1
|
Song L, Yang H, Meng X, Su R, Cheng S, Wang H, Bai X, Guo D, Lü X, Xia X, Shi C. Inhibitory Effects of Trans-Cinnamaldehyde Against Pseudomonas aeruginosa Biofilm Formation. Foodborne Pathog Dis 2023; 20:47-58. [PMID: 36779942 DOI: 10.1089/fpd.2022.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Pseudomonas aeruginosa biofilm formation has been considered to be an important determinant of its pathogenicity in most infections. The antibiofilm activity of trans-cinnamaldehyde (TC) against P. aeruginosa was investigated in this study. Results demonstrated that the minimum inhibitory concentration (MIC) of TC against P. aeruginosa was 0.8 mg/mL, and subinhibitory concentrations (SICs) was 0.2 mg/mL and below. Crystal violet staining showed that TC at 0.05-0.2 mg/mL reduced biofilm biomass in 48 h in a concentration-dependent mode. The formation area of TC-treated biofilms was significantly declined (p < 0.01) on the glass slides observed by light microscopy. Field-emission scanning electron microscopy further demonstrated that TC destroyed the biofilm morphology and structure. Confocal laser scanning microscopic observed the dispersion of biofilms and the reduction of exopolysaccharides after TC treatment stained with concanavalin A (Con-A)-fluorescein isothiocyanate conjugate and Hoechst 33258. Meanwhile, TC caused a significant decrease (p < 0.01) in the component of polysaccharides, proteins, and DNA in extracellular polymeric substance. The swimming and swarming motility and quorum sensing of P. aeruginosa was also found to be significantly inhibited (p < 0.01) by TC at SICs. Furthermore, SICs of TC repressed the several genes transcription associated with biofilm formation as determined by real-time quantitative polymerase chain reaction. Overall, our findings suggest that TC could be applied as natural and safe antibiofilm agent to inhibit the biofilm formation of P. aeruginosa.
Collapse
Affiliation(s)
- Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinru Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Poursina S, Ahmadi M, Fazeli F, Ariaii P. Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. Vet Med Sci 2022; 9:315-325. [PMID: 36418165 PMCID: PMC9857000 DOI: 10.1002/vms3.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa bacteria are emerging causes of food spoilage and foodborne diseases. Raw meat of animal species may consider a reservoir of P. aeruginosa strains. OBJECTIVES The present survey was done to assess the prevalence, antibiotic resistance properties and distribution of virulence factors among the P. aeruginosa strains isolated from raw meat and carcass surface swab samples of animal species. METHODS Five hundred and fifty raw meat and carcass surface swab samples were collected from cattle and sheep species referred to as slaughterhouses. P. aeruginosa bacteria were identified using culture and biochemical tests. The pattern of antibiotic resistance was determined by disk diffusion. The distribution of virulence and antibiotic resistance genes was determined using polymerase chain reaction. RESULTS Forty-seven of 550 (8.54%) examined samples were contaminated with P. aeruginosa. The prevalence of P. aeruginosa in raw meat and carcass surface swab samples were 6.57 and 12%, respectively. P. aeruginosa isolates showed the maximum resistance rate toward penicillin (87.23%), ampicillin (85.10%), tetracycline (85.10%), gentamicin (65.95%) and trimethoprim (57.44%). The most commonly detected antibiotic resistance genes were BlaCTX-M (53.19%), blaDHA (42.55%) and blaTEM (27.65%). The most commonly detected virulence factors was ExoS (42.55%), algD (31.91%), lasA (31.91%), plcH (31.91%) and exoU (25.53%). CONCLUSIONS Meat and carcass surface swab samples may be sources of resistant and virulent P. aeruginosa, which pose a hygienic threat in their consumption. However, further investigations are required to identify additional epidemiological features of P. aeruginosa in meat and carcass surface samples.
