1
|
Satish Kumar T, Thankachan T, Čep R, Kalita K. Characterisation of AZ31/TiC composites fabricated via ultrasonic vibration assisted friction stir processing. Sci Rep 2024; 14:26686. [PMID: 39496743 DOI: 10.1038/s41598-024-77814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
In this study, the effect of ultrasonic vibration during Friction Stir Vibration Processing (FSVP) on the microstructure and mechanical behaviour of AZ31/TiC surface composites was investigated. Specifically, Titanium Carbide (TiC) particles were introduced as a reinforcement (15 vol%) into the magnesium alloy AZ31 using both Friction Stir Processing (FSP) and FSVP. Comprehensive examinations were carried out to analyse the microstructure, hardness, and tensile behaviour of the resulting composites. The study revealed significant improvements in mechanical properties due to the application of ultrasonic vibration during FSP. Firstly, the stir zone region was found to be free from voids, enhancing material flow and promoting even dispersion of TiC powders within the matrix. Secondly, refinement of grains was observed due to dynamic recrystallization and the pinning effect imposed by TiC particles, leading to the formation of more dislocations in the composite and indicating a considerable alteration in the material's structure. Importantly, the vibration during FSP introduced an auxiliary energy source, resulting in a remarkable enhancement in both hardness and tensile strength. Compared to the AZ31/15 vol% TiC FSP composite, the composites produced via FSVP exhibited a grain size reduction of about 64% and improvements in hardness and ultimate tensile strength (UTS) of about 55% and 21%, respectively. Notably, these improvements were achieved without compromising the ductility of the composite, which remained at appreciable levels.
Collapse
Affiliation(s)
- T Satish Kumar
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
| | - Titus Thankachan
- Department of Mechanical Engineering, Karpagam College of Engineering, Coimbatore, India
| | - Robert Čep
- Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava, 70800, Czech Republic
| | - Kanak Kalita
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, 600 062, India.
- Jadara University Research Center, Jadara University, Irbid, Jordan.
| |
Collapse
|
2
|
Shi Q, Chen J, Chen J, Liu Y, Wang H. Application of additively manufactured bone scaffold: a systematic review. Biofabrication 2024; 16:022007. [PMID: 38507799 DOI: 10.1088/1758-5090/ad35e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.
Collapse
Affiliation(s)
- Qianyu Shi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Jibing Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Junsheng Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yanfeng Liu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Hongze Wang
- School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
4
|
Calabrese G, De Luca G, Franco D, Morganti D, Rizzo MG, Bonavita A, Neri G, Fazio E, Neri F, Fazio B, Crea F, Leonardi AA, Faro MJL, Guglielmino S, Conoci S. Structural and antibacterial studies of novel ZnO and Zn xMn (1-x)O nanostructured titanium scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2023; 145:213193. [PMID: 36587469 DOI: 10.1016/j.bioadv.2022.213193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death. Antibiotics are the conventional approach for implanted-associated infections, but they have the limitation of increasing antibiotic resistance, a critical worldwide healthcare issue. In this context, the development of anti-infective biomaterials and infection-resistant surfaces can be considered the more effective strategy to prevent the implant colonisation and biofilm formation by bacteria, so reducing the occurrence of implant-associated infections. In the last years, inorganic nanostructures have become extremely appealing for chemical modifications or coatings of Ti surfaces, since they do not generate antibiotic resistance issues and are featured by superior stability, durability, and full compatibility with the sterilization process. In this work, we present a simple, rapid, and cheap chemical nanofunctionalization of titanium (Ti) scaffolds with colloidal ZnO and Mn-doped ZnO nanoparticles (NPs), prepared by a sol-gel method, exhibiting antibacterial activity. ZnO NPs and ZnxMn(1-x)O NPs formation with a size around 10-20nm and band gap values of 3.42 eV and 3.38 eV, respectively, have been displayed by characterization studies. UV-Vis, fluorescence, and Raman investigation suggested that Mn ions acting as dopants in the ZnO lattice. Ti scaffolds have been functionalized through dip coating, obtaining ZnO@Ti and ZnxMn(1-x)O@Ti biomaterials characterized by a continuous nanostructured film. ZnO@Ti and ZnxMn(1-x)O@Ti displayed an enhanced antibacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, compared to NPs in solution with better performance of ZnxMn(1-x)O@Ti respect to ZnO@Ti. Notably, it has been observed that ZnxMn(1-x)O@Ti scaffolds reach a complete eradication for S. aureus and 90 % of reduction for P. aeruginosa. This can be attributed to Zn2+ and Mn2+ metal ions release (as observed by ICP MS experiments) that is also maintained over time (72 h). To the best of our knowledge, this is the first study reported in the literature describing ZnO and Mn-doped ZnO NPs nanofunctionalized Ti scaffolds with improved antibacterial performance, paving the way for the realization of new hybrid implantable devices through a low-cost process, compatible with the biotechnological industrial chain method.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Anna Bonavita
