1
|
Qu M, Miao L, Chen H, Zhang X, Wang Y. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131840. [PMID: 37327611 DOI: 10.1016/j.jhazmat.2023.131840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of nanoplastics on transgenerational toxicity in environmental organisms and the involved mechanisms remain poorly comprehended. This study aimed to identify the role of SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis in response to transgenerational toxicity caused by changes in nanoplastic surface charges in Caenorhabditis elegans (C. elegans). Our results revealed that compared with the wild-type control and PS exposed groups, exposure to PS-NH2 or PS-SOOOH at environmentally relevant concentrations (ERC) of ≥ 1 μg/L caused transgenerational reproductive toxicity, inhibited mitochondrial unfolded protein responses (UPR) by downregulating the transcription levels of hsp-6, ubl-5, dve-1, atfs-1, haf-1, and clpp-1, membrane potential by downregulating phb-1 and phb-2, and promoted mitochondrial apoptosis by downregulating ced-4 and ced-3 and upregulating ced-9, DNA damage by upregulating hus-1, cep-1, egl-1, reactive oxygen species (ROS) by upregulating nduf-7 and nuo-6, ultimately resulting in mitochondrial homeostasis. Additionally, further study indicated that SKN-1/Nrf2 mediated antioxidant response to alleviate PS-induced toxicity in the P0 generation and dysregulated mitochondrial homeostasis to enhance PS-NH2 or PS-SOOOH-induced transgenerational toxicity. Our study highlights the momentous role of SKN-1/Nrf2 mediated mitochondrial homeostasis in the response to nanoplastics caused transgenerational toxicity in environmental organisms.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
2
|
Sivaselvam S, Mohankumar A, Narmadha R, Selvakumar R, Sundararaj P, Viswanathan C, Ponpandian N. Effect of gamma-ray irradiated reduced graphene oxide (rGO) on environmental health: An in-vitro and in-vivo studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120933. [PMID: 36565492 DOI: 10.1016/j.envpol.2022.120933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The unique properties of reduced graphene oxide (rGO) have drawn the attention of scientists worldwide since the last decade and it is explored for a wide range of applications. However, the rapid expansion of rGO use in various products will eventually lead to environenal exposure and rises a safety concern on the environment and humal health risk. Moreover, the utilization of toxic chemicals for the reduction of graphene oxide (GO) into rGO is not environmentally friendly, warranting the exploration of non-toxic approaches. In the present work, rGO was synthesized using a different dose of gamma-ray irradiation and characterized. The in-vitro and in-vivo analysis indicated that the gamma-irradiated rGO induced toxicity depending on its degree of reduction and dosage. In the L929 cells, rGO-30 KGy significantly induced cytotoxicity even at low concentration (1 mg L-1) by inducing reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme production, nuclear fragmentation and apoptosis. The change in morphology of the cells like membrane blebbing and cell rounding was also observed via FESEM. In the in-vivo model Caenorhabditis elegans, rGO-30 KGy significantly affected the functioning of primary and secondary targeted organs and also negatively influenced the nuclear accumulation of transcription factors (DAF-16/FOXO and SKN-1/Nrf2), neuronal health, and antioxidant defense mechanism of the nematodes. The real-time PCR analysis showed significant up-regulation (ced-3, ced-4, cep-1, egl-1, and hus-1) and down-regulation (ced-9) of the gene involved in germ-line and DNA damage-induced apoptosis. The detailed toxicity mechanism of gamma irradiated rGO has been elucidated. This work highlights the toxicity of rGO prepared by gamma-ray radiation and paves way for understating the toxicity mechanism.
Collapse
Affiliation(s)
- S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - A Mohankumar
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - R Narmadha
- Nanobiotechnology Laboratory, Department of Nanobiotechnology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - R Selvakumar
- Nanobiotechnology Laboratory, Department of Nanobiotechnology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
3
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
4
|
Liu P, Shao H, Kong Y, Wang D. Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans. J Environ Sci (China) 2020; 88:200-208. [PMID: 31862061 DOI: 10.1016/j.jes.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to engineered nanomaterials (ENMs), such as graphene oxide (GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction. Wnt signaling pathway is conserved evolutionarily in organisms. Using Caenorhabditis elegans as an in vivo assay model, we investigated the effect of GO exposure on intestinal Wnt signaling. In the intestine, GO exposure dysregulated Frizzled receptor MOM-5, Disheveled protein DSH-2, GSK-3 (a component of APC complex), and two β-catenin proteins (BAR-1 and HMP-2), which mediated the induction of GO toxicity. In GO exposed nematodes, a Hox protein EGL-5 acted as a downstream target of BAR-1, and fatty acid transport ACS-22 acted as a downstream target of HMP-2. Functional analysis on HMP-2 and ACS-22 suggested that the dysregulation of these two proteins provides an important basis for the observed deficit in functional state of intestinal barrier. Our results imply the association of dysregulation in physiological and functional states of intestinal barrier with toxicity induction of GO in organisms.