Collapse
Affiliation(s)
- Shahrokh Poursina
- Department of Food HygieneAyatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Mohammad Ahmadi
- Department of Food HygieneAyatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Fatemeh Fazeli
- Department of Food Science and TechnologyAyatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Peiman Ariaii
- Department of Food Science and TechnologyAyatollah Amoli BranchIslamic Azad UniversityAmolIran
| |
Collapse
|
3
|
Zhang JW, Pan LQ, Tu K. Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue. SENSORS (BASEL, SWITZERLAND) 2022; 22:8205. [PMID: 36365901 PMCID: PMC9654945 DOI: 10.3390/s22218205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/15/2023]
Abstract
The growth models of total bacterial count in freshly squeezed strawberry juice were established by gas and taste sensors in this paper. By selecting the optimal sensors and fusing the response values, the Modified Gompertz, Logistic, Huang and Baranyi models were used to predict and simulate the growth of bacteria. The results showed that the R2 values for fitting the growth model of total bacterial count of the sensor S7 (an electronic nose sensor), of sweetness and of the principal components scores were 0.890-0.944, 0.861-0.885 and 0.954-0.964, respectively. The correlation coefficients, or R-values, between models fitted by the response values and total bacterial count ranged from 0.815 to 0.999. A single system of electronic nose (E-nose) or electronic tongue (E-tongue) sensors could be used to predict the total bacterial count in freshly squeezed strawberry juice during cold storage, while the higher rate was gained by the combination of these two systems. The fusion of E-nose and E-tongue had the best fitting-precision in predicting the total bacterial count in freshly squeezed strawberry juice during cold storage. This study proved that it was feasible to predict the growth of bacteria in freshly squeezed strawberry juice using E-nose and E-tongue sensors.
Collapse
Affiliation(s)
| | | | - Kang Tu
- Correspondence: ; Tel./Fax: +86-025-84399016
| |
Collapse
|
4
|
Prevalence, Antimicrobial Resistance, and Molecular Description of Pseudomonas aeruginosa Isolated from Meat and Meat Products. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9899338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Resistant and virulent Pseudomonas aeruginosa (P. aeruginosa) bacteria are measured as the major cause of food spoilage and food-borne diseases. This survey assesses the prevalence, antibiotic resistance properties, and virulence factors distribution in P. aeruginosa bacteria isolated from meat and meat products. A total of 370 raw, frozen, and imported bovine meat samples and diverse types of meat product samples were collected from Alborz province, Iran. P. aeruginosa bacteria were identified by culture. Disk diffusion was used to assess the antibiotic resistance of bacteria. Furthermore, the PCR was used to assess the virulence and antibiotic resistance genes. Twenty nine out of 370 (7.83%) samples were contaminated with P. aeruginosa. Imported frozen bovine meat (20%) harbored the highest distribution, while sausage (2%) harbored the lowest. High resistance rates were observed toward ampicillin (89.65%), penicillin (86.20%), tetracycline (82.75%), cefoxitin (37.93%), gentamicin (34.48%), and clindamycin (31.03%). The most commonly detected antibiotic resistance genes were blaDHA (93.10%), blaCTX-M (83.65%), and blaSHV (48.27%). BlaDHA (93.10%), blaCTX-M (83.65%), and blaSHV (48.27%) were the most frequently detected resistance genes. The most commonly detected virulence genes were exoS (75.86%), lasA (68.96%), exoU (58.62%), lasB (51.72%), plcH (48.27%), and algD (44.82%). Meat and meat product samples may be sources of P. aeruginosa, which show an important threat to their consumption. Nevertheless, additional inquiries are obligatory to find supplementary epidemiological properties of P. aeruginosa in meat and meat product samples.