- Department of Engineering, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- LAB Sense Beyond Nano - URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Alessio Leonardi
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, Catania, Italy
| | - Maria Josè Lo Faro
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, Catania, Italy
| | - Salvatore Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; LAB Sense Beyond Nano - URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Catania, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
5
|
Jones CF, Quarrington RD, Tsangari H, Starczak Y, Mulaibrahimovic A, Burzava ALS, Christou C, Barker AJ, Morel J, Bright R, Barker D, Brown T, Vasilev K, Anderson PH. A Novel Nanostructured Surface on Titanium Implants Increases Osseointegration in a Sheep Model. Clin Orthop Relat Res 2022; 480:2232-2250. [PMID: 36001022 PMCID: PMC10476811 DOI: 10.1097/corr.0000000000002327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND A nanostructured titanium surface that promotes antimicrobial activity and osseointegration would provide the opportunity to create medical implants that can prevent orthopaedic infection and improve bone integration. Although nanostructured surfaces can exhibit antimicrobial activity, it is not known whether these surfaces are safe and conducive to osseointegration. QUESTIONS/PURPOSES Using a sheep animal model, we sought to determine whether the bony integration of medical-grade, titanium, porous-coated implants with a unique nanostructured surface modification (alkaline heat treatment [AHT]) previously shown to kill bacteria was better than that for a clinically accepted control surface of porous-coated titanium covered with hydroxyapatite (PCHA) after 12 weeks in vivo. The null hypothesis was that there would be no difference between implants with respect to the primary outcomes: interfacial shear strength and percent intersection surface (the percentage of implant surface with bone contact, as defined by a micro-CT protocol), and the secondary outcomes: stiffness, peak load, energy to failure, and micro-CT (bone volume/total volume [BV/TV], trabecular thickness [Tb.Th], and trabecular number [Tb.N]) and histomorphometric (bone-implant contact [BIC]) parameters. METHODS Implants of each material (alkaline heat-treated and hydroxyapatite-coated titanium) were surgically inserted into femoral and tibial metaphyseal cancellous bone (16 per implant type; interference fit) and in tibial cortices at three diaphyseal locations (24 per implant type; line-to-line fit) in eight skeletally mature sheep. At 12 weeks postoperatively, bones were excised to assess osseointegration of AHT and PCHA implants via biomechanical push-through tests, micro-CT, and histomorphometry. Bone composition and remodeling patterns in adult sheep are similar to that of humans, and this model enables comparison of implants with ex vivo outcomes that are not permissible with humans. Comparisons of primary and secondary outcomes were undertaken with linear mixed-effects models that were developed for the cortical and cancellous groups separately and that included a random effect of animals, covariates to adjust for preoperative bodyweight, and implant location (left/right limb, femoral/tibial cancellous, cortical diaphyseal region, and medial/lateral cortex) as appropriate. Significance was set at an alpha of 0.05. RESULTS The estimated marginal mean interfacial shear strength for cancellous bone, adjusted for covariates, was 1.6 MPa greater for AHT implants (9.3 MPa) than for PCHA implants (7.7 MPa) (95% CI 0.5 to 2.8; p = 0.006). Similarly, the estimated marginal mean interfacial shear strength for cortical bone, adjusted for covariates, was 6.6 MPa greater for AHT implants (25.5 MPa) than for PCHA implants (18.9 MPa) (95% CI 5.0 to 8.1; p < 0.001). No difference in the implant-bone percent intersection surface was detected for cancellous sites (cancellous AHT 55.1% and PCHA 58.7%; adjusted difference of estimated marginal mean -3.6% [95% CI -8.1% to 0.9%]; p = 0.11). In cortical bone, the estimated marginal mean percent intersection surface at the medial site, adjusted for covariates, was 11.8% higher for AHT implants (58.1%) than for PCHA (46.2% [95% CI 7.1% to 16.6%]; p < 0.001) and was not different at the lateral site (AHT 75.8% and PCHA 74.9%; adjusted difference of estimated marginal mean 0.9% [95% CI -3.8% to 5.7%]; p = 0.70). CONCLUSION These data suggest there is stronger integration of bone on the AHT surface than on the PCHA surface at 12 weeks postimplantation in this sheep model. CLINICAL RELEVANCE Given that the AHT implants formed a more robust interface with cortical and cancellous bone than the PCHA implants, a clinical noninferiority study using hip stems with identical geometries can now be performed to compare the same surfaces used in this study. The results of this preclinical study provide an ethical baseline to proceed with such a clinical study given the potential of the alkaline heat-treated surface to reduce periprosthetic joint infection and enhance implant osseointegration.