Collapse
Affiliation(s)
- Peidang Liu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huimin Shao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yan Kong
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Rui Q, Dong S, Jiang W, Wang D. Response of canonical Wnt/β-catenin signaling pathway in the intestine to microgravity stress in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109782. [PMID: 31614302 DOI: 10.1016/j.ecoenv.2019.109782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Considering the short life-cycle property, Caenorhabditis elegans is a suitable animal model to evaluate the long-term effects of microgravity stress on organisms. Canonical Wnt/β-catenin signaling is evolutionarily conserved in various organisms. We here investigated the response of canonical Wnt/β-catenin signaling pathway to microgravity stress in nematodes. We observed the noticeable response of canonical Wnt/β-catenin signaling to microgravity stress. In contrast, we did not detect the obvious response of non-canonical Wnt/β-catenin signaling to microgravity stress. The canonical β-catenin BAR-1 acted in the intestine to regulate the response to simulated microgravity. Moreover, in the intestine, we identified a signaling cascade of canonical Wnt/β-catenin signaling pathway in response to simulated microgravity, and this signaling cascade contained Frizzled receptor MIG-1, Disheveled protein DSH-2, GSK3A/GSK-3, and β-catenin transcriptional factor BAR-1. Our data suggests an important protective response of canonical Wnt/β-catenin signaling to simulated microgravity in nematodes.
Collapse
Affiliation(s)
- Qi Rui
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuangshuang Dong
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkang Jiang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Kim M, Eom HJ, Choi I, Hong J, Choi J. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans. Neurotoxicology 2019; 77:30-39. [PMID: 31862286 DOI: 10.1016/j.neuro.2019.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) and graphene-based nanomaterials have been widely applied in recent years, but their potential health risk and neurotoxic potentials remain poorly understood. In this study, neurotoxic potential of GO and its underlying molecular and cellular mechanism were investigated using the nematode, Caenorhabditis elegans. Deposition of GO in the head region and increased reactive oxygen species (ROS) was observed in C. elegans after exposure to GO. The neurotoxic potential of GO was then investigated, focusing on neurotransmitters contents and neuronal activity using AFD sensory neurons. The contents of all neurotransmitters, such as, tyrosine, tryptophan, dopamine, tyramine, and GABA, decreased significantly by GO exposure. Decreased fluorescence of Pgcy-8:GFP, a marker of AFD sensory neuron, by GO exposure suggested GO could cause neuronal damage on AFD neuron. GO exposure led decreased expression of ttx-1 and ceh-14, genes required for the function of AFD neurons also confirmed possible detrimental effect of GO to AFD neuron. To understand physiological meaning of AFD neuronal damage by GO exposure, locomotive behavior was then investigated in wild-type as well as in loss-of-function mutants of ttx-1 and ceh-14. GO exposure significantly altered locomotor behavior markers, such as, speed, acceleration, stop time, etc., in wild-type C. elegans, which were mostly rescued in AFD neuron mutants. The present study suggested the GO possesses neurotoxic potential, especially on neurotransmitters and AFD neuron in C. elegans. These findings provide useful information to understand the neurotoxic potential of GO and other graphene-based nanomaterials, which will guide their safe application.