Collapse
|
5
|
In-House Validation of Multiplex PCR for Simultaneous Detection of Shiga Toxin-Producing Escherichia coli, Listeria monocytogenes and Salmonella spp. in Raw Meats. Foods 2022; 11:foods11111557. [PMID: 35681308 PMCID: PMC9180326 DOI: 10.3390/foods11111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the study was to perform in-house validation of the developed multiplex PCR (mPCR)-based alternative method to detect Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw meats following the ISO 16140-2: 2016. A comparative study of the developed mPCR against the Bacteriological Analytical Manual (BAM) method was evaluated for inclusivity and exclusivity, sensitivity and the relative level of detection (RLOD). Inclusivity levels for each target bacterium were all 100%, while exclusivity for non-target bacteria was 100%. The sensitivity of the developed mPCR was calculated based on the analysis of 72 samples of raw meat. The sensitivity of the developed mPCR was 100%. The RLOD values of the developed mPCR for STEC, L. monocytogenes and Salmonella spp. were 0.756, 1.170 and 1.000, respectively. The developed mPCR showed potential as a tool for the fast, specific and sensitive detection of the three bacteria in the raw meat industry
Collapse
|
6
|
Growth simulation of Pseudomonas fluorescens in pork using hyperspectral imaging. Meat Sci 2022; 188:108767. [DOI: 10.1016/j.meatsci.2022.108767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
|
7
|
Ran M, He L, Li C, Zhu Q, Zeng X. Quality Changes and Shelf-Life Prediction of Cooked Cured Ham Stored at Different Temperatures. J Food Prot 2021; 84:1252-1264. [PMID: 33710304 DOI: 10.4315/jfp-20-374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cooked cured ham is a ready-to-eat food that is popular among consumers. Stored temperature has a key effect on the quality and shelf life of ham. In this work, the quality changes and shelf-life prediction of cooked cured ham stored at different temperatures were investigated. Sensory evaluation, physical and chemical indicators, and aerobic plate count were determined. Results showed that high storage temperature of cooked ham accelerates quality deterioration. Partial least squares (PLS) regression analysis based on the variable importance for projection identified nine important variables for predicting the shelf life of cooked cured ham. Compared with either PLS or back-propagation artificial neural network, the hybrid PLS-back-propagation artificial neural network model better predicts the shelf life of cooked cured ham by using the nine variables. This study provides a theoretical basis and data support for the quality control of cooked cured ham and a new idea for research on the shelf-life prediction of cooked cured ham. HIGHLIGHTS
Collapse
Affiliation(s)
- Miao Ran
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Cuiqin Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Qiujin Zhu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
8
|
Pourtois JD, Kratochvil MJ, Chen Q, Haddock NL, Burgener EB, De Leo GA, Bollyky PL. Filamentous Bacteriophages and the Competitive Interaction between Pseudomonas aeruginosa Strains under Antibiotic Treatment: a Modeling Study. mSystems 2021; 6:e0019321. [PMID: 34156288 PMCID: PMC8269214 DOI: 10.1128/msystems.00193-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) is a major bacterial pathogen responsible for chronic lung infections in cystic fibrosis patients. Recent work has implicated Pf bacteriophages, nonlytic filamentous viruses produced by Pa, in the chronicity and severity of Pa infections. Pf phages act as structural elements in Pa biofilms and sequester aerosolized antibiotics, thereby contributing to antibiotic tolerance. Consistent with a selective advantage in this setting, the prevalence of Pf-positive (Pf+) bacteria increases over time in these patients. However, the production of Pf phages comes at a metabolic cost to bacteria, such that Pf+ strains grow more slowly than Pf-negative (Pf-) strains in vitro. Here, we use a mathematical model to investigate how these competing pressures might influence the relative abundance of Pf+ versus Pf- strains in different settings. Our model suggests that Pf+ strains of Pa cannot outcompete Pf- strains if the benefits of phage production falls onto both Pf+ and Pf- strains for a majority of parameter combinations. Further, phage production leads to a net positive gain in fitness only at antibiotic concentrations slightly above the MIC (i.e., concentrations for which the benefits of antibiotic sequestration outweigh the metabolic cost of phage production) but which are not lethal for Pf+ strains. As a result, our model suggests that frequent administration of intermediate doses of antibiotics with low decay rates and high killing rates favors Pf+ over Pf- strains. These models inform our understanding of the ecology of Pf phages and suggest potential treatment strategies for Pf+ Pa infections. IMPORTANCE Filamentous phages are a frontier in bacterial pathogenesis, but the impact of these phages on bacterial fitness is unclear. In particular, Pf phages produced by Pa promote antibiotic tolerance but are metabolically expensive to produce, suggesting that competing pressures may influence the prevalence of Pf+ versus Pf- strains of Pa in different settings. Our results identify conditions likely to favor Pf+ strains and thus antibiotic tolerance. This study contributes to a better understanding of the unique ecology of filamentous phages in both environmental and clinical settings and may facilitate improved treatment strategies for combating antibiotic tolerance.
