1
|
Attrah M, Schärer MR, Esposito M, Gionchetta G, Bürgmann H, Lens PNL, Fenner K, van de Vossenberg J, Robinson SL. Disentangling abiotic and biotic effects of treated wastewater on stream biofilm resistomes enables the discovery of a new planctomycete beta-lactamase. MICROBIOME 2024; 12:164. [PMID: 39242535 PMCID: PMC11380404 DOI: 10.1186/s40168-024-01879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs. RESULTS To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs. CONCLUSIONS This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.
Collapse
Affiliation(s)
- Mustafa Attrah
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Milo R Schärer
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Mauro Esposito
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Giulia Gionchetta
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Piet N L Lens
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| | - Jack van de Vossenberg
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
| |
Collapse
|
2
|
Santos JC, Handa S, Fernandes LGV, Bleicher L, Gandin CA, de Oliveira-Neto M, Ghosh P, Nascimento ALTO. Structural and biochemical characterization of Leptospira interrogans Lsa45 reveals a penicillin-binding protein with esterase activity. Process Biochem 2023; 125:141-153. [PMID: 36643388 PMCID: PMC9836055 DOI: 10.1016/j.procbio.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/β subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for β-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin β-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.
Collapse
Affiliation(s)
- Jademilson C. Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
- Instituto Federal da Bahia – IFBA - Rodovia BR-367, R. José Fontana, 1, 45810-000, Porto Seguro - BA, Brazil
| | - Sumit Handa
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - César A. Gandin
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Mario de Oliveira-Neto
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Ana Lucia T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Fisher JF, Mobashery S. β-Lactams from the Ocean. Mar Drugs 2023; 21:86. [PMID: 36827127 PMCID: PMC9963991 DOI: 10.3390/md21020086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The title of this essay is as much a question as it is a statement. The discovery of the β-lactam antibiotics-including penicillins, cephalosporins, and carbapenems-as largely (if not exclusively) secondary metabolites of terrestrial fungi and bacteria, transformed modern medicine. The antibiotic β-lactams inactivate essential enzymes of bacterial cell-wall biosynthesis. Moreover, the ability of the β-lactams to function as enzyme inhibitors is of such great medical value, that inhibitors of the enzymes which degrade hydrolytically the β-lactams, the β-lactamases, have equal value. Given this privileged status for the β-lactam ring, it is therefore a disappointment that the exemplification of this ring in marine secondary metabolites is sparse. It may be that biologically active marine β-lactams are there, and simply have yet to be encountered. In this report, we posit a second explanation: that the value of the β-lactam to secure an ecological advantage in the marine environment might be compromised by its close structural similarity to the β-lactones of quorum sensing. The steric and reactivity similarities between the β-lactams and the β-lactones represent an outside-of-the-box opportunity for correlating new structures and new enzyme targets for the discovery of compelling biological activities.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry & Biochemistry, 354 McCourtney Hall, University of Note Dame, Notre Dame, IN 46656-5670, USA
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, 354 McCourtney Hall, University of Note Dame, Notre Dame, IN 46656-5670, USA
| |
Collapse
|
4
|
Daitch AK, Orsburn BC, Chen Z, Alvarez L, Eberhard CD, Sundararajan K, Zeinert R, Kreitler DF, Jakoncic J, Chien P, Cava F, Gabelli SB, Goley ED. EstG is a novel esterase required for cell envelope integrity in Caulobacter. Curr Biol 2023; 33:228-240.e7. [PMID: 36516849 PMCID: PMC9877181 DOI: 10.1016/j.cub.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus. Despite homology to transpeptidase family cell wall enzymes and an ability to protect against cell-wall-targeting antibiotics, EstG does not demonstrate biochemical activity toward cell wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs), respectively. The crystal structure of EstG revealed similarities to esterases and transesterases, and we demonstrated esterase activity of EstG in vitro. Using biochemical fractionation, we identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG described in Caulobacter and establishes a novel class of OPGs, the regulation and modification of which are important for stress survival and adaptation to fluctuating environments. Our data indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in Caulobacter. Ultimately, we propose that EstG is a novel enzyme that instead of acting on the cell wall, acts on cyclic OPGs to provide resistance to a variety of cellular stresses.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
PTCL1-EstA from Paenarthrobacter aurescens TC1, a Candidate for Industrial Application Belonging to the VIII Esterase Family. Catalysts 2022. [DOI: 10.3390/catal12050473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The esterase PTCL1-EstA from Paenarthrobacter aurescens TC1 was expressed in Escherichia coli and characterized. An 1152 bp open reading frame encoding a 383 amino acid polypeptide was successfully expressed, the C-terminally His6-tagged PTCL1-EstA enzyme was purified, and the predicted molecular mass of the purified PTCL1-EstA was 40.6 kDa. The EstA family serine hydrolase PTCL1-EstA belongs to the esterase family VIII, contains esterase-labeled S-C-S-K sequences, and homologous class C beta-lactamase sequences. PTCL1-EstA favored p-nitrophenyl esters with C2-C6 chain lengths, but it was also able to hydrolyze long-chain p-nitrophenyl esters. Homology modelling and substrate docking predicted that Ser59 was an active site residue in PTCL1-EstA, as well as Tyr148, Ala325, and Asp323, which are critical in catalyzing the enzymatic reaction of p-nitrophenyl esters. PTCL1-EstA reached the highest specific activity against p-nitrophenyl butyrate (C4) at pH 7.0 and 45 °C but revealed better thermal stability at 40 °C and maintained high relative enzymatic activity and stability at pH 5.0–9.0. Fermentation medium optimization for PTCL1-EstA increased the enzyme activity to 510.76 U/mL, tapping the potential of PTCL1-EstA for industrial production.