Collapse
Affiliation(s)
- Mina Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
7
|
Zhang P, Misra S, Guo Z, Rehkämper M, Valsami-Jones E. Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing. Nat Protoc 2019; 14:2878-2899. [PMID: 31515516 DOI: 10.1038/s41596-019-0205-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/03/2019] [Indexed: 01/20/2023]
Abstract
Engineered nanomaterials (NMs) are often compositionally indistinguishable from their natural counterparts, and thus their tracking in the environment or within the biota requires the development of appropriate labeling tools. Stable isotope labeling has become a well-established such tool, developed to assign 'ownership' or a 'source' to engineered NMs, enabling their tracing and quantification, especially in complex environments. A particular methodological challenge for stable isotope labeling is to ensure that the label is traceable in a range of environmental or biological scenarios but does not induce modification of the properties of the NM or lose its signal, thus retaining realism and relevance. This protocol describes a strategy for stable isotope labeling of several widely used metal and metal oxide NMs, namely ZnO, CuO, Ag, and TiO2, using isotopically enriched precursors, namely 67Zn or 68Zn metal, 65CuCl2, 107Ag or 109Ag metal, and 47TiO2 powder. A complete synthesis requires 1-8 d, depending on the type of NM, the precursors used, and the synthesis methods adopted. The physicochemical properties of the labeled particles are determined by optical, diffraction, and spectroscopic techniques for quality control. The procedures for tracing the labels in aquatic (snail and mussel) and terrestrial (earthworm) organisms and for monitoring the environmental transformation of labeled silver (Ag) NMs are also described. We envision that this labeling strategy will be adopted by industry to facilitate applications such as nanosafety assessments before NMs enter the market and environment, as well as for product authentication and tracking.
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Superb Misra
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Liu P, Shao H, Ding X, Yang R, Rui Q, Wang D. Dysregulation of Neuronal Gαo Signaling by Graphene Oxide in Nematode Caenorhabditis elegans. Sci Rep 2019; 9:6026. [PMID: 30988375 PMCID: PMC6465305 DOI: 10.1038/s41598-019-42603-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/28/2019] [Indexed: 12/29/2022] Open
Abstract
Exposure to graphene oxide (GO) induced some dysregulated microRNAs (miRNAs), such as the increase in mir-247, in nematode Caenorhabditis elegans. We here further identified goa-1 encoding a Gαo and pkc-1 encoding a serine/threonine protein kinase as the targets of neuronal mir-247 in the regulation of GO toxicity. GO exposure increased the expressions of both GOA-1 and PKC-1. Mutation of goa-1 or pkc-1 induced a susceptibility to GO toxicity, and suppressed the resistance of mir-247 mutant to GO toxicity. GOA-1 and PKC-1 could also act in the neurons to regulate the GO toxicity, and neuronal overexpression of mir-247 could not affect the resistance of nematodes overexpressing neuronal goa-1 or pkc-1 lacking 3'-UTR to GO toxicity. In the neurons, GOA-1 acted upstream of diacylglycerol kinase/DGK-1 and PKC-1 to regulate the GO toxicity. Moreover, DGK-1 and GOA-1 functioned synergistically in the regulation of GO toxicity. Our results highlight the crucial role of neuronal Gαo signaling in response to GO in nematodes.
Collapse
Affiliation(s)
- Peidang Liu
- Medical School, Southeast University, Nanjing, 210009, China
| | - Huimin Shao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xuecheng Ding
- Medical School, Southeast University, Nanjing, 210009, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruilong Yang
- Medical School, Southeast University, Nanjing, 210009, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Qu M, Xu K, Li Y, Wong G, Wang D. Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:119-126. [PMID: 29936155 DOI: 10.1016/j.scitotenv.2018.06.173] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 05/02/2023]
Abstract
In this study, we employed Caenorhabditis elegans with acs-22 mutation to examine the in vivo effect of functional deficit in intestinal barrier on toxicity and translocation of nanopolystyrene particles. Mutation of acs-22 leads to deficit in intestinal barrier. After prolonged exposure, nanopolystyrene particles at concentrations ≥1 μg/L could cause toxicity on acs-22 mutant nematodes. acs-22 mutation resulted in translocation of nanopolystyrene particles into targeted organs through intestinal barrier in nanopolystyrene particles (1 μg/L) exposed nematodes. After prolonged exposure, nanopolystyrene particles (1 μg/L) dysregulated expressions of some genes required for the control of oxidative stress and activated expression of Nrf signaling pathway. Therefore, under certain pathological conditions, our results suggest the potential toxicity of nanoplastic particles at predicted environmental concentration on organisms after long-term exposure.