Collapse
Affiliation(s)
- Claire F. Jones
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Ryan D. Quarrington
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Helen Tsangari
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Yolandi Starczak
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adnan Mulaibrahimovic
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Anouck L. S. Burzava
- STEM, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Chris Christou
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alex J. Barker
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | | | - Richard Bright
- STEM, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | | | | | - Krasimir Vasilev
- STEM, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Paul H. Anderson
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
6
|
Yang X, Huang W, Zhan D, Ren D, Ji H, Liu Z, Wang Q, Zhang N, Zhang Z. Biodegradability and Cytocompatibility of 3D-Printed Mg-Ti Interpenetrating Phase Composites. Front Bioeng Biotechnol 2022; 10:891632. [PMID: 35837550 PMCID: PMC9274132 DOI: 10.3389/fbioe.2022.891632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic hybrid implants combining both titanium (Ti) and magnesium (Mg) have gained wide attraction nowadays. However, it still remains a huge challenge in the fabrication of Mg-Ti composites because of the different temperatures of Ti melting point and pure Mg volatilization point. In this study, we successfully fabricated a new Mg-Ti composite with bi-continuous interpenetrating phase architecture by infiltrating Mg melt into Ti scaffolds, which were prepared by 3D printing and subsequent acid treatment. We attempted to understand the 7-day degradation process of the Mg-Ti composite and examine the different Mg2+ concentration composite impacts on the MC3T3-E1 cells, including toxicity, morphology, apoptosis, and osteogenic activity. CCK-8 results indicated cytotoxicity and absence of the Mg-Ti composite during 7-day degradation. Moreover, the composite significantly improved the morphology, reduced the apoptosis rate, and enhanced the osteogenic activity of MC3T3-E1 cells. The favorable impacts might be attributed to the appropriate Mg2+ concentration of the extracts. The results on varying Mg2+ concentration tests indicated that Mg2+ showed no cell adverse effect under 10-mM concentration. The 8-mM group exhibited the best cell morphology, minimum apoptosis rate, and maximum osteogenic activity. This work may open a new perspective on the development and biomedical applications for Mg-Ti composites.
Collapse
Affiliation(s)
- Xixiang Yang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanyi Huang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Desong Zhan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dechun Ren
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Haibin Ji
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Zengqian Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qiang Wang, ; Ning Zhang,
| | - Ning Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qiang Wang, ; Ning Zhang,
| | - Zhefeng Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
7
|
Lv Y, Wang B, Liu G, Tang Y, Lu E, Xie K, Lan C, Liu J, Qin Z, Wang L. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review. Front Bioeng Biotechnol 2021; 9:641130. [PMID: 33842445 PMCID: PMC8033174 DOI: 10.3389/fbioe.2021.641130] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
Design an implant similar to the human bone is one of the critical problems in bone tissue engineering. Metal porous scaffolds have good prospects in bone tissue replacement due to their matching elastic modulus, better strength, and biocompatibility. However, traditional processing methods are challenging to fabricate scaffolds with a porous structure, limiting the development of porous scaffolds. With the advancement of additive manufacturing (AM) and computer-aided technologies, the development of porous metal scaffolds also ushers in unprecedented opportunities. In recent years, many new metal materials and innovative design methods are used to fabricate porous scaffolds with excellent mechanical properties and biocompatibility. This article reviews the research progress of porous metal scaffolds, and introduces the AM technologies used in porous metal scaffolds. Then the applications of different metal materials in bone scaffolds are summarized, and the advantages and limitations of various scaffold design methods are discussed. Finally, we look forward to the development prospects of AM in porous metal scaffolds.