Collapse
|
6
|
Le LTHL, Yoo W, Wang Y, Jeon S, Kim KK, Kim HW, Kim TD. Dual functional roles of a novel bifunctional β-lactamase/esterase from Lactococcus garvieae. Int J Biol Macromol 2022; 206:203-212. [PMID: 35183603 DOI: 10.1016/j.ijbiomac.2022.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/05/2022]
Abstract
A novel bifunctional β-lactamase/esterase (LgLacI), which is capable of hydrolyzing β-lactam-containing antibiotics including ampicillin, oxacillin, and cefotaxime as well as synthesizing biodiesels, was cloned from Lactococcus garvieae. Unlike most bacterial esterases/lipases that have G-x-S-x-G motif, LgLacI, which contains S-x-x-K catalytic motif, has sequence similarities to bacterial family VIII esterase as well as β-lactamases. The catalytic properties of LgLacI were explored using a wide range of biochemical methods including spectroscopy, assays, structural modeling, mutagenesis, and chromatography. We confirmed the bifunctional property of LgLacI hydrolyzing both esters and β-lactam antibiotics. This study provides novel perspectives into a bifunctional enzyme from L. garvieae, which can degrade β-lactam antibiotics with high esterase activity.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Precision Medicine, Sungkyunkwan University, College of Medicine, Suwon 2066, Republic of Korea
| | - Ying Wang
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sangeun Jeon
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University, College of Medicine, Suwon 2066, Republic of Korea
| | - Han-Woo Kim
- Unit of Practical Applications, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
7
|
Fröhlich C, Chen JZ, Gholipour S, Erdogan AN, Tokuriki N. Evolution of β-lactamases and enzyme promiscuity. Protein Eng Des Sel 2021; 34:6294778. [PMID: 34100551 DOI: 10.1093/protein/gzab013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 11/14/2022] Open
Abstract
β-Lactamases represent one of the most prevalent resistance mechanisms against β-lactam antibiotics. Beyond their clinical importance, they have also become key models in enzymology and evolutionary biochemistry. A global understanding of their evolution and sequence and functional diversity can therefore aid a wide set of different disciplines. Interestingly, β-lactamases have evolved multiple times from distinct evolutionary origins, with ancestries that reach back billions of years. It is therefore no surprise that these enzymes exhibit diverse structural features and enzymatic mechanisms. In this review, we provide a bird's eye view on the evolution of β-lactamases within the two enzyme superfamilies-i.e. the penicillin-binding protein-like and metallo-β-lactamase superfamily-through phylogenetics. We further discuss potential evolutionary origins of each β-lactamase class by highlighting signs of evolutionary connections in protein functions between β-lactamases and other enzymes, especially cases of enzyme promiscuity.