Collapse
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Kangni Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yunhui Li
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
11
|
Zhao L, Kong J, Krasteva N, Wang D. Deficit in the epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res (Camb) 2018; 7:1061-1070. [PMID: 30510679 PMCID: PMC6220715 DOI: 10.1039/c8tx00136g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
The developmental basis for the epidermal barrier against the translocation of nanomaterials is still largely unclear in organisms. We here investigated the effect of deficits in the epidermal barrier on the translocation and toxicity of PEG modified graphene oxide (GO-PEG) in Caenorhabditis elegans. In wild-type or NR222 nematodes, GO-PEG exposure did not cause toxicity and affect the expression of epidermal-development related genes. However, GO-PEG exposure resulted in toxicity in mlt-7(RNAi) nematodes with deficit in the function of epidermal barrier. Epidermal RNAi knockdown of mlt-7 allowed GO-PEG accumulation and translocation into targeted organs through the epidermal barrier. Epidermal-development related proteins of BLI-1 and IFB-1 were identified as targets for MLT-7 in the regulation of GO-PEG toxicity and accounted for MLT-7 function in maintaining the epidermal barrier. AAK-2, a catalytic α subunit of AMP-activated protein kinase, was identified as another target for MLT-7 in the regulation of GO-PEG toxicity. AAK-2 functioned synergistically with BLI-1 or IFB-1 in the regulation of GO-PEG toxicity. Our data provide the molecular basis for the role of epidermal barrier against the toxicity and translocation of nanomaterials in organisms.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Jingting Kong
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering , Bulgarian Academy of Science , Sofia 1113 , Bulgaria
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
12
|
Dong S, Qu M, Rui Q, Wang D. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:444-450. [PMID: 29909313 DOI: 10.1016/j.ecoenv.2018.06.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 05/09/2023]
Abstract
The possible adverse effects of nanoplastics have received the great attention recently; however, their effects at environmentally relevant concentration on organisms are still largely unclear. We here employed Caenorhabditis elegans to investigate the combinational effects of titanium dioxide nanoparticles (TiO2-NPs) and nanopolystyrene particles at environmentally relevant concentrations on organisms. In wild-type nematodes, prolonged exposure to nanopolystyrene particles (1 μg/L) could enhance the toxicity of TiO2-NPs (1 μg/L) in decreasing locomotion behavior and in inducing intestinal reactive oxygen species (ROS) production. Meanwhile, combinational exposure to TiO2-NPs (1 μg/L) and nanopolystyrene particles (1 μg/L) altered the molecular basis for oxidative stress in wild-type nematodes. Moreover, prolonged exposure to nanopolystyrene particles (0.1 μg/L) could further enhance the toxicity of TiO2-NPs (1 μg/L) in decreasing locomotion behavior and in inducing intestinal ROS production in sod-3 mutant nematodes. Our data suggest the potential role of nanopolystyrene particles at environmentally relevant concentrations in enhancing the toxicity of ENMs in the environment.
Collapse
Affiliation(s)
- Shuangshuang Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservior in the quiet season in Caenorhabditis elegans. Sci Rep 2018; 8:14102. [PMID: 30237459 PMCID: PMC6148280 DOI: 10.1038/s41598-018-32296-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
We here employed a model animal of Caenorhabditis elegans to perform toxicity assessment of original surface water samples collected from Three Gorges Reservoir (TGR) in the quiet season in Wanzhou, Chongqing. Using some sublethal endpoints, including lifespan, body length, locomotion behavior, brood size, and intestinal reactive oxygen species (ROS) induction, we found that the examined five original surface water samples could not cause toxicity on wild-type nematodes. Nevertheless, the surface water sample collected from backwater area induced the significant increase in expressions of genes (sod-2 and sod-3) encoding Mn-SODs in wild-type nematodes. Among the examined five original surface water samples, exposure to the original surface water sample collected from backwater area could further cause the toxicity in decreasing locomotion behavior and in inducing intestinal ROS production in sod-3 mutant nematodes. Moreover, the solid phase of surface water sample collected from backwater area might mainly contribute to the observed toxicity in sod-3 mutant nematodes. Our results are helpful for understanding the potential effects of surface water in the TGR region in the quiet season on environmental organisms.
