1
|
Seubert AC, Krafft M, Bopp S, Helal M, Bhandare P, Wolf E, Alemany A, Riedel A, Kretzschmar K. Spatial transcriptomics reveals molecular cues underlying the site specificity of the adult mouse oral mucosa and its stem cell niches. Stem Cell Reports 2024; 19:1706-1719. [PMID: 39547226 PMCID: PMC11751799 DOI: 10.1016/j.stemcr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The oral cavity is a multifunctional organ composed of structurally heterogeneous mucosal tissues that remain poorly characterized. Oral mucosal tissues are highly stratified and segmented along an epithelial-lamina propria axis. Here, we performed spatial transcriptomics (tomo-seq) on the tongue, cheeks, and palate of the adult mouse to understand the cues that maintain the oral mucosal sites. We define molecular markers of unique and shared cellular niches and differentiation programs across oral sites. Using a comparative approach, we identify fibroblast growth factor (FGF) pathway components as potential stem cell niche factors for oral epithelial stem cells. Using organoid-forming efficiency assays, we validated three FGF ligands (FGF1, FGF7, and FGF10) as site-specific niche factors in the dorsal and ventral tongue. Our dataset of the spatially resolved genes across major oral sites represents a comprehensive resource for unraveling the molecular mechanisms underlying the adult homeostasis of the oral mucosa and its stem cell niches.
Collapse
Affiliation(s)
- Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Marion Krafft
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Bopp
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | | | - Elmar Wolf
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, the Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Acero-Riaguas L, Griso-Acevedo AB, SanLorenzo-Vaquero A, Ibáñez-Herrera B, Fernandez-Diaz SM, Mascaraque M, Sánchez-Siles R, López-García I, Benítez-Buelga C, Bravo-Burguillos ER, Castelo B, Cebrián-Carretero JL, Perona R, Sastre L, Sastre-Perona A. DUSP1 and SOX2 expression determine squamous cell carcinoma of the salivary gland progression. Sci Rep 2024; 14:15007. [PMID: 38951654 PMCID: PMC11217270 DOI: 10.1038/s41598-024-65945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Salivary gland squamous cell carcinomas (SG-SCCs) constitute a rare type of head and neck cancer which is linked to poor prognosis. Due to their low frequency, the molecular mechanisms responsible for their aggressiveness are poorly understood. In this work we studied the role of the phosphatase DUSP1, a negative regulator of MAPK activity, in controlling SG-SCC progression. We generated DUSP1 KO clones in A253 human cells. These clones showed a reduced ability to grow in 2D, self-renew in ECM matrices and to form tumors in immunodeficient mice. This was caused by an overactivation of the stress and apoptosis kinase JNK1/2 in DUSP1-/+ clones. Interestingly, RNAseq analysis revealed that the expression of SOX2, a well-known self-renewal gene was decreased at the mRNA and protein levels in DUSP1-/+ cells. Unexpectedly, CRISPR-KO of SOX2 did not recapitulate DUSP1-/+ phenotype, and SOX2-null cells had an enhanced ability to self-renew and to form tumors in mice. Gene expression analysis demonstrated that SOX2-null cells have a decreased squamous differentiation profile -losing TP63 expression- and an increased migratory phenotype, with an enhanced epithelial to mesenchymal transition signature. In summary, our data indicates that DUSP1 and SOX2 have opposite functions in SG-SCC, being DUSP1 necessary for tumor growth and SOX2 dispensable showing a tumor suppressor function. Our data suggest that the combined expression of SOX2 and DUSP1 could be a useful biomarker to predict progression in patients with SG-SCCs.
