1
|
García-Rosales F, Schaworonkow N, Hechavarria JC. Oscillatory Waveform Shape and Temporal Spike Correlations Differ across Bat Frontal and Auditory Cortex. J Neurosci 2024; 44:e1236232023. [PMID: 38262724 PMCID: PMC10919256 DOI: 10.1523/jneurosci.1236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in the cortex relates to local physiology and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e., in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shapes, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in the frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in the frontal and auditory cortex possesses distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
2
|
Macias S, Bakshi K, Troyer T, Smotherman M. The prefrontal cortex of the Mexican free-tailed bat is more selective to communication calls than primary auditory cortex. J Neurophysiol 2022; 128:634-648. [PMID: 35975923 PMCID: PMC9448334 DOI: 10.1152/jn.00436.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the auditory responses of a prefrontal area, the frontal auditory field (FAF), of an echolocating bat (Tadarida brasiliensis) and presented a comparative analysis of the neuronal response properties between the FAF and the primary auditory cortex (A1). We compared single-unit responses from the A1 and the FAF elicited by pure tones, downward frequency-modulated sweeps (dFMs), and species-specific vocalizations. Unlike the A1, FAFs were not frequency tuned. However, progressive increases in dFM sweep rate elicited a systematic increase of response precision, a phenomenon that does not take place in the A1. Call selectivity was higher in the FAF versus A1. We calculated the neuronal spectrotemporal receptive fields (STRFs) and spike-triggered averages (STAs) to predict responses to the communication calls and provide an explanation for the differences in call selectivity between the FAF and A1. In the A1, we found a high correlation between predicted and evoked responses. However, we did not generate reasonable STRFs in the FAF, and the prediction based on the STAs showed lower correlation coefficient than that of the A1. This suggests nonlinear response properties in the FAF that are stronger than the linear response properties in the A1. Stimulating with a call sequence increased call selectivity in the A1, but it remained unchanged in the FAF. These data are consistent with a role for the FAF in assessing distinctive acoustic features downstream of A1, similar to the role proposed for primate ventrolateral prefrontal cortex.NEW & NOTEWORTHY In this study, we examined the neuronal responses of a frontal cortical area in an echolocating bat to behaviorally relevant acoustic stimuli and compared them with those in the primary auditory cortex (A1). In contrast to the A1, neurons in the bat frontal auditory field are not frequency tuned but showed a higher selectivity for social signals such as communication calls. The results presented here indicate that the frontal auditory field may represent an additional processing center for behaviorally relevant sounds.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Todd Troyer
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas
- Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
3
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
González-Palomares E, López-Jury L, Wetekam J, Kiai A, García-Rosales F, Hechavarria JC. Male Carollia perspicillata bats call more than females in a distressful context. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202336. [PMID: 34040789 PMCID: PMC8113905 DOI: 10.1098/rsos.202336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Distress calls are a vocalization type widespread across the animal kingdom, emitted when the animals are under duress, e.g. when captured by a predator. Here, we report on an observation we came across serendipitously while recording distress calls from the bat species Carollia perspicillata, i.e. the existence of sex difference in the distress calling behaviour of this species. We show that in C. perspicillata bats, males are more likely to produce distress vocalizations than females when hand-held. Male bats call more, their calls are louder, harsher (faster amplitude modulated) and cover lower carrier frequencies than female vocalizations. We discuss our results within a framework of potential hormonal, neurobiological and behavioural differences that could explain our findings, and open multiple paths to continue the study of sex-related differences in vocal behaviour in bats.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Johannes Wetekam
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ava Kiai
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francisco García-Rosales
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Julio C. Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Enhanced representation of natural sound sequences in the ventral auditory midbrain. Brain Struct Funct 2020; 226:207-223. [PMID: 33315120 PMCID: PMC7817570 DOI: 10.1007/s00429-020-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The auditory midbrain (inferior colliculus, IC) plays an important role in sound processing, acting as hub for acoustic information extraction and for the implementation of fast audio-motor behaviors. IC neurons are topographically organized according to their sound frequency preference: dorsal IC regions encode low frequencies while ventral areas respond best to high frequencies, a type of sensory map defined as tonotopy. Tonotopic maps have been studied extensively using artificial stimuli (pure tones) but our knowledge of how these maps represent information about sequences of natural, spectro-temporally rich sounds is sparse. We studied this question by conducting simultaneous extracellular recordings across IC depths in awake bats (Carollia perspicillata) that listened to sequences of natural communication and echolocation sounds. The hypothesis was that information about these two types of sound streams is represented at different IC depths since they exhibit large differences in spectral composition, i.e., echolocation covers the high-frequency portion of the bat soundscape (> 45 kHz), while communication sounds are broadband and carry most power at low frequencies (20–25 kHz). Our results showed that mutual information between neuronal responses and acoustic stimuli, as well as response redundancy in pairs of neurons recorded simultaneously, increase exponentially with IC depth. The latter occurs regardless of the sound type presented to the bats (echolocation or communication). Taken together, our results indicate the existence of mutual information and redundancy maps at the midbrain level whose response cannot be predicted based on the frequency composition of natural sounds and classic neuronal tuning curves.