Collapse
|
14
|
Ren M, Zhao L, Ding X, Krasteva N, Rui Q, Wang D. Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 2018; 15:26. [PMID: 29929559 PMCID: PMC6013870 DOI: 10.1186/s12989-018-0262-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/21/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intestinal barrier is crucial for animals against translocation of engineered nanomaterials (ENMs) into secondary targeted organs. However, the molecular mechanisms for the role of intestinal barrier against ENMs toxicity are still largely unclear. The intestine of Caenorhabditis elegans is a powerful in vivo experimental system for the study on intestinal function. In this study, we investigated the molecular basis for intestinal barrier against toxicity and translocation of graphene oxide (GO) using C. elegans as a model animal. RESULTS Based on the genetic screen of genes required for the control of intestinal development at different aspects using intestine-specific RNA interference (RNAi) technique, we identified four genes (erm-1, pkc-3, hmp-2 and act-5) required for the function of intestinal barrier against GO toxicity. Under normal conditions, mutation of any of these genes altered the intestinal permeability. With the focus on PKC-3, an atypical protein kinase C, we identified an intestinal signaling cascade of PKC-3-SEC-8-WTS-1, which implies that PKC-3 might regulate intestinal permeability and GO toxicity by affecting the function of SEC-8-mediated exocyst complex and the role of WTS-1 in maintaining integrity of apical intestinal membrane. ISP-1 and SOD-3, two proteins required for the control of oxidative stress, were also identified as downstream targets for PKC-3, and functioned in parallel with WTS-1 in the regulation of GO toxicity. CONCLUSIONS Using C. elegans as an in vivo assay system, we found that several developmental genes required for the control of intestinal development regulated both the intestinal permeability and the GO toxicity. With the focus on PKC-3, we raised two intestinal signaling cascades, PKC-3-SEC-8-WTS-1 and PKC-3-ISP-1/SOD-3. Our results will strengthen our understanding the molecular basis for developmental machinery of intestinal barrier against GO toxicity and translocation in animals.
Collapse
Affiliation(s)
- Mingxia Ren
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| |
Collapse
|
15
|
Xiao G, Chen H, Krasteva N, Liu Q, Wang D. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanobiotechnology 2018; 16:45. [PMID: 29703212 PMCID: PMC5921546 DOI: 10.1186/s12951-018-0373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND So far, how the animals evade the environmental nanomaterials is still largely unclear. In this study, we employed in vivo assay system of Caenorhabditis elegans to investigate the aversive behavior of nematodes to graphene oxide (GO) and the underlying neuronal basis. RESULTS In this assay model, we detected the significant aversive behavior of nematodes to GO at concentrations more than 50 mg/L. Loss-of-function mutation of nlg-1 encoding a neuroligin with the function in connecting pre- and post-synaptic neurons suppressed the aversive behavior of nematodes to GO. Moreover, based on the neuron-specific activity assay, we found that the NLG-1 activity in AIY or AIB interneurons was required for the regulation of aversive behavior to GO. The neuron-specific activities of NLG-1 in AIY or AIB interneurons were also required for the regulation of GO toxicity. CONCLUSIONS Using nlg-1 mutant as a genetic tool, we identified the AIY and AIB interneurons required for the regulation of aversive behavior to GO. Our results provide an important neuronal basis for the aversive response of animals to environmental nanomaterials.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, 1113, Bulgaria
| | - Qizhan Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Ding X, Wang J, Rui Q, Wang D. Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:29-37. [PMID: 29107776 DOI: 10.1016/j.scitotenv.2017.10.307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
The in vivo toxicity and translocation of thiolated graphene oxide (GO-SH) are still largely unclear. We hypothesized that long-term exposure to GO-SH may cause the adverse effects on environmental organisms. We here employed in vivo assay system of Caenorhabditis elegans to investigate the possible toxicity and translocation of GO-SH after long-term exposure. In wild-type nematodes, we observed that prolonged exposure to GO-SH at concentrations>100μg/L resulted in the toxicity on functions of both primary targeted organs such as the intestine and secondary targeted organs such as the neurons and the reproductive organs. The severe accumulation of GO-SH was further detected in the body of wild-type nematodes. The translocation of GO-SH into secondary targeted organs such as reproductive organs through intestinal barrier might be associated with the enhancement in intestinal permeability in GO-SH exposed wild-type nematodes. Prolonged exposure to GO-SH (100μg/L) decreased the expression of gas-1 encoding a subunit of mitochondrial complex I, and mutation of gas-1 caused the formation of GO-SH toxicity at concentration>10μg/L and more severe accumulation of GO-SH in the body of animals. Therefore, our results confirm the possibility for prolonged exposure to GO-SH in inducing adverse effects on nematodes. Our data highlight the potential adverse effects of GO-SH in the range of μg/L on environmental organisms after long-term exposure.
