1
|
Liu Q, Yan X, Yuan Y, Li R, Zhao Y, Fu J, Wang J, Su J. HTRA2/OMI-Mediated Mitochondrial Quality Control Alters Macrophage Polarization Affecting Systemic Chronic Inflammation. Int J Mol Sci 2024; 25:1577. [PMID: 38338855 PMCID: PMC10855076 DOI: 10.3390/ijms25031577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic chronic inflammation (SCI) due to intrinsic immune over-activation is an important factor in the development of many noninfectious chronic diseases, such as neurodegenerative diseases and diabetes mellitus. Among these immune responses, macrophages are extensively involved in the regulation of inflammatory responses by virtue of their polarization plasticity; thus, dysregulation of macrophage polarization direction is one of the potential causes of the generation and maintenance of SCI. High-temperature demand protein A2 (HtrA2/Omi) is an important regulator of mitochondrial quality control, not only participating in the degradation of mis-accumulated proteins in the mitochondrial unfolded protein response (UPRmt) to maintain normal mitochondrial function through its enzymatic activity, but also participating in the regulation of mitochondrial dynamics-related protein interactions to maintain mitochondrial morphology. Recent studies have also reported the involvement of HtrA2/Omi as a novel inflammatory mediator in the regulation of the inflammatory response. HtrA2/Omi regulates the inflammatory response in BMDM by controlling TRAF2 stabilization in a collagen-induced arthritis mouse model; the lack of HtrA2 ameliorates pro-inflammatory cytokine expression in macrophages. In this review, we summarize the mechanisms by which HtrA2/Omi proteins are involved in macrophage polarization remodeling by influencing macrophage energy metabolism reprogramming through the regulation of inflammatory signaling pathways and mitochondrial quality control, elucidating the roles played by HtrA2/Omi proteins in inflammatory responses. In conclusion, interfering with HtrA2/Omi may become an important entry point for regulating macrophage polarization, providing new research space for developing HtrA2/Omi-based therapies for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| |
Collapse
|
2
|
Zhao J, Guo S, Schrodi SJ, He D. Absent in melanoma 2 (AIM2) in rheumatoid arthritis: novel molecular insights and implications. Cell Mol Biol Lett 2022; 27:108. [PMID: 36476420 PMCID: PMC9730612 DOI: 10.1186/s11658-022-00402-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absent in melanoma 2 (AIM2), a member of the Pyrin and HIN domain protein family, is a cytoplasmic receptor that recognizes double-stranded DNA. AIM2 exhibits limited expression under physiological conditions but is widely expressed in many human diseases, including autoimmune diseases, and plays an essential role in the immune response. Rheumatoid arthritis (RA) is an autoimmune disease that poses a severe threat to physical and mental health, and is caused by several genetic and metabolic factors. Multiple immune cells interact to form a complex inflammatory network that mediates inflammatory responses and bone destruction. Abnormal AIM2 expression in multiple immune cell populations (T cells, B cells, fibroblast-like synoviocytes, monocytes, and macrophages) may regulate multiple functional responses in RA through mechanisms such as pyroptosis, PANoptosis, and regulation of other molecules. In this review, we describe and summarize the functional regulation and impact of AIM2 expression in immune cells to improve our understanding of the complex pathological mechanisms. These insights may provide potential directions for the development of new clinical diagnostic strategies for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- grid.412540.60000 0001 2372 7462Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- grid.14003.360000 0001 2167 3675Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Steven J. Schrodi
- grid.14003.360000 0001 2167 3675Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Dongyi He
- grid.412540.60000 0001 2372 7462Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,grid.412540.60000 0001 2372 7462Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China ,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China ,grid.412540.60000 0001 2372 7462Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Suzuki T, Kadoya K, Endo T, Iwasaki N. Molecular and Regenerative Characterization of Repair and Non-repair Schwann Cells. Cell Mol Neurobiol 2022:10.1007/s10571-022-01295-4. [PMID: 36222946 DOI: 10.1007/s10571-022-01295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Although evidence has accumulated to indicate that Schwann cells (SCs) differentiate into repair SCs (RSCs) upon injury and that the unique phenotype of these cells allow them to provide support for peripheral nerve regeneration, the details of the RSCs are not fully understood. The findings of the current study indicate that the RSCs have enhanced adherent properties and a greater capability to promote neurite outgrowth and axon regeneration after peripheral nerve injury, compared to the non-RSCs. Further, transcriptome analyses have demonstrated that the molecular signature of the RSCs is distinctly different from that of the non-RSCs. The RSCs upregulate a group of genes that are related to inflammation, repair, and regeneration, whereas non-RSCs upregulate genes related to myelin maintenance, Notch, and aging. These findings indicate that the RSCs have markedly different cellular, regenerative, and molecular characteristics compared to the non-RSCs, even though the RSCs were just derived from non-RSCs upon injury, thus providing the basis for understanding the mechanisms related to SC mediated repair after peripheral nerve injury.
Collapse
Affiliation(s)
- Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
4
|
Khanna D, Padilla C, Tsoi LC, Nagaraja V, Khanna PP, Tabib T, Kahlenberg JM, Young A, Huang S, Gudjonsson JE, Fox DA, Lafyatis R. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 2022; 7:e159566. [PMID: 35943798 PMCID: PMC9536259 DOI: 10.1172/jci.insight.159566] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSystemic sclerosis (SSc) is an autoimmune, connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs.METHODSWe randomized 15 participants with early diffuse cutaneous SSc to tofacitinib 5 mg twice a day or matching placebo in a phase I/II double-blind, placebo-controlled trial. The primary outcome measure was safety and tolerability at or before week 24. To understand the changes in gene expression associated with tofacitinib treatment in each skin cell population, we compared single-cell gene expression in punch skin biopsies obtained at baseline and 6 weeks following the initiation of treatment.RESULTSTofacitinib was well tolerated; no participants experienced grade 3 or higher adverse events before or at week 24. Trends in efficacy outcome measures favored tofacitnib. Baseline gene expression in fibroblast and keratinocyte subpopulations indicated IFN-activated gene expression. Tofacitinib inhibited IFN-regulated gene expression in SFRP2/DPP4 fibroblasts (progenitors of myofibroblasts) and in MYOC/CCL19, representing adventitial fibroblasts (P < 0.05), as well as in the basal and keratinized layers of the epidermis. Gene expression in macrophages and DCs indicated inhibition of STAT3 by tofacitinib (P < 0.05). No clinically meaningful inhibition