Collapse
Affiliation(s)
- Lucía Acero-Riaguas
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
- Instituto de Investigaciones Biomédicas CSIC/UAM and CIBER de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Ana Belén Griso-Acevedo
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Alejandro SanLorenzo-Vaquero
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Blanca Ibáñez-Herrera
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Sara María Fernandez-Diaz
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Marta Mascaraque
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Rocío Sánchez-Siles
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Iván López-García
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomédicas CSIC/UAM and CIBER de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Elena Ruiz Bravo-Burguillos
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
| | - Beatriz Castelo
- Medical Oncology Department, University Hospital La Paz, 28046, Madrid, Spain
| | - José Luis Cebrián-Carretero
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain
- Oral and Maxillofacial Surgery Department, University Hospital La Paz, 28046, Madrid, Spain
| | - Rosario Perona
- Instituto de Salud Carlos III and CIBER de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM and CIBER de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Ana Sastre-Perona
- Laboratory of Translational Research in Maxillofacial Surgery and Head and Neck Cancer, IdiPAZ, 28046, Madrid, Spain.
- Instituto de Investigaciones Biomédicas CSIC/UAM and CIBER de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Baquero J, Tang XH, Ferrotta A, Zhang T, DiKun KM, Gudas LJ. The transcription factor BMI1 increases hypoxic signaling in oral cavity epithelia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167161. [PMID: 38599260 PMCID: PMC11370312 DOI: 10.1016/j.bbadis.2024.167161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The tongue epithelium is maintained by a proliferative basal layer. This layer contains long-lived stem cells (SCs), which produce progeny cells that move up to the surface as they differentiate. B-lymphoma Mo-MLV insertion region 1 (BMI1), a protein in mammalian Polycomb Repressive Complex 1 (PRC1) and a biomarker of oral squamous cell carcinoma, is expressed in almost all basal epithelial SCs of the tongue, and single, Bmi1-labelled SCs give rise to cells in all epithelial layers. We previously developed a transgenic mouse model (KrTB) containing a doxycycline- (dox) controlled, Tet-responsive element system to selectively overexpress Bmi1 in the tongue basal epithelial SCs. Here, we used this model to assess BMI1 actions in tongue epithelia. Genome-wide transcriptomics revealed increased levels of transcripts involved in the cellular response to hypoxia in Bmi1-overexpressing (KrTB+DOX) oral epithelia even though these mice were not subjected to hypoxia conditions. Ectopic Bmi1 expression in tongue epithelia increased the levels of hypoxia inducible factor-1 alpha (HIF1α) and HIF1α targets linked to metabolic reprogramming during hypoxia. We used chromatin immunoprecipitation (ChIP) to demonstrate that Bmi1 associates with the promoters of HIF1A and HIF1A-activator RELA (p65) in tongue epithelia. We also detected increased SC proliferation and oxidative stress in Bmi1-overexpressing tongue epithelia. Finally, using a human oral keratinocyte line (OKF6-TERT1R), we showed that ectopic BMI1 overexpression decreases the oxygen consumption rate while increasing the extracellular acidification rate, indicative of elevated glycolysis. Thus, our data demonstrate that high BMI1 expression drives hypoxic signaling, including metabolic reprogramming, in normal oral cavity epithelia.
Collapse
Affiliation(s)
- Jorge Baquero
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Annalisa Ferrotta
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Tuo Zhang
- Weill Cornell Genomics Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Identity matters: cancer stem cells and tumour plasticity in head and neck squamous cell carcinoma. Expert Rev Mol Med 2023; 25:e8. [PMID: 36740973 DOI: 10.1017/erm.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents frequent yet aggressive tumours that encompass complex ecosystems of stromal and neoplastic components including a dynamic population of cancer stem cells (CSCs). Recently, research in the field of CSCs has gained increased momentum owing in part to their role in tumourigenicity, metastasis, therapy resistance and relapse. We provide herein a comprehensive assessment of the latest progress in comprehending CSC plasticity, including newly discovered influencing factors and their possible application in HNSCC. We further discuss the dynamic interplay of CSCs within tumour microenvironment considering our evolving appreciation of the contribution of oral microbiota and the pressing need for relevant models depicting their features. In sum, CSCs and tumour plasticity represent an exciting and expanding battleground with great implications for cancer therapy that are only beginning to be appreciated in head and neck oncology.