Collapse
|
6
|
García-Rosales F, López-Jury L, González-Palomares E, Cabral-Calderín Y, Kössl M, Hechavarria JC. Phase-amplitude coupling profiles differ in frontal and auditory cortices of bats. Eur J Neurosci 2020; 55:3483-3501. [PMID: 32979875 DOI: 10.1111/ejn.14986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1-4 Hz), theta (4-8 Hz) or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase-amplitude coupling (PAC) is one such plausible and well-described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal-auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local-field potentials (LFPs), we show that the amplitude of gamma-band activity couples with the phase of low-frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high-gamma frequencies (1-4/75-100 Hz), whereas in the AC the coupling is strongest in the delta-theta/low-gamma (2-8/25-55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal-auditory cortex network.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| | | | - Yuranny Cabral-Calderín
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| |
Collapse
|
7
|
Hechavarría JC, Jerome Beetz M, García-Rosales F, Kössl M. Bats distress vocalizations carry fast amplitude modulations that could represent an acoustic correlate of roughness. Sci Rep 2020; 10:7332. [PMID: 32355293 PMCID: PMC7192923 DOI: 10.1038/s41598-020-64323-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Communication sounds are ubiquitous in the animal kingdom, where they play a role in advertising physiological states and/or socio-contextual scenarios. Human screams, for example, are typically uttered in fearful contexts and they have a distinctive feature termed as "roughness", which depicts amplitude fluctuations at rates from 30-150 Hz. In this article, we report that the occurrence of fast acoustic periodicities in harsh sounding vocalizations is not unique to humans. A roughness-like structure is also present in vocalizations emitted by bats (species Carollia perspicillata) in distressful contexts. We report that 47.7% of distress calls produced by bats carry amplitude fluctuations at rates ~1.7 kHz (>10 times faster than temporal modulations found in human screams). In bats, rough-like vocalizations entrain brain potentials and are more effective in accelerating the bats' heart rate than slow amplitude modulated sounds. Our results are consistent with a putative role of fast amplitude modulations (roughness in humans) for grabbing the listeners attention in situations in which the emitter is in distressful, potentially dangerous, contexts.
Collapse
Affiliation(s)
- Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany.
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
- Zoology II Emmy-Noether Animal Navigation Group, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
8
|
García-Rosales F, López-Jury L, González-Palomares E, Cabral-Calderín Y, Hechavarría JC. Fronto-Temporal Coupling Dynamics During Spontaneous Activity and Auditory Processing in the Bat Carollia perspicillata. Front Syst Neurosci 2020; 14:14. [PMID: 32265670 PMCID: PMC7098971 DOI: 10.3389/fnsys.2020.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Most mammals rely on the extraction of acoustic information from the environment in order to survive. However, the mechanisms that support sound representation in auditory neural networks involving sensory and association brain areas remain underexplored. In this study, we address the functional connectivity between an auditory region in frontal cortex (the frontal auditory field, FAF) and the auditory cortex (AC) in the bat Carollia perspicillata. The AC is a classic sensory area central for the processing of acoustic information. On the other hand, the FAF belongs to the frontal lobe, a brain region involved in the integration of sensory inputs, modulation of cognitive states, and in the coordination of behavioral outputs. The FAF-AC network was examined in terms of oscillatory coherence (local-field potentials, LFPs), and within an information theoretical framework linking FAF and AC spiking activity. We show that in the absence of acoustic stimulation, simultaneously recorded LFPs from FAF and AC are coherent in low frequencies (1-12 Hz). This "default" coupling was strongest in deep AC layers and was unaltered by acoustic stimulation. However, presenting auditory stimuli did trigger the emergence of coherent auditory-evoked gamma-band activity (>25 Hz) between the FAF and AC. In terms of spiking, our results suggest that FAF and AC engage in distinct coding strategies for representing artificial and natural sounds. Taken together, our findings shed light onto the neuronal coding strategies and functional coupling mechanisms that enable sound representation at the network level in the mammalian brain.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany
| | | | - Yuranny Cabral-Calderín
- Research Group Neural and Environmental Rhythms, MPI for Empirical Aesthetics, Frankfurt, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany
| |
Collapse
|
9
|
Neural oscillations in the fronto-striatal network predict vocal output in bats. PLoS Biol 2020; 18:e3000658. [PMID: 32191695 PMCID: PMC7081985 DOI: 10.1371/journal.pbio.3000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50–80 Hz and 12–30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4–8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats. In bats, rhythmic activity in frontal and striatal areas of the brain provide a neural correlate for vocal control, which can be used to predict whether the ensuing vocalizations are for echolocation or social communication.