Collapse
Affiliation(s)
- Christopher Fröhlich
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - John Z Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sevan Gholipour
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ayse N Erdogan
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
8
|
Park JM, Won SM, Kang CH, Park S, Yoon JH. Characterization of a novel carboxylesterase belonging to family VIII hydrolyzing β-lactam antibiotics from a compost metagenomic library. Int J Biol Macromol 2020; 164:4650-4661. [PMID: 32946943 DOI: 10.1016/j.ijbiomac.2020.09.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022]
Abstract
A novel esterase, EstCS3, was isolated from a metagenomic library constructed from a compost. The EstCS3, which consists of 409 amino acids with an anticipated molecular mass of 44 kDa, showed high amino acid sequence identities to predicted esterases, serine hydrolases and β-lactamases from uncultured and cultured bacteria. Phylogenetic analysis suggested that EstCS3 belongs to family VIII of lipolytic enzymes. EstCS3 had catalytic Ser78 residue in the consensus tetrapeptide motif SXXK, which is characteristic of family VIII esterases. Two conserved YXX and W(H or K)XG motifs in an oxyanion hole of family VIII esterases were also present in EstCS3. EstCS3 demonstrated the highest activity toward p-nitrophenyl butyrate (C4) and was stable up to 70 °C with optimal activity at 55 °C. EstCS3 had optimal activity at pH 8 and maintained its stability within pH range of 7-10. EstCS3 had over 70% activity in the presence of 20% (v/v) methanol and DMSO and hydrolyzed sterically hindered tertiary alcohol esters of t-butyl acetate and linalyl acetate. EstCS3 hydrolyzed ampicillin, cephalothin and cefepime. The properties of EstCS3, including moderate thermostability, stability against organic solvents and activity toward esters of tertiary alcohols, indicated that it has the potential to be used in industrial applications.
Collapse
Affiliation(s)
- Ji-Min Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sung-Min Won
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Chul-Hyung Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea; Green Chemistry and Environmental Biotechnology program, School of Science, University of Science and Technology (UST), Yuseong, Daejeon 305-333, Republic of Korea
| | - Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea.
| |
Collapse
|
9
|
Molecular Characterization of a Novel Family VIII Esterase with β-Lactamase Activity ( PsEstA) from Paenibacillus sp. Biomolecules 2019; 9:biom9120786. [PMID: 31779208 PMCID: PMC6995599 DOI: 10.3390/biom9120786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 11/28/2022] Open
Abstract
Molecular information about family VIII esterases, which have similarities with class C β-lactamases and penicillin-binding proteins, remains largely unknown. In this study, a novel family VIII esterase with β-lactamase activity (PsEstA) from Paenibacillus sp. was characterized using several biochemical and biophysical methods. PsEstA was effective on a broad range of substrates including tertiary butyl acetate, glyceryl tributyrate, glucose pentaacetate, olive oil, and p-nitrophenyl esters. Additionally, PsEstA hydrolyzed nitrocefin, cefotaxime, and 7-aminocephalosporanic acid. Interestingly, two forms of immobilized PsEstA (CLEAs-PsEstA and mCLEAs-PsEstA) showed high recycling property and enhanced stability, but hybrid nanoflowers (hNFs) of PsEstA require improvement. This study provides a molecular understanding of substrate specificities, catalytic regulation, and immobilization of PsEstA, which can be efficiently used in biotechnological applications.
Collapse
|
10
|
Srivastava SK, King KS, AbuSara NF, Malayny CJ, Piercey BM, Wilson JA, Tahlan K. In vivo functional analysis of a class A β-lactamase-related protein essential for clavulanic acid biosynthesis in Streptomyces clavuligerus. PLoS One 2019; 14:e0215960. [PMID: 31013337 PMCID: PMC6478378 DOI: 10.1371/journal.pone.0215960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
In Streptomyces clavuligerus, the gene cluster involved in the biosynthesis of the clinically used β-lactamase inhibitor clavulanic acid contains a gene (orf12 or cpe) encoding a protein with a C-terminal class A β-lactamase-like domain. The cpe gene is essential for clavulanic acid production, and the recent crystal structure of its product (Cpe) was shown to also contain an N-terminal isomerase/cyclase-like domain, but the function of the protein remains unknown. In the current study, we show that Cpe is a cytoplasmic protein and that both its N- and C-terminal domains are required for in vivo clavulanic acid production in S. clavuligerus. Our results along with those from previous studies allude towards a biosynthetic role for Cpe during the later stages of clavulanic acid production in S. clavuligerus. Amino acids from Cpe essential for biosynthesis were also identified, including one (Lys89) from the recently described N-terminal isomerase-like domain of unknown function. Homologues of Cpe from other clavulanic acid-producing Streptomyces spp. were shown to be functionally equivalent to the S. clavuligerus protein, whereas those from non-producers containing clavulanic acid-like gene clusters were not. The suggested in vivo involvement of an isomerase-like domain recruited by an ancestral β-lactamase related protein, supports a previous hypothesis that Cpe could be involved in a step requiring the opening and modification of the clavulanic acid core during its biosynthesis from 5S precursors.