Collapse
|
5
|
Griso AB, Acero-Riaguas L, Castelo B, Cebrián-Carretero JL, Sastre-Perona A. Mechanisms of Cisplatin Resistance in HPV Negative Head and Neck Squamous Cell Carcinomas. Cells 2022; 11:561. [PMID: 35159370 PMCID: PMC8834318 DOI: 10.3390/cells11030561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the eighth most common cancers worldwide. While promising new therapies are emerging, cisplatin-based chemotherapy remains the gold standard for advanced HNSCCs, although most of the patients relapse due to the development of resistance. This review aims to condense the different mechanisms involved in the development of cisplatin resistance in HNSCCs and highlight future perspectives intended to overcome its related complications. Classical resistance mechanisms include drug import and export, DNA repair and oxidative stress control. Emerging research identified the prevalence of these mechanisms in populations of cancer stem cells (CSC), which are the cells mainly contributing to cisplatin resistance. The use of old and new CSC markers has enabled the identification of the characteristics within HNSCC CSCs predisposing them to treatment resistance, such as cell quiescence, increased self-renewal capacity, low reactive oxygen species levels or the acquisition of epithelial to mesenchymal transcriptional programs. In the present review, we will discuss how cell intrinsic and extrinsic cues alter the phenotype of CSCs and how they influence resistance to cisplatin treatment. In addition, we will assess how the stromal composition and the tumor microenvironment affect drug resistance and the acquisition of CSCs' characteristics through a complex interplay between extracellular matrix content as well as immune and non-immune cell characteristics. Finally, we will describe how alterations in epigenetic modifiers or other signaling pathways can alter tumor behavior and cell plasticity to induce chemotherapy resistance. The data generated in recent years open up a wide range of promising strategies to optimize cisplatin therapy, with the potential to personalize HNSCC patient treatment strategies.
Collapse
Affiliation(s)
- Ana Belén Griso
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| | - Lucía Acero-Riaguas
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| | - Beatriz Castelo
- Medical Oncology Department, University Hospital La Paz, 28046 Madrid, Spain;
| | | | - Ana Sastre-Perona
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| |
Collapse
|
6
|
Johansson E, Ueno H. Characterization of normal and cancer stem-like cell populations in murine lingual epithelial organoids using single-cell RNA sequencing. Sci Rep 2021; 11:22329. [PMID: 34785704 PMCID: PMC8595654 DOI: 10.1038/s41598-021-01783-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The advances in oral cancer research and therapies have not improved the prognosis of patients with tongue cancer. The poor treatment response of tongue cancer may be attributed to the presence of heterogeneous tumor cells exhibiting stem cell characteristics. Therefore, there is a need to develop effective molecular-targeted therapies based on the specific gene expression profiles of these cancer stem-like cell populations. In this study, the characteristics of normal and cancerous organoids, which are convenient tools for screening anti-cancer drugs, were analyzed comparatively. As organoids are generally generated by single progenitors, they enable the exclusion of normal cell contamination from the analyses. Single-cell RNA sequencing analysis revealed that p53 signaling activation and negative regulation of cell cycle were enriched characteristics in normal stem-like cells whereas hypoxia-related pathways, such as HIF-1 signaling and glycolysis, were upregulated in cancer stem-like cells. The findings of this study improved our understanding of the common features of heterogeneous cell populations with stem cell properties in tongue cancers, that are different from those of normal stem cell populations; this will enable the development of novel molecular-targeted therapies for tongue cancer.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan. .,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
7
|
Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral Cancer: Genetics and the Role of Precision Medicine. Surg Oncol Clin N Am 2021; 29:127-144. [PMID: 31757309 DOI: 10.1016/j.soc.2019.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
Affiliation(s)
- Chia-Cheng Li
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhen Shen
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Roxanne Bavarian
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Francis Street, Boston, MA 02115, USA
| | - Fan Yang
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, East 24th Street, New York, NY 10010, USA
| |
Collapse
|
8
|