Collapse
|
10
|
Neural Modulation of the Primary Auditory Cortex by Intracortical Microstimulation with a Bio-Inspired Electronic System. Bioengineering (Basel) 2020; 7:bioengineering7010023. [PMID: 32131459 PMCID: PMC7175366 DOI: 10.3390/bioengineering7010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Nowadays, the majority of the progress in the development of implantable neuroprostheses has been achieved by improving the knowledge of brain functions so as to restore sensorial impairments. Intracortical microstimulation (ICMS) is a widely used technique to investigate site-specific cortical responses to electrical stimuli. Herein, we investigated the neural modulation induced in the primary auditory cortex (A1) by an acousto-electric transduction of ultrasonic signals using a bio-inspired intracortical microstimulator. The developed electronic system emulates the transduction of ultrasound signals in the cochlea, providing bio-inspired electrical stimuli. Firstly, we identified the receptive fields in the primary auditory cortex devoted to encoding ultrasonic waves at different frequencies, mapping each area with neurophysiological patterns. Subsequently, the activity elicited by bio-inspired ICMS in the previously identified areas, bypassing the sense organ, was investigated. The observed evoked response by microstimulation resulted as highly specific to the stimuli, and the spatiotemporal dynamics of neural oscillatory activity in the alpha, beta, and gamma waves were related to the stimuli preferred by the neurons at the stimulated site. The alpha waves modulated cortical excitability only during the activation of the specific tonotopic neuronal populations, inhibiting neural responses in unrelated areas. Greater neuronal activity in the posterior area of A1 was observed in the beta band, whereas a gamma rhythm was induced in the anterior A1. The results evidence that the proposed bio-inspired acousto-electric ICMS triggers high-frequency oscillations, encoding information about the stimulation sites and involving a large-scale integration in the brain.
Collapse
|
11
|
Wetekam J, Reissig C, Hechavarria JC, Kössl M. Auditory brainstem responses in the bat Carollia perspicillata: threshold calculation and relation to audiograms based on otoacoustic emission measurement. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:95-101. [PMID: 31853637 DOI: 10.1007/s00359-019-01394-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 01/16/2023]
Abstract
An objective method to evaluate auditory brainstem-evoked responses (ABR) based on the root-mean-square (rms) amplitude of the measured signal and bootstrapping procedures was used to determine threshold curves (see Lv et al. in Med Eng Phys 29:191-198, 2007; Linnenschmidt and Wiegrebe in Hear Res 373:85-95, 2019). The rms values and their significance for threshold determination depended strongly on the filtering of the signal. Using the minimum threshold values obtained at three different low-frequency filter corner frequencies (30, 100, 300 Hz), ABR threshold curves were calculated. The course of the ABR thresholds was comparable to that of published DPOAE (distortion-product otoacoustic emission) thresholds based on a - 10 dB SPL threshold criterion for the 2f1-f2 emission (Schlenther et al. in J Assoc Res Otolaryngol 15:695-705, 2014, frequency range 10-90 kHz). For frequencies between 20 and 80 kHz, which is the most sensitive part of the bat's audiogram, median thresholds ranged between 10 and 28 dB SPL, and the DPOAE thresholds ranged between 10 and 23 dB SPL. At frequencies below 20 kHz (5-20 kHz) and above 80 kHz (80-120 kHz), ABR thresholds increased by 20 dB/octave and 45 dB/octave, respectively. We conclude that the combination of objective threshold determination and multiple filtering of the signal gives reliable ABR thresholds comparable to cochlear threshold curves.