Collapse
Affiliation(s)
- Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, California, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, California, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor Production by Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 2021; 12:73-81. [PMID: 31784952 DOI: 10.1007/s12602-019-09623-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is a potential source of food contamination that leads to food spoilage and infections as a result of the generation of biofilm and virulence factors. In the present study, we demonstrate that bacteriocin produced by Pediococcus acidilactici HW01 (HW01 bacteriocin) effectively inhibited the biofilm formation of Ps. aeruginosa (66.41, 45.77, and 21.73% of biofilm formation at 0.5, 1, and 2 mg/mL of HW01 bacteriocin, respectively) as well as the production of virulence factors. By means of a microtiter plate method and scanning electron microscopy, HW01 bacteriocin inhibited biofilm formation by Ps. aeruginosa in a dose-dependent manner. Although the viability of biofilm cells of Ps. aeruginosa was reduced in the presence of HW01 bacteriocin, the viability of planktonic cells of Ps. aeruginosa was not affected by HW01 bacteriocin (2.0 × 109 CFU/mL vs. 2.4 × 109 CFU/mL in the absence and the presence of HW01 bacteriocin, respectively). Additionally, HW01 bacteriocin decreased the twitching motility of Ps. aeruginosa as well as the production of virulence factors, such as pyocyanin, protease, and rhamnolipid. Furthermore, HW01 bacteriocin significantly inhibited Ps. aeruginosa biofilm formation on the surface of stainless steel (57% reduction at 24 h and 83% reduction at 72 h). These results indicate that HW01 bacteriocin is an effective antagonist of Ps. aeruginosa as a result of its ability to inhibit biofilm formation and the production of virulence factors.
Collapse
|
10
|
Salinas Alvarez C, Sierra-Sosa D, Garcia-Zapirain B, Yoder-Himes D, Elmaghraby A. Detection of Volatile Compounds Emitted by Bacteria in Wounds Using Gas Sensors. SENSORS 2019; 19:s19071523. [PMID: 30925832 PMCID: PMC6480681 DOI: 10.3390/s19071523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 11/15/2022]
Abstract
In this paper we analyze an experiment for the use of low-cost gas sensors intended to detect bacteria in wounds using a non-intrusive technique. Seven different genera/species of microbes tend to be present in most wound infections. Detection of these bacteria usually requires sample and laboratory testing which is costly, inconvenient and time-consuming. The validation processes for these sensors with nineteen types of microbes (1 Candida, 2 Enterococcus, 6 Staphylococcus, 1 Aeromonas, 1 Micrococcus, 2 E. coli and 6 Pseudomonas) are presented here, in which four sensors were evaluated: TGS-826 used for ammonia and amines, MQ-3 used for alcohol detection, MQ-135 for CO2 and MQ-138 for acetone detection. Validation was undertaken by studying the behavior of the sensors at different distances and gas concentrations. Preliminary results with liquid cultures of 108 CFU/mL and solid cultures of 108 CFU/cm2 of the 6 Pseudomonas aeruginosa strains revealed that the four gas sensors showed a response at a height of 5 mm. The ammonia detection response of the TGS-826 to Pseudomonas showed the highest responses for the experimental samples over the background signals, with a difference between the values of up to 60 units in the solid samples and the most consistent and constant values. This could suggest that this sensor is a good detector of Pseudomonas aeruginosa, and the recording made of its values could be indicative of the detection of this species. All the species revealed similar CO2 emission and a high response rate with acetone for Micrococcus, Aeromonas and Staphylococcus.