Hsieh PL, Huang CC, Yu CC. Emerging Role of MicroRNA-200 Family in Dentistry. Noncoding RNA 2021; 7:35. [PMID: 34208375 PMCID: PMC8293310 DOI: 10.3390/ncrna7020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs ~22 nucleotides in length, which have been shown to participate in various biological processes. As one of the most researched miRNAs, the miR-200 family has been found to regulate several factors that are associated with the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) behavior. In this review, we briefly summarize the background of the miR-200 family and their implication in various dental diseases. We focus on the expression changes, biological functions, and clinical significance of the miR-200 family in oral cancer; periodontitis; oral potentially malignant disorder; gingival overgrowth; and other periodontal diseases. Additionally, we discuss the use of the miR-200 family as molecular biomarkers for diagnosis, prognostic, and therapeutic application.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Chun-Chung Huang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
9
|
Gupta S, Kumar P, Das BC. HPV +ve/-ve oral-tongue cancer stem cells: A potential target for relapse-free therapy. Transl Oncol 2021; 14:100919. [PMID: 33129107 PMCID: PMC7590584 DOI: 10.1016/j.tranon.2020.100919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
The tongue squamous cell carcinoma (TSCC) is a highly prevalent head and neck cancer often associated with tobacco and/or alcohol abuse or high-risk human papillomavirus (HR-HPV) infection. HPV positive TSCCs present a unique mechanism of tumorigenesis as compared to tobacco and alcohol-induced TSCCs and show a better prognosis when treated. The poor prognosis and/or recurrence of TSCC is due to presence of a small subpopulation of tumor-initiating tongue cancer stem cells (TCSCs) that are intrinsically resistant to conventional chemoradio-therapies enabling cancer to relapse. Therefore, targeting TCSCs may provide efficient therapeutic strategy for relapse-free survival of TSCC patients. Indeed, the development of new TCSC targeting therapeutic approaches for the successful elimination of HPV+ve/-ve TCSCs could be achieved either by targeting the self-renewal pathways, epithelial mesenchymal transition, vascular niche, nanoparticles-based therapy, induction of differentiation, chemoradio-sensitization of TCSCs or TCSC-derived exosome-based drug delivery and inhibition of HPV oncogenes or by regulating epigenetic pathways. In this review, we have discussed all these potential approaches and highlighted several important signaling pathways/networks involved in the formation and maintenance of TCSCs, which are targetable as novel therapeutic targets to sensitize/eliminate TCSCs and to improve survival of TSCC patients.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India; National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida 201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
10
|
Lee HY, Hong IS. Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel) 2020; 12:cancers12102746. [PMID: 32987767 PMCID: PMC7598600 DOI: 10.3390/cancers12102746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver, and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367700, Korea;
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406840, Korea
- Correspondence: ; Tel.: +82-32-899-6315; Fax: +82-32-899-6350
| |
Collapse
|
11
|
Bar C, Cohen I, Zhao D, Pothula V, Litskevitch A, Koseki H, Zheng D, Ezhkova E. Polycomb Repressive Complex 1 Controls Maintenance of Fungiform Papillae by Repressing Sonic Hedgehog Expression. Cell Rep 2020; 28:257-266.e5. [PMID: 31269445 PMCID: PMC6921245 DOI: 10.1016/j.celrep.2019.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
How tissue patterns are formed and maintained are fundamental questions. The murine tongue epithelium, a paradigm for tissue patterning, consists of an array of specialized fungiform papillae structures that harbor taste cells. The formation of fungiform papillae is preceded by pronounced spatial changes in gene expression, in which taste cell genes such as Shh, initially diffused in lingual epithelial progenitors, become restricted to taste cells when their specification progresses. However, the requirement of spatial restriction of taste cell gene expression for patterning and formation of fungiform papillae is unknown. Here, we show that a chromatin regulator, Polycomb repressive complex (PRC) 1, is required for proper maintenance of fungiform papillae by repressing Shh and preventing ectopic SHH signaling in non-taste cells. Ablation of SHH signaling in PRC1-null non-taste cells rescues the maintenance of taste cells. Altogether, our studies exemplify how epigenetic regulation establishes spatial gene expression patterns necessary for specialized niche structures. Formation and maintenance of patterns are critical for tissue development. Bar et al. show that PRC1, an epigenetic regulator, is critical for lingual papillae development. Specifically, PRC1 regulates maintenance of the developing fungiform papillae, harboring taste cells, by repressing Shh expression in the non-gustatory epithelium surrounding taste cells.