Collapse
Affiliation(s)
- Johannes Wetekam
- Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60439, Frankfurt, Germany
| | - Christin Reissig
- Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60439, Frankfurt, Germany
| | - Julio C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60439, Frankfurt, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60439, Frankfurt, Germany.
| |
Collapse
|
12
|
García-Rosales F, Röhrig D, Weineck K, Röhm M, Lin YH, Cabral-Calderin Y, Kössl M, Hechavarria JC. Laminar specificity of oscillatory coherence in the auditory cortex. Brain Struct Funct 2019; 224:2907-2924. [PMID: 31456067 DOI: 10.1007/s00429-019-01944-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Empirical evidence suggests that, in the auditory cortex (AC), the phase relationship between spikes and local-field potentials (LFPs) plays an important role in the processing of auditory stimuli. Nevertheless, unlike the case of other sensory systems, it remains largely unexplored in the auditory modality whether the properties of the cortical columnar microcircuit shape the dynamics of spike-LFP coherence in a layer-specific manner. In this study, we directly tackle this issue by addressing whether spike-LFP and LFP-stimulus phase synchronization are spatially distributed in the AC during sensory processing, by performing laminar recordings in the cortex of awake short-tailed bats (Carollia perspicillata) while animals listened to conspecific distress vocalizations. We show that, in the AC, spike-LFP and LFP-stimulus synchrony depend significantly on cortical depth, and that sensory stimulation alters the spatial and spectral patterns of spike-LFP phase-locking. We argue that such laminar distribution of coherence could have functional implications for the representation of naturalistic auditory stimuli at a cortical level.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - Dennis Röhrig
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Kristin Weineck
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Mira Röhm
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Yi-Hsuan Lin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Yuranny Cabral-Calderin
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322, Frankfurt/Main, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
13
|
Wu X, Pang Y, Luo B, Wang M, Feng J. Function of Distress Calls in Least Horseshoe Bats: A Field Study Using Playback Experiments. ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2018.20.2.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiu Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
| | - Yulan Pang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
| | - Man Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 255 Jingyue Street, Changchun 130117, China
| |
Collapse
|
14
|
García-Rosales F, Beetz MJ, Cabral-Calderin Y, Kössl M, Hechavarria JC. Neuronal coding of multiscale temporal features in communication sequences within the bat auditory cortex. Commun Biol 2018; 1:200. [PMID: 30480101 PMCID: PMC6244232 DOI: 10.1038/s42003-018-0205-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022] Open
Abstract
Experimental evidence supports that cortical oscillations represent multiscale temporal modulations existent in natural stimuli, yet little is known about the processing of these multiple timescales at a neuronal level. Here, using extracellular recordings from the auditory cortex (AC) of awake bats (Carollia perspicillata), we show the existence of three neuronal types which represent different levels of the temporal structure of conspecific vocalizations, and therefore constitute direct evidence of multiscale temporal processing of naturalistic stimuli by neurons in the AC. These neuronal subpopulations synchronize differently to local-field potentials, particularly in theta- and high frequency bands, and are informative to a different degree in terms of their spike rate. Interestingly, we also observed that both low and high frequency cortical oscillations can be highly informative about the listened calls. Our results suggest that multiscale neuronal processing allows for the precise and non-redundant representation of natural vocalizations in the AC.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany.