Collapse
Affiliation(s)
- Yuting Lv
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China.,State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Binghao Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Guohao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Eryi Lu
- Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kegong Xie
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Changgong Lan
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenbo Qin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Lv W, Yu M, Yang Q, Kong P, Yan B. Total flavonoids of Rhizoma drynariae ameliorate steroid‑induced avascular necrosis of the femoral head via the PI3K/AKT pathway. Mol Med Rep 2021; 23:345. [PMID: 33760114 PMCID: PMC7974407 DOI: 10.3892/mmr.2021.11984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a common orthopaedic disease that is difficult to treat. The present study investigated the effects of total flavonoids of Rhizoma drynariae (TFRD) on SANFH and explored its underlying mechanisms. The SANFH rat model was induced by intramuscular injection of lipopolysaccharides and methylprednisolone. Osteoblasts were isolated from the calvariae of neonatal rats and then cultured with dexamethasone (Dex). TFRD was used in vitro and in vivo, respectively. Haematoxylin and eosin staining was used to assess the pathological changes in the femoral head. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling assay and flow cytometry were conducted to detect apoptosis of osteoblasts. The 2,7-dichlorofluorescein-diacetate staining method was used to detect reactive oxygen species (ROS) levels in osteoblasts and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect osteoblast proliferation. The expression of caspase-3, Bax, Bcl-2, VEGF, runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), osteocalcin (OCN), receptor activator of nuclear factor κB ligand (RANKL) and phosphoinositide 3-kinase (PI3K)/AKT pathway related-proteins were detected via western blotting. It was found that TFRD reduced the pathological changes, inhibited apoptosis, increased the expression of VEGF, RUNX2, OPG and OCN, decreased RANKL expression and activated the PI3K/AKT pathway in SANFH rats. TFRD promoted proliferation, inhibited apoptosis and reduced ROS levels by activating the PI3K/AKT pathway in osteoblasts. In conclusion, TFRD protected against SANFH in a rat model. In addition, TFRD protected osteoblasts from Dex-induced damage through the PI3K/AKT pathway. The findings of the present study may contribute to find an effective treatment for the management of SANFH.
Collapse
Affiliation(s)
- Wenxue Lv
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Mingxiu Yu
- Department of Special Inspection, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Qingyi Yang
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Peng Kong
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Bing Yan
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
9
|
Shi H, Zhou P, Li J, Liu C, Wang L. Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Front Bioeng Biotechnol 2021; 8:616845. [PMID: 33553121 PMCID: PMC7863761 DOI: 10.3389/fbioe.2020.616845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Functional gradient materials (FGMs), as a modern group of materials, can provide multiple functions and are able to well mimic the hierarchical and gradient structure of natural systems. Because biomedical implants usually substitute the bone tissues and bone is an organic, natural FGM material, it seems quite reasonable to use the FGM concept in these applications. These FGMs have numerous advantages, including the ability to tailor the desired mechanical and biological response by producing various gradations, such as composition, porosity, and size; mitigating some limitations, such as stress-shielding effects; improving osseointegration; and enhancing electrochemical behavior and wear resistance. Although these are beneficial aspects, there is still a notable lack of comprehensive guidelines and standards. This paper aims to comprehensively review the current scenery of FGM metallic materials in the biomedical field, specifically its dental and orthopedic applications. It also introduces various processing methods, especially additive manufacturing methods that have a substantial impact on FGM production, mentioning its prospects and how FGMs can change the direction of both industry and biomedicine. Any improvement in FGM knowledge and technology can lead to big steps toward its industrialization and most notably for much better implant designs with more biocompatibility and similarity to natural tissues that enhance the quality of life for human beings.
Collapse
Affiliation(s)
- Hongyuan Shi
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Jie Li
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Cheng J, Li J, Yu S, Du Z, Zhang X, Zhang W, Gai J, Wang H, Song H, Yu Z. Influence of Isothermal ω Transitional Phase-Assisted Phase Transition From β to α on Room-Temperature Mechanical Performance of a Meta-Stable β Titanium Alloy Ti-10Mo-6Zr-4Sn-3Nb (Ti-B12) for Medical Application. Front Bioeng Biotechnol 2021; 8:626665. [PMID: 33553129 PMCID: PMC7855458 DOI: 10.3389/fbioe.2020.626665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