Collapse
Affiliation(s)
- Carmit Bar
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Idan Cohen
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Venu Pothula
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Anna Litskevitch
- Department of Molecular & Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; AMED-CREST, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
12
|
The current markers of cancer stem cell in oral cancers. Life Sci 2020; 249:117483. [PMID: 32135187 DOI: 10.1016/j.lfs.2020.117483] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022]
Abstract
Head and neck cancer (HNC) constitute 5% of all reported cancers. Among all, the oral cavity cancer is the most frequent type of HNC which accounts for over half of HNC cases. Mouth cancer ranks the sixth leading cause of cancer-related mortality. Generally, conventional chemotherapy has shown success at decreasing relapse and metastasis rates and improves the overall prognosis. Recently, target therapy and targeted drug delivery systems have been introduced as promising treatments. The elimination of efficiency of current therapeutic strategies due to the spared cancer stem cells that cause chemotherapy resistance, relapse and metastasis. Inefficiency methodologies in the elimination of all cancer cells in the body are a major problem that remained to be resolved before to confront the new cancer therapies. Many studies imply to cancer stem cell markers as important agents for targeted anti-cancer as well as improving chemotherapy efficiencies. The potentials of targeted cancer therapy led us to search for novel markers in the mouth cancer stem cells especially in rare cancers. The aimed of this research was, first a comprehensive critical review of the previous studies on the markers of cancer stem cells in oral cancers including oral squamous cell carcinoma, salivary gland cancers, and to highlight the most common cancer stem cell markers which have potential to be exploited as indicators for the preneoplastic lesion malignancy, oral cancer progression, and/or treatment prognosis.
Collapse
|
13
|
Biocompatible co-loading vehicles for delivering both nanoplatin cores and siRNA to treat hepatocellular carcinoma. Int J Pharm 2019; 572:118769. [PMID: 31669557 DOI: 10.1016/j.ijpharm.2019.118769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022]
|
14
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
15
|
Teixeira Buck MG, Souza Cabral Tuci P, Perillo Rosin FC, Pinheiro Barcessat AR, Corrêa L. Immunohistochemistry profile of p75 neurotrophin receptor in oral epithelial dysplasia and oral squamous cell carcinoma induced by 4-nitroquinoline 1-oxide in rats. Arch Oral Biol 2018; 96:169-177. [PMID: 30268558 DOI: 10.1016/j.archoralbio.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The 4-nitroquinoline 1-oxide (4-NQO) model for carcinogenesis has been used to investigate cancer stem cells (CSC), but no study has addressed the role of the p75 neurotrophin receptor (p75NTR) in 4-NQO-induced oral dysplasia and oral squamous cell carcinoma (OSCC). The aim of this study was to evaluate the immunohistochemistry profile of the p75NTR during 4-NQO-induced oral carcinogenesis in rats and to verify whether this profile has an association with proliferating cell nuclear antigen (PCNA) immunolabeling. DESIGN For 28 weeks, rats were exposed to 4-NQO, which was diluted in the drinking water. After 3, 5, 7, 16, and 28 weeks, the animals were euthanized and their tongues were histologically analyzed using p75NTR and PCNA immunolabeling. RESULTS In animals without 4-NQO exposure, the p75NTR and PCNA were expressed only in the basal epithelial layer and in a clustered manner. The oral epithelium showed dysplasia and a significant increase in the number of p75NTR- and PCNA-positive cells, which were localized mainly in the basal and suprabasal epithelial layers during weeks 5-16 of 4-NQO exposure. When the epithelium invaded the lamina propria and well-differentiated OSCC began, the p75NTR-positive cell frequency drastically decreased in epithelial cords and nests, showing a negative correlation with PCNA expression. p75NTR immunolabeling during 4-NQO-induced carcinogenesis was similar to that described for human head and neck dysplasia and neoplasia. CONCLUSIONS p75NTR immunolabeling observed in 4-NQO-induced oral dysplastic and OSCC lesions were related to the early phases of oral carcinogenesis and may help predict cell dysplasia and malignant transformation.