Collapse
Affiliation(s)
- Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
Gonzalez-Moragas L, Maurer LL, Harms VM, Meyer JN, Laromaine A, Roig A. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans. MATERIALS HORIZONS 2017; 4:719-746. [PMID: 29057078 PMCID: PMC5648024 DOI: 10.1039/c7mh00166e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the in vivo fate and transport of nanoparticles (NPs) is challenging, but critical. We review recent studies of metal and metal oxide NPs using the model organism Caenorhabditis elegans, summarizing major findings to date. In a joint transdisciplinary effort, we highlight underutilized opportunities offered by powerful techniques lying at the intersection of mechanistic toxicology and materials science,. To this end, we firstly summarize the influence of exposure conditions (media, duration, C. elegans lifestage) and NP physicochemical properties (size, coating, composition) on the response of C. elegans to NP treatment. Next, we focus on the techniques employed to study NP entrance route, uptake, biodistribution and fate, emphasizing the potential of extending the toolkit available with novel and powerful techniques. Next, we review findings on several NP-induced biological responses, namely transport routes and altered molecular pathways, and illustrate the molecular biology and genetic strategies applied, critically reviewing their strengths and weaknesses. Finally, we advocate the incorporation of a set of minimal materials and toxicological science experiments that will permit meta-analysis and synthesis of multiple studies in the future. We believe this review will facilitate coordinated integration of both well-established and underutilized approaches in mechanistic toxicology and materials science by the nanomaterials research community.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ 08801-3059, United States
| | - Victoria M Harms
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Joel N Meyer
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
18
|
Ren M, Zhao L, Lv X, Wang D. Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 2017; 11:578-590. [DOI: 10.1080/17435390.2017.1329954] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mingxia Ren
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xiao Lv
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Hong F, Ze Y, Zhou Y, Hong J, Yu X, Sheng L, Wang L. Nanoparticulate TiO 2 -mediated inhibition of the Wnt signaling pathway causes dendritic development disorder in cultured rat hippocampal neurons. J Biomed Mater Res A 2017; 105:2139-2149. [PMID: 28371053 DOI: 10.1002/jbm.a.36073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 11/11/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are increasingly used in daily life, in industry, and in environmental clearing, but their potential neurodevelopmental toxicity has been highly debated. In this study, we explored whether TiO2 NPs inhibited development of dendritic morphology and identified possible molecular mechanisms associated with this inhibition in primary cultured rat hippocampal neurons. Results showed that TiO2 NPs decreased neurite length, the number of branches and the spine density, and impaired mitochondrial function in the developing neurons. Furthermore, TiO2 NPs significantly reduced the expression of several proteins involved in canonical Wnt3a/β-catenin signaling including Wnt3a, β-catenin, p-GSK-3β, and CyclinD1 and conversely, elevated GSK-3β expression. In addition to altering expression of proteins involved in canonical Wnt3a/β-catenin signaling, TiO2 NPs decreased expression of proteins invovled in non-canonical Wnt signaling, including, MKLP1, CRMP3, ErbB4, and KIF17. Taken together, these results indicate that suppression of dendritic development caused by TiO2 NPs is associated with inhibition of activation of the Wnt/β-catenin pathway or non-canonical Wnt pathway-induced expression of microtubule cytoskeletal components in the developing neurons. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2139-2149, 2017.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yaoming Zhou
- Food Department, Jiangsu Food and Pharmaceutical Science College, Huaian, 223303, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohon Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou, China, Suzhou, 215123, China
| |
Collapse
|
20
|
Qu M, Li Y, Wu Q, Xia Y, Wang D. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 2017; 11:520-533. [PMID: 28368775 DOI: 10.1080/17435390.2017.1315190] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- School of Public Health, Southeast University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Chen H, Li H, Wang D. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans. Sci Rep 2017; 7:41655. [PMID: 28128356 PMCID: PMC5269675 DOI: 10.1038/srep41655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/03/2022] Open
Abstract
Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.
Collapse
Affiliation(s)
- He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huirong Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
22
|
Xiao G, Zhi L, Ding X, Rui Q, Wang D. Value of mir-247 in warning of graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra09100a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our results imply the important potential of mir-247 in warning the formation of GO toxicity in the range of μg L−1 in nematodes.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering
- Chongqing Three Gorges University
- Wanzhou 404100
- China
| | - Lingtong Zhi
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xuecheng Ding
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Qi Rui
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Dayong Wang
- College of Biology and Food Engineering
- Chongqing Three Gorges University
- Wanzhou 404100
- China
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
| |
Collapse
|