The microstructural evolution and tensile performance of a meta-stable β-type biomedical Ti−10Mo−6Zr−4Sn−3Nb (Ti-B12) alloy subjected to one-stage aging (OSA) and two-stage aging (TSA) are investigated in this work. The OSA treatment is performed at 510°C for 8 h. The TSA treatments are composed of low-temperature aging and high-temperature aging. In the first step, low-temperature aging is conducted at 325°C for 2 h. In the second step, the aging temperature is the same as that in the OSA. The result of the microstructure evolution shows that the precipitated secondary phase after aging is mainly influenced by the process of phase transition. There is a marked difference in the microstructure of the Ti-B12 alloy subjected to the OSA and TSA treatments. The needle-shaped α phases are precipitated in the parent β phase after the OSA treatment. Conversely, the short shuttle-like α phases precipitated after the TSA treatment are formed in the β matrix with the aid of the role of the isothermal ω transitional phase-assisted phase transition. The electron backscattered diffraction results indicate that the crystallographic orientation relationship of the α phases precipitated during the TSA treatment is basically analogous to those in the OSA treatment. The relatively higher tensile strength of 1,275 MPa is achieved by strengthening the effect of the short shuttle-like α precipitation with a size of 0.123 μm in length during the TSA treatment, associating with a suitable elongation of 12% at room temperature simultaneously. The fracture surfaces of the samples after the OSA and TSA treatments indicate that preventing the coarsening of the α layers in the grain boundaries is favorable for the enhancement of strength of Ti-B12 at room temperature. MTT test was carried out to evaluate the acute cytotoxicity and biocompatibility of the implanted material using L929 cells. The relative proliferation rates of cytotoxicity levels 0, 1, 2, 3, and 4 are ≥100, 80–99, 50–79, 30–49, and 0–29%, respectively. The cytotoxicity of the Ti-B12 alloy is slightly better than that of the Ti−6Al−4V alloy, which can meet the requirements of medical materials for biomedical materials.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, China.,Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, China
| | - Jinshan Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, China
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, China
| | - Zhaoxin Du
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Xiaoyong Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Wen Zhang
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, China
| | - Jinyang Gai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Hongchuan Wang
- School of Material Science and Engineering, Northeastern University, Shenyang, China
| | - Hongjie Song
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, China
| | - Zhentao Yu
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
12
|
Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front Bioeng Biotechnol 2020; 8:603072. [PMID: 33262980 PMCID: PMC7686851 DOI: 10.3389/fbioe.2020.603072] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022] Open
Abstract
Depending on the requirements of specific applications, implanted materials including metals, ceramics, and polymers have been used in various disciplines of medicine. Titanium and its alloys as implant materials play a critical role in the orthopedic and dental procedures. However, they still require the utilization of surface modification technologies to not only achieve the robust osteointegration but also to increase the antibacterial properties, which can avoid the implant-related infections. This article aims to provide a summary of the latest advances in surface modification techniques, of titanium and its alloys, specifically in biomedical applications. These surface techniques include plasma spray, physical vapor deposition, sol-gel, micro-arc oxidation, etc. Moreover, the microstructure evolution is comprehensively discussed, which is followed by enhanced mechanical properties, osseointegration, antibacterial properties, and clinical outcomes. Future researches should focus on the combination of multiple methods or improving the structure and composition of the composite coating to further enhance the coating performance.
Collapse
Affiliation(s)
- Tong Xue
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Song
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Lanjie Li
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Beibei Zhao
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
13
|
Ma N, Liu S, Liu W, Xie L, Wei D, Wang L, Li L, Zhao B, Wang Y. Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications. Front Bioeng Biotechnol 2020; 8:603522. [PMID: 33262981 PMCID: PMC7686467 DOI: 10.3389/fbioe.2020.603522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
With the continuous progress and development in the biomedicine field, metallic biomedical materials have attracted the considerable attention of researchers, but the related procedures need to be further developed. Since the traditional metal implant materials are not highly compatible with the human body, the modern materials with excellent mechanical properties and proper biocompatibility should be developed urgently in order to solve any adverse reactions caused by the long-term implantations. The advent of the high-entropy alloy (HEA) as an innovative and advanced idea emerged to develop the medical implant materials through the specific HEA designs. The properties of these HEA materials can be predicted and regulated. In this paper, the progression and application of titanium-based HEAs, as well as their preparation and biological evaluation methods, are comprehensively reviewed. Additionally, the prospects for the development and use of these alloys in implant applications are put forward.