Collapse
Affiliation(s)
- Marina Gabriela Teixeira Buck
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Priscila Souza Cabral Tuci
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Flávia Cristina Perillo Rosin
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Ana Rita Pinheiro Barcessat
- Biological Health Sciences Department, School of Nursing, Federal University of Amapá, Rod. Juscelino Kubitschek, KM-02 Jardim Marco Zero Macapá, 68.903-419 Macapá, AP, Brazil
| | - Luciana Corrêa
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Song Y, Zhao M, Xie Y, Zhu T, Liang W, Sun B, Liu W, Wu L, Lu G, Li TS, Yin T, Xie Y. Bmi-1 high-expressing cells enrich cardiac stem/progenitor cells and respond to heart injury. J Cell Mol Med 2018; 23:104-111. [PMID: 30396232 PMCID: PMC6307799 DOI: 10.1111/jcmm.13889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Bmi‐1 gene is well recognized as an oncogene, but has been recently demonstrated to play a role in the self‐renewal of tissue‐specific stem cells. By using Bmi‐1GFP/+ mice, we investigated the role of Bmi‐1 in cardiac stem/progenitor cells and myocardial repair. RT‐PCR and flow cytometry analysis indicated that the expression of Bmi‐1 was significantly higher in cardiac side population than the main population from CD45−Ter119−CD31− heart cells. More Sca‐1+ cardiac stem/progenitor cells were found in Bmi‐1 GFPhi subpopulation, and these Bmi‐1 GFPhi heart cells showed the potential of differentiation into SMM+ smooth muscle‐like cells and TnT+ cardiomyocyte‐like cells in vitro. The silencing of Bmi‐1 significantly inhibited the proliferation and differentiation of heart cells. Otherwise, myocardial infarction induced a significantly increase (2.7‐folds) of Bmi‐1 GFPhi population, mainly within the infarction and border zones. These preliminary data suggest that Bmi‐1hi heart cells are enriched in cardiac stem/progenitor cells and may play a role in myocardial repair.
Collapse
Affiliation(s)
- Yuewang Song
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengmeng Zhao
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Bengbu Medical School, Anhui Province, China
| | - Yuan Xie
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,University of California, Santa Barbara, Santa Barbara, California
| | - Tingfang Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baiming Sun
- Cedars-Sinai Heart Institute, Los Angeles, California
| | - Weixin Liu
- Cedars-Sinai Heart Institute, Los Angeles, California
| | - Liqun Wu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoping Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tong Yin
- The National Research Center for Translational Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Xie
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cedars-Sinai Heart Institute, Los Angeles, California
| |
Collapse
|
17
|
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
|
18
|
Parsons BL. Multiclonal tumor origin: Evidence and implications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:1-18. [PMID: 30115427 DOI: 10.1016/j.mrrev.2018.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/11/2018] [Accepted: 05/05/2018] [Indexed: 12/31/2022]
Abstract
An accurate understanding of the clonal origins of tumors is critical for designing effective strategies to treat or prevent cancer and for guiding the field of cancer risk assessment. The intent of this review is to summarize evidence of multiclonal tumor origin and, thereby, contest the commonly held assumption of monoclonal tumor origin. This review describes relevant studies of X chromosome inactivation, analyses of tumor heterogeneity using other markers, single cell sequencing, and lineage tracing studies in aggregation chimeras and engineered rodent models. Methods for investigating tumor clonality have an inherent bias against detecting multiclonality. Despite this, multiclonality has been observed within all tumor stages and within 53 different types of tumors. For myeloid tumors, monoclonal tumor origin may be the predominant path to cancer and a monoclonal tumor origin cannot be ruled out for a fraction of other cancer types. Nevertheless, a large body of evidence supports the conclusion that most cancers are multiclonal in origin. Cooperation between different cell types and between clones of cells carrying different genetic and/or epigenetic lesions is discussed, along with how polyclonal tumor origin can be integrated with current perspectives on the genesis of tumors. In order to develop biologically sound and useful approaches to cancer risk assessment and precision medicine, mathematical models of carcinogenesis are needed, which incorporate multiclonal tumor origin and the contributions of spontaneous mutations in conjunction with the selective advantages conferred by particular mutations and combinations of mutations. Adherence to the idea that a growth must develop from a single progenitor cell to be considered neoplastic has outlived its usefulness. Moving forward, explicit examination of tumor clonality, using advanced tools, like lineage tracing models, will provide a strong foundation for future advances in clinical oncology and better training for the next generation of oncologists and pathologists.