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
- Department of Zoology II, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Yuranny Cabral-Calderin
- MEG Labor, Brain Imaging Center, Goethe-Universität, 60528, Frankfurt/M., Germany
- German Resilience Center, University Medical Center Mainz, 55131, Mainz, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany.
| |
Collapse
|
15
|
García-Rosales F, Martin LM, Beetz MJ, Cabral-Calderin Y, Kössl M, Hechavarria JC. Low-Frequency Spike-Field Coherence Is a Fingerprint of Periodicity Coding in the Auditory Cortex. iScience 2018; 9:47-62. [PMID: 30384133 PMCID: PMC6214842 DOI: 10.1016/j.isci.2018.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 11/04/2022] Open
Abstract
The extraction of temporal information from sensory input streams is of paramount importance in the auditory system. In this study, amplitude-modulated sounds were used as stimuli to drive auditory cortex (AC) neurons of the bat species Carollia perspicillata, to assess the interactions between cortical spikes and local-field potentials (LFPs) for the processing of temporal acoustic cues. We observed that neurons in the AC capable of eliciting synchronized spiking to periodic acoustic envelopes were significantly more coherent to theta- and alpha-band LFPs than their non-synchronized counterparts. These differences occurred independently of the modulation rate tested and could not be explained by power or phase modulations of the field potentials. We argue that the coupling between neuronal spiking and the phase of low-frequency LFPs might be important for orchestrating the coding of temporal acoustic structures in the AC. Auditory cortical neurons can track periodic sounds via synchronized spiking Neuronal synchronization ability is well marked by theta-alpha spike-LFP coherence Spike-LFP coherence patterns are independent of the stimulus' periodicity Theta-alpha LFPs may orchestrate phase-locked neuronal responses to periodic sounds
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Lisa M Martin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Yuranny Cabral-Calderin
- MEG Labor, Brain Imaging Center, Goethe-Universität, 60528 Frankfurt am Main, Germany; German Resilience Center, University Medical Center Mainz, Mainz, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Martin LM, García-Rosales F, Beetz MJ, Hechavarría JC. Processing of temporally patterned sounds in the auditory cortex of Seba's short-tailed bat,Carollia perspicillata. Eur J Neurosci 2018; 46:2365-2379. [PMID: 28921742 DOI: 10.1111/ejn.13702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022]
Abstract
This article presents a characterization of cortical responses to artificial and natural temporally patterned sounds in the bat species Carollia perspicillata, a species that produces vocalizations at rates above 50 Hz. Multi-unit activity was recorded in three different experiments. In the first experiment, amplitude-modulated (AM) pure tones were used as stimuli to drive auditory cortex (AC) units. AC units of both ketamine-anesthetized and awake bats could lock their spikes to every cycle of the stimulus modulation envelope, but only if the modulation frequency was below 22 Hz. In the second experiment, two identical communication syllables were presented at variable intervals. Suppressed responses to the lagging syllable were observed, unless the second syllable followed the first one with a delay of at least 80 ms (i.e., 12.5 Hz repetition rate). In the third experiment, natural distress vocalization sequences were used as stimuli to drive AC units. Distress sequences produced by C. perspicillata contain bouts of syllables repeated at intervals of ~60 ms (16 Hz). Within each bout, syllables are repeated at intervals as short as 14 ms (~71 Hz). Cortical units could follow the slow temporal modulation flow produced by the occurrence of multisyllabic bouts, but not the fast acoustic flow created by rapid syllable repetition within the bouts. Taken together, our results indicate that even in fast vocalizing animals, such as bats, cortical neurons can only track the temporal structure of acoustic streams modulated at frequencies lower than 22 Hz.
Collapse
Affiliation(s)
- Lisa M Martin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| |
Collapse
|
17
|
Beetz MJ, García-Rosales F, Kössl M, Hechavarría JC. Robustness of cortical and subcortical processing in the presence of natural masking sounds. Sci Rep 2018; 8:6863. [PMID: 29717258 PMCID: PMC5931562 DOI: 10.1038/s41598-018-25241-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany. .,Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| |
Collapse
|
18
|
Beetz MJ, Kordes S, García-Rosales F, Kössl M, Hechavarría JC. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata. eNeuro 2017; 4:ENEURO.0314-17.2017. [PMID: 29242823 PMCID: PMC5729038 DOI: 10.1523/eneuro.0314-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022] Open
Abstract
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sebastian Kordes
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
19
|
Schaefer MK, Kössl M, Hechavarría JC. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils. PLoS One 2017; 12:e0182514. [PMID: 28771568 PMCID: PMC5542772 DOI: 10.1371/journal.pone.0182514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA) as well as local field potentials (LFP), and current source density (CSD) waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns) could indeed be important for encoding sounds that differ in their acoustic attributes.
Collapse
Affiliation(s)
- Markus K. Schaefer
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
| | - Julio C. Hechavarría
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|