Collapse
Affiliation(s)
| | - Daniel Sierra-Sosa
- Department of Computer Engineering and Computer Science (CECS), University of Louisville, Louisville, KY 40292, USA.
| | | | | | - Adel Elmaghraby
- Department of Computer Engineering and Computer Science (CECS), University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci Rep 2018; 8:16260. [PMID: 30389984 PMCID: PMC6214931 DOI: 10.1038/s41598-018-34567-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/19/2018] [Indexed: 01/17/2023] Open
Abstract
Magnesium oxide nanoparticle (nMgO) is a light metal based antimicrobial nanoparticle that can be metabolized and fully resorbed in the body. To take advantage of the antimicrobial properties of nMgO for medical use, it is necessary to determine the minimal inhibitory, bactericidal and fungicidal concentrations (MIC, MBC and MFC) of nMgO against prevalent infectious bacteria and yeasts. The objective of this study was to use consistent methods and conditions to reveal and directly compare the efficacy of nMgO against nine prevalent pathogenic microorganisms, including two gram-negative bacteria, three gram-positive bacteria with drug-resistant strains, and four yeasts with drug-resistant strains. The MIC of nMgO varied from 0.5 mg/mL to 1.2 mg/mL and the minimal lethal concentration (MLC) of nMgO at 90% killing varied from 0.7 mg/mL to 1.4 mg/mL against different pathogenic bacteria and yeasts. The most potent concentrations (MPC) of nMgO were 1.4 and/or 1.6 mg/mL, depending on the type of bacteria and yeasts tested. As the concentration of nMgO increased, the adhesion of bacteria and yeasts decreased. Moreover, S. epidermidis biofilm was disrupted at 1.6 mg/mL of nMgO. E. coli and some yeasts showed membrane damage after cultured with ≥0.5 mg/mL nMgO. Overall, nMgO killed both planktonic bacteria and disrupted nascent biofilms, suggesting new antimicrobial mechanisms of nMgO. Production of reactive oxygen species (ROS), Ca2+ ion concentrations, and quorum sensing likely contribute to the action mechanisms of nMgO against planktonic bacteria, but transient alkaline pH of 7 to 10 or increased Mg2+ ion concentrations from 1 to 50 mM showed no inhibitory or killing effects on bacteria such as S. epidermidis. Further studies are needed to determine if specific concentrations of nMgO at MIC, MLC or MPC level can be integrated into medical devices to evoke desired antimicrobial responses without harming host cells.
Collapse
|
12
|
Liu Q, Zhao N, Zhou D, Sun Y, Sun K, Pan L, Tu K. Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chem 2018; 262:226-234. [PMID: 29751914 DOI: 10.1016/j.foodchem.2018.04.100] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
A non-destructive method for detection of fungal contamination in peaches using an electronic nose (E-nose) is presented. Peaches were inoculated with three common spoilage fungi, Botrytis cinerea, Monilinia fructicola and Rhizopus stolonifer and then stored for various periods. E-nose was then used to analyze volatile compounds generated in the fungi-inoculated peaches, which was then compared with the growth data (colony counts) of the fungi. The results showed that changes in volatile compounds in fungi-inoculated peaches were correlated with total amounts and species of fungi. Terpenes and aromatic compounds were the main contributors to E-nose responses. While principle component analysis (PC1) scores were highly correlated with fungal colony counts, Partial Least Squares Regression (PLSR) could effectively be used to predict fungal colony counts in peach samples. The results also showed that the E-nose had high discrimination accuracy, demonstrating the potential use of E-nose to discriminate among fungal contamination in peaches.
Collapse
Affiliation(s)
- Qiang Liu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China
| | - Nan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China
| | - Dandan Zhou
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China
| | - Ye Sun
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China
| | - Ke Sun
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1. Weigang Road, Nanjing, Jiangsu 210096, PR China.
| |
Collapse
|
13
|
Sun Y, Wang Y, Xiao H, Gu X, Pan L, Tu K. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content. Food Chem 2017; 235:194-202. [DOI: 10.1016/j.foodchem.2017.05.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/11/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
|