Collapse
Affiliation(s)
- Ning Ma
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Wei Liu
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Lechun Xie
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, China
| | - Daixiu Wei
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lanjie Li
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Beibei Zhao
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Yan Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| |
Collapse
|
14
|
Li X, Wang M, Zhang W, Bai Y, Liu Y, Meng J, Zhang L. A Magnesium-Incorporated Nanoporous Titanium Coating for Rapid Osseointegration. Int J Nanomedicine 2020; 15:6593-6603. [PMID: 32982220 PMCID: PMC7490434 DOI: 10.2147/ijn.s255486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose Micro-arc oxidation (MAO) is a fast and effective method to prepare nanoporous coatings with high biological activity and bonding strength. Simple micro/nano-coatings cannot fully meet the requirements of osteogenesis. To further improve the biological activity of a titanium surface, we successfully added biological magnesium (Mg2+) to a coating by micro-arc oxidation and evaluated the optimal magnesium concentration in the electrolyte, biocompatibility, cell adhesion, proliferation, and osteogenesis in vitro. Methods Nanoporous titanium coatings with different concentrations of magnesium were prepared by micro-arc oxidation and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The Mg2+ release ability of the magnesium-incorporated nanoporous titanium coatings was determined by inductively coupled plasma emission spectrometry (ICP-OES). The cytotoxicity of the magnesium-incorporated nanoporous titanium coatings was detected with live/dead double-staining tests. A CCK-8 assay was employed to evaluate cell proliferation, and FITC-phalloidin was used to determine the structure of the cytoskeleton by staining β-actin. Alkaline phosphatase (ALP) activity was evaluated by alizarin red S (ARS) staining to determine the effect of the coatings on osteogenic differentiation in vitro. The mRNA expression of osteogenic differentiation-related markers was measured using qRT-PCR. Results EDS analyses revealed the successful addition of magnesium to the microporous coatings. The best magnesium concentration of the electrolyte for preparing the new coating was determined. The results showed that the nano-coatings prepared using the electrolyte with 2 g/L magnesium acetate best promoted the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Conclusion These results suggest that the new titanium metal coating with a dual effect of promoting bone morphology and supplying the biological ion Mg2+ can be beneficial for rapid osseointegration.
Collapse
Affiliation(s)
- Xiaodong Li
- School of Stomatology, Weifang Medical University, Weifang, Shandong Province, People's Republic of China.,Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Mingyi Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Wenjie Zhang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China
| | - Yuting Bai
- Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Yuan Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Jian Meng
- School of Stomatology, Weifang Medical University, Weifang, Shandong Province, People's Republic of China.,Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Wang Q, Zhou P, Liu S, Attarilar S, Ma RLW, Zhong Y, Wang L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1244. [PMID: 32604854 PMCID: PMC7353126 DOI: 10.3390/nano10061244] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
The propose of this review was to summarize the advances in multi-scale surface technology of titanium implants to accelerate the osseointegration process. The several multi-scaled methods used for improving wettability, roughness, and bioactivity of implant surfaces are reviewed. In addition, macro-scale methods (e.g., 3D printing (3DP) and laser surface texturing (LST)), micro-scale (e.g., grit-blasting, acid-etching, and Sand-blasted, Large-grit, and Acid-etching (SLA)) and nano-scale methods (e.g., plasma-spraying and anodization) are also discussed, and these surfaces are known to have favorable properties in clinical applications. Functionalized coatings with organic and non-organic loadings suggest good prospects for the future of modern biotechnology. Nevertheless, because of high cost and low clinical validation, these partial coatings have not been commercially available so far. A large number of in vitro and in vivo investigations are necessary in order to obtain in-depth exploration about the efficiency of functional implant surfaces. The prospective titanium implants should possess the optimum chemistry, bionic characteristics, and standardized modern topographies to achieve rapid osseointegration.
Collapse
Affiliation(s)
- Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi’an Aeronautical Polytechnic Institute, Xi’an 710089, China;
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Robin Lok-Wang Ma
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Yinsheng Zhong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- National Engineering Research Center for Nanotechnology (NERCN), 28 East JiangChuan Road, Shanghai 200241, China
| |
Collapse
|
16
|
Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials. COATINGS 2020. [DOI: 10.3390/coatings10030264] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Significant research and development in the field of biomedical implants has evoked the scope to treat a broad range of orthopedic ailments that include fracture fixation, total bone replacement, joint arthrodesis, dental screws, and others. Importantly, the success of a bioimplant depends not only upon its bulk properties, but also on its surface properties that influence its interaction with the host tissue. Various approaches of surface modification such as coating of nanomaterial have been employed to enhance antibacterial activities of a bioimplant. The modified surface facilitates directed modulation of the host cellular behavior and grafting of cell-binding peptides, extracellular matrix (ECM) proteins, and growth factors to further improve host acceptance of a bioimplant. These strategies showed promising results in orthopedics, e.g., improved bone repair and regeneration. However, the choice of materials, especially considering their degradation behavior and surface properties, plays a key role in long-term reliability and performance of bioimplants. Metallic biomaterials have evolved largely in terms of their bulk and surface properties including nano-structuring with nanomaterials to meet the requirements of new generation orthopedic bioimplants. In this review, we have discussed metals and metal alloys commonly used for manufacturing different orthopedic bioimplants and the biotic as well as abiotic factors affecting the failure and degradation of those bioimplants. The review also highlights the currently available nanomaterial-based surface modification technologies to augment the function and performance of these metallic bioimplants in a clinical setting.