Collapse
Affiliation(s)
| | - Kelcey S. King
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Nader F. AbuSara
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chelsea J. Malayny
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brandon M. Piercey
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Jaime A. Wilson
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
11
|
Characterization and mutation anaylsis of a cold-active bacterial hormone-sensitive lipase from Salinisphaera sp. P7-4. Arch Biochem Biophys 2019; 663:132-142. [DOI: 10.1016/j.abb.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022]
|
12
|
Sungkeeree P, Toewiwat N, Whangsuk W, Ploypradith P, Mongkolsuk S, Loprasert S. The esterase B from Sphingobium sp. SM42 has the new de-arenethiolase activity against cephalosporin antibiotics. Biochem Biophys Res Commun 2018; 506:231-236. [DOI: 10.1016/j.bbrc.2018.10.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
|
13
|
Wang Y, Ryu BH, Yoo W, Lee CW, Kim KK, Lee JH, Kim TD. Identification, characterization, immobilization, and mutational analysis of a novel acetylesterase with industrial potential (LaAcE) from Lactobacillus acidophilus. Biochim Biophys Acta Gen Subj 2017; 1862:197-210. [PMID: 29051067 DOI: 10.1016/j.bbagen.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 11/29/2022]
Abstract
Lactic acid bacteria, which are involved in the fermentation of vegetables, meats, and dairy products, are widely used for the productions of small organic molecules and bioactive peptides. Here, a novel acetylesterase (LaAcE) from Lactobacillus acidophilus NCFM was identified, functionally characterized, immobilized, and subjected to site-directed mutagenesis for biotechnological applications. The enzymatic properties of LaAcE were investigated using biochemical and biophysical methods including native polyacrylamide gel electrophoresis, acetic acid release, biochemical assays, enzyme kinetics, and spectroscopic methods. Interestingly, LaAcE exhibited the ability to act on a broad range of substrates including glucose pentaacetate, glyceryl tributyrate, fish oil, and fermentation-related compounds. Furthermore, immobilization of LaAcE showed good recycling ability and high thermal stability compared with free LaAcE. A structural model of LaAcE was used to guide mutational analysis of hydrophobic substrate-binding region, which was composed of Leu156, Phe164, and Val204. Five mutants (L156A, F164A, V204A, L156A/F164A, and L156A/V204A) were generated and investigated to elucidate the roles of these hydrophobic residues in substrate specificity. This work provided valuable insights into the properties of LaAcE, and demonstrated that LaAcE could be used as a model enzyme of acetylesterase in lactic acid bacteria, making LaAcE a great candidate for industrial applications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
14
|
Identification and Crystallization of Penicillin-Binding Protein/β-Lactamase Homolog (Rp46) from Ruegeria Pomeroyi. CRYSTALS 2016. [DOI: 10.3390/cryst7010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kim Y, Ryu BH, Kim J, Yoo W, An DR, Kim BY, Kwon S, Lee S, Wang Y, Kim KK, Kim TD. Characterization of a novel SGNH-type esterase from Lactobacillus plantarum. Int J Biol Macromol 2016; 96:560-568. [PMID: 28040493 DOI: 10.1016/j.ijbiomac.2016.12.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Lactic acid bacteria (LAB) are sources of a large variety of microbial ester hydrolases because they can produce a wide range of short-chain esters, phenolic alcohols, and fatty acids. Here, a novel SGNH-type esterase (LpSGNH1) from Lactobacillus plantarum WCFS1 was identified, functionally characterized, and immobilized for biotechnological applications. Homologs of LpSGNH1 are also found in many lactic acid bacteria (LAB) species. Biochemical features of LpSGNH1 were investigated using mass spectrometry, gel filtration chromatography, enzyme kinetics, fluorescence, and circular dichroism (CD) spectroscopy. LpSGNH1 were retained its activity under conditions that would be encountered during fermentations. Interestingly, LpSGNH1 exhibited the ability to act on a broad range of substrates including ketoprofen acetate, cefotaxime (CTX), and 7-aminocephalosporanic acid (7-ACA) as well as glucose pentaacetate, acetylxylan, and acetylalginate, which make LpSGNH1 a great candidate for extensive industrial applications. Furthermore, cross-linked enzyme aggregates of LpSGNH1 (CLEA-LpSGNH1) displayed recycling ability and thermal stability compared to free LpSGNH1, which could be useful for industrial applications. This work highlights the importance of LpSGNH1 in the preparation of commercial compounds, and LpSGNH1 can be used as a model system of SGNH esterases in lactic acid bacteria.
Collapse
Affiliation(s)
- Yonggyu Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Jimin Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Deu Rae An
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Boo-Young Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sena Kwon
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sojeong Lee
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea.
| |
Collapse
|