Collapse
Affiliation(s)
- Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079, United States.
| |
Collapse
|
19
|
Hu Q, Wu T, Chen X, Li H, Du Z, Hao Y, Peng J, Tai S, Song M, Cheng B. The poor outcome of second primary oral squamous cell carcinoma is attributed to Bmi1 upregulation. Cancer Med 2018; 7:1056-1069. [PMID: 29479858 PMCID: PMC5911571 DOI: 10.1002/cam4.1348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy for nasopharyngeal carcinoma has been reported to cause second primary oral squamous cell carcinoma (s-OSCC). The prognosis and pathologic characteristic of s-OSCC are largely unknown. Bmi1 was associated with the repair of radiation-induced DNA damage, suggesting its possible involvement in the pathologic process of s-OSCC. Herein, we compared the prognosis between s-OSCC and primary OSCC (p-OSCC) and explored the involvement of Bmi1 in s-OSCC development. In this retrospective study, s-OSCC and p-OSCC patients were matched by propensity scores. Their outcomes were compared by univariate and multivariate analyses. The expression of Bmi1 in s-OSCC and p-OSCC was detected by immunohistochemistry (IHC). Radiation-induced Bmi1 alteration in early-stage was explored in a rat model and HaCaT cells. After matching, 116 pairs of patients with highly balanced characteristics were included. In univariate analysis, the overall survival (OS), disease-specific survival (DSS), and local recurrence-free survival (LRFS) were poorer in s-OSCC than in p-OSCC (P < 0.05), while their regional metastasis-free survival (RMFS) was parallel (P = 0.112). Multivariate analysis further revealed that radiotherapy history was an independent risk factor for OS, DSS, and LRFS (P < 0.05). IHC results showed that the positive rate of Bmi1 was higher in s-OSCC (P = 0.0027). In a rat model of radiotherapy-induced mucositis, Bmi1 upregulation was observed 8 days after irradiation. Consistently, Bmi1 was upregulated in HaCaT cells 1 h after irradiation, and its upregulation was in accord with X-ray exposure duration. In conclusion, the prognosis of s-OSCC is poorer as compared to p-OSCC, which may be attributed to Bmi1 upregulation.
Collapse
Affiliation(s)
- Qinchao Hu
- Department of Oral MedicineHospital of StomatologySun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Tong Wu
- Department of Oral MedicineHospital of StomatologySun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Xiaobing Chen
- Department of Oral MedicineHospital of StomatologySun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Huan Li
- Department of Intensive Care UnitSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhicheng Du
- Department of Medical Statistics and EpidemiologySchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Yuantao Hao
- Department of Medical Statistics and EpidemiologySchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Jianmin Peng
- Department of Oral MedicineHospital of StomatologySun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Shanshan Tai
- Department of Oral MedicineHospital of StomatologySun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Ming Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
- Department of Head and Neck SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bin Cheng
- Department of Oral MedicineHospital of StomatologySun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|