Collapse
|
17
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
18
|
Gradient Microstructures and Mechanical Properties of Ti-6Al-4V/Zn Composite Prepared by Friction Stir Processing. MATERIALS 2019; 12:ma12172795. [PMID: 31480251 PMCID: PMC6747795 DOI: 10.3390/ma12172795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
In this work, a biomedical Ti-6Al-4V (TC4)/Zn composite with gradient microstructures was successfully prepared by friction stir processing (FSP). The microstructures and mechanical properties of the composite were systematically studied using scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM), atom probe tomography (APT), and microhardness test. The results show that TC4/Zn composite can be successfully prepared, and gradient microstructures varying from coarse grain to nanocrystalline is formed from the bottom to the upper surface. During FSP, adding Zn can accelerate the growth of β phase region, and the grain size significantly increases with the increasing rotation rate. The grain combination is the main mechanism for grain growth of β phase region. The deformation mechanisms gradually change from dislocation accumulations and rearrangement to dynamic recrystallization from the bottom to the upper surface (1.5 mm–150 μm from the upper surface). The composite exhibits slightly higher microhardness compared with the matrix. This paper provides a new method to obtain a TC4/Zn composite with gradient surface microstructures for potential applications in the biomedical field.
Collapse
|
19
|
Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. COATINGS 2019. [DOI: 10.3390/coatings9040249] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the increasing demand for bone implant therapy, titanium alloy has been widely used in the biomedical field. However, various potential applications of titanium alloy implants are easily hampered by their biological inertia. In fact, the interaction of the implant with tissue is critical to the success of the implant. Thus, the implant surface is modified before implantation frequently, which can not only improve the mechanical properties of the implant, but also polish up bioactivity and osseoconductivity on a cellular level. This paper aims at reviewing titanium surface modification techniques for biomedical applications. Additionally, several other significant aspects are described in detail in this article, for example, micromorphology, microstructure evolution that determines mechanical properties, as well as a number of issues concerning about practical application of biomedical implants.
Collapse
|
20
|
Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Costa Pessoa J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:730-739. [DOI: 10.1016/j.msec.2018.11.090] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
|
21
|
Shirdar MR, Farajpour N, Shahbazian-Yassar R, Shokuhfar T. Nanocomposite materials in orthopedic applications. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-018-1764-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Yang Z, Gu H, Sha G, Lu W, Yu W, Zhang W, Fu Y, Wang K, Wang L. TC4/Ag Metal Matrix Nanocomposites Modified by Friction Stir Processing: Surface Characterization, Antibacterial Property, and Cytotoxicity in Vitro. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41155-41166. [PMID: 30403843 DOI: 10.1021/acsami.8b16343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerous antibacterial biomaterials have been developed, but a majority of them suffer from poor biocompatibility. With the purpose of reducing biomaterial-related infection and cytotoxicity, friction stir processing (FSP) was employed to embed silver nanoparticles (Ag NPs) in a Ti-6Al-4V (TC4) substrate. Characterization using scanning electron microscopy, transmission electron microscopy, and three-dimensional atom probe tomography illustrates that NPs are distributed more homogeneously on the surface of TC4 as the groove depth increases, and silver-rich NPs with a size from 10 to 20 nm exist as metallic silver diffused into the substrate, where the silver content is 4.3-5.6%. Electrochemical impedance spectroscopy shows that both FSP and the addition of silver have positive effects on corrosion resistance. The modified samples effectively inhibit both Staphylococcus aureus and Escherichia coli strains and slightly reduce their adhesion while not displaying any cytotoxicity to bone mesenchymal stem cells in vitro. The antibacterial effect is independent of Ag-ion release and is likely due to the number of embedded silver NPs on the surface, which directly contact and subsequently destroy the cell membrane. Our study shows that the TC4/Ag metal matrix nanocomposite is a potential infection-related biomaterial and that embedding Ag NPs tightly on a biomaterial surface is an effective strategy for striking a balance between the antibacterial effect and biocompatibility, providing an innovative approach for accurately controlling the cytotoxicity of infection-related biomaterials.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medical , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai 200011 , China
| | - Hao Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medical , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai 200011 , China
| | - Gang Sha
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Weijie Lu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Weiqiang Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medical , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai 200011 , China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medical , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai 200011 , China
| | - Yuanfei Fu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medical , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai 200011 , China
| | - Kuaishe Wang
- School of Metallurgical Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
23
|
