH and propanil levels were associated with PD. Serum levels of dieldrin were associated with Hamilton Depression Scale and Montreal Cognitive Assessment scores in PD patients. In SH-SY5Y cells, α-HCH and propanil increased level of reactive oxygen species and decreased mitochondrial membrane potential. Furthermore, propanil, but not α-HCH, induced the aggregation of α-synuclein. CONCLUSIONS This study revealed that elevated serum levels of α-HCH and propanil were associated with PD. Serum levels of dieldrin were associated with depression and cognitive function in PD patients. Moreover, propanil, but not α-HCH, induced the aggregation of α-synuclein. Further research is needed to fully elucidate the effects of pesticides on PD.
Collapse
Affiliation(s)
- Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qian Luo
- Core Facility of School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanyan Song
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
4
|
Li S, Shao W, Wang C, Wang L, Xia R, Yao S, Du M, Ji X, Chu H, Zhang Z, Wang M, Wang SL. Identification of common genetic variants associated with serum concentrations of p, p'-DDE in non-occupational populations in eastern China. ENVIRONMENT INTERNATIONAL 2021; 152:106507. [PMID: 33756427 DOI: 10.1016/j.envint.2021.106507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Dichlorodiphenyldichloroethylene (DDE) is the major and most stable toxic metabolite of dichlorodiphenyltrichloroethane (DDT), a well-known organochlorine pesticide banned worldwide in the 1980s. However, it remains easy to detect in humans, and internal levels vary widely among individuals. In the present study, a genome-wide association study (GWAS) (511 subjects) and two replications (812 and 1030 subjects) were performed in non-occupational populations in eastern China. An estimated dietary intake (EDI) of p, p'-DDT and p, p'-DDE was calculated by a food frequency questionnaire (FFQ) and the determination of 195 food and 85 drinking water samples. In addition, functional verifications of susceptible loci were performed by dual-luciferase reporter, immunoblotting and metabolic activity assays in vitro. p, p'-DDT and p, p'-DDE were measured using gas chromatography-tandem mass spectrometry (GC-MS/MS). A common loci rs3181842 (high linkage equilibrium with rs2279345) in CYP2B6 at 19p13.2 were found to be strongly associated with low serum levels of p, p'-DDE in this population in GWAS and were verified by two replications and combined analysis of 2353 subjects (P = 1.00 × 10-22). In addition, p, p'-DDE levels were significantly lower in subjects with the rs3181842 C allele than in those carrying the normal genotype, even in individuals with similar EDIs of p, p'-DDT. Furthermore, the rs3181842 C allele functionally led to low CYP2B6 expression and activity, resulting in a low metabolic capacity for the formation of p, p'-DDE from p, p'-DDT. The study highlighted that CYP2B6 variants were more relevant than environmental exposure to internal p, p'-DDE exposure, which is important information for DDT risk assessments.
Collapse
Affiliation(s)
- Shushu Li
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, 213022, PR China
| | - Wei Shao
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing 211166, PR China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shen Yao
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Mulong Du
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xiaoming Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Haiyan Chu
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhengdong Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Meilin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
5
|
He B, Ni Y, Jin Y, Fu Z. Pesticides-induced energy metabolic disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139033. [PMID: 32388131 DOI: 10.1016/j.scitotenv.2020.139033] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders have become a heavy burden on society. Recently, through excessive use, pesticides have been found to be present in environmental matrixes and sometimes even accumulate in humans or other mammals through the food chain, which then causes health concerns. Evidence has indicated that pesticides have the potential to induce energy metabolic disorders by disturbing the physical process of energy absorption in the intestine and energy storage in the liver, adipose tissue and skeletal muscle in humans or other mammals. In addition, the homeostasis of energy regulation by the pancreas and immune cells is also affected by pesticides. These pesticide-induced disruptions ultimately cause abnormal levels of blood glucose and lipids, which in turn induce the development of related metabolic diseases, including overweight, underweight, insulin resistance and even diabetes. In this review, the results of previous studies focused on the induction of metabolic disorders by pesticides are summarized. We hope that this work will facilitate the discovery of a potential strategy for the treatment of diseases caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
6
|
Tang M, Xu C, Chen K, Yan Q, Mao W, Liu W, Ritz B. Hexachlorocyclohexane exposure alters the microbiome of colostrum in Chinese breastfeeding mothers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112900. [PMID: 31394347 DOI: 10.1016/j.envpol.2019.07.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Breast milk, especially colostrum, is not just a source of nutrients and immune factors for the newborn, but also accumulates environmental persistent pollutants and its diverse microbes affect the early colonization of the newborn's gut. Little is known about associations between environmental pollutants and the microbial composition of human colostrum. We assessed the influence of hexachlorocyclohexane (HCH), a persistent organic pollutant (POP), in colostrums on the microbial composition of human colostrum samples. HCH concentrations in 89 colostrum samples collected from a population living on the easternmost island of China were measured via gas chromatography equipped with mass spectrometer (GC-MS), HCH exposure risks for infants via dietary intake of breast milk were assessed, and for 29 colostrum samples the microbiota were profiled using 16S rRNA gene pyrosequencing to assess the association with HCH exposure levels. Our study confirmed high colostrum exposure levels of total HCHs (12.19 ± 13.68 μg L-1) in this Chinese population. We predominantly identified Proteobacteria (67.6%) and Firmicutes (25.1%) in colostrum and microbial diversity at the genus level differed between samples with different HCH levels; e.g., Pseudomonas which contains several HCH degrading strains was found in significantly higher abundance in γ-HCH rich samples. Also, microbes that were statistically significantly associated with HCH levels were also highly correlated with each other (false discovery rate (FDR)<0.01) and clustered in network analysis. Microbial diversity is associated with HCH levels in human colostrum and these associations might be attributable to their HCH degrading ability. These finding provide first insights into the role that environmental persistent pollutants may play in the microbial composition of human colostrum and the colonization of the infant gut.
Collapse
Affiliation(s)
- Mengling Tang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China; Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Chenye Xu
- Ministry of Education Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Weihua Mao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
7
|
Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, Černík M, Dionysiou DD. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. WATER RESEARCH 2019; 162:302-319. [PMID: 31288141 DOI: 10.1016/j.watres.2019.06.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Lindane (γ-hexachlorocyclohexane) and its isomers (HCH) are some of the most common and most easily detected organochlorine pesticides in the environment. The widespread distribution of lindane is due to its use as an insecticide, accompanied by its persistence and bioaccumulation, whereas HCH were disposed of as waste in unmanaged landfills. Unfortunately, certain HCH (especially the most reactive ones: γ- and α-HCH) are harmful to the central nervous system and to reproductive and endocrine systems, therefore development of suitable remediation methods is needed to remove them from contaminated soil and water. This paper provides a short history of the use of lindane and a description of the properties of HCH, as well as their determination methods. The main focus of the paper, however, is a review of oxidative and reductive treatment methods. Although these methods of HCH remediation are popular, there are no review papers summarising their principles, history, advantages and disadvantages. Furthermore, recent advances in the chemical treatment of HCH are discussed and risks concerning these processes are given.
Collapse
Affiliation(s)
- Stanisław Wacławek
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Daniele Silvestri
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Pavel Hrabák
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Vinod V T Padil
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Rafael Torres-Mendieta
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Maria Wacławek
- Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-032, Opole, Poland
| | - Miroslav Černík
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|