Rahmati R, Khodabakhshi F. Microstructural evolution and mechanical properties of a friction-stir processed Ti-hydroxyapatite (HA) nanocomposite. J Mech Behav Biomed Mater 2018; 88:127-139. [PMID: 30170192 DOI: 10.1016/j.jmbbm.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 01/11/2023]
Abstract
In this research, a new metal matrix nanocomposite with enhanced capability for biomedical applications was fabricated by incorporation of nano-sized hydroxyapatite (HA) particles within the titanium substrate using multi-pass friction-stir processing (FSP). These n-HA particles were dispersed effectively within the titanium matrix. Titanium metal-matrix was processed without introducing the HA nanoparticles, as well, for the aim of comparison. The results showed the formation of different regions with various microstructural features and mechanical property across the processed materials. A thin layer with ultra-fine grain structure and indentation hardness value of up to ~400 HV was formed on the surface after FSP modification of coarse-grained titanium substrate. This was due to severe shear deformation induced by the rotating shoulder as well as the surface absorption of N and O elements from the atmosphere inside the layer. Incorporation of nanoparticles and subsequent grain structural refinement owing to operative dynamic recrystallization mechanisms leads to a maximum hardness improvement of up to ~250 HV in the lower regions (as compared to the average hardness value of base metal ~150 HV). The FSP modified pure titanium exhibited a good combination of strength and ductility by refining the grain structure with a well-developed dimple-like structure on the fracture surface. For the nanocomposite specimen, the trend of the tensile property was found deteriorative showing the impaired features on the fracture surface. This is attributed to the complex structure of HA compound and low quality of interfacial bonding between the nanoparticles and titanium matrix.
Collapse
Affiliation(s)
- R Rahmati
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz, Iran
| | - F Khodabakhshi
- School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| |
Collapse
|
24
|
Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. Int J Nanomedicine 2018; 13:1881-1898. [PMID: 29636607 PMCID: PMC5880573 DOI: 10.2147/ijn.s154260] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The interaction between the material and the organism affects the survival rate of the orthopedic or dental implant in vivo. Friction stir processing (FSP) is considered a new solid-state processing technology for surface modification. Purpose This study aims to strengthen the surface mechanical properties and promote the osteogenic capacity of the biomaterial by constructing a Ti-6Al-4V (TC4)/zinc (Zn) surface nanocomposites through FSP. Methods FSP was used to modify the surface of TC4. The microstructures and mechanical properties were analyzed by scanning electron microscopy, transmission electron microscopy, nanoindentation and Vickers hardness. The biological properties of the modified surface were evaluated by the in vitro and in vivo study. Results The results showed that nanocrystalline and numerous β regions, grain boundary α phase, coarser acicular α phase and finer acicular martensite α′ appeared because of the severe plastic deformation caused by FSP, resulting in a decreased elastic modulus and an increased surface hardness. With the addition of Zn particles and the enhancement of hydrophilicity, the biocompatibility was greatly improved in terms of cell adhesion and proliferation. The in vitro osteogenic differentiation of rat bone marrow stromal cells and rapid in vivo osseointegration were enhanced on the novel TC4/Zn metal matrix nanocomposite surface. Conclusion These findings suggest that this novel TC4/Zn surface nanocomposite achieved by FSP has significantly improved mechanical properties and biocompatibility, in addition to promoting osseointegration and thus has potential for dental and orthopedic applications.
Collapse
Affiliation(s)
- Chenyuan Zhu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Yuting Lv
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai.,College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Chao Qian
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Zihao Ding
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai.,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ting Jiao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Xiaoyu Gu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Eryi Lu
- Department of Stomatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| |
Collapse
|
25
|
Aghajani Derazkola H, Simchi A. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing. J Mech Behav Biomed Mater 2018; 79:246-253. [PMID: 29335191 DOI: 10.1016/j.jmbbm.2018.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/18/2022]
Abstract
In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al2O3) containing up to 20vol% nanoparticles with an average diameter of 50nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600rpm/min and transverse velocity of 120mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests indicate that the strength and toughness of the material gradually increases with the nanoparticle concentration and reach to a flexural strength of 129MPa, hardness of 101 Shore D, and impact energy 2kJ/m2 for the nanocomposite containing 20vol% alumina. These values are about 10% and 20% better than untreated and FSP-treated PMMA (without alumina addition). Fractographic studies indicate typical brittle features with crack deflection around the nanoparticles. More interestingly, the sliding wear rate in a pin-on-disk configuration and the friction coefficient are reduced up to 50% by addition of alumina nanoparticles. The worn surfaces exhibit typical sliding and ploughing features.
Collapse
Affiliation(s)
- Hamed Aghajani Derazkola
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran, Iran.
| |
Collapse
|
26
|
Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS. The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2661-2669. [DOI: 10.1016/j.nano.2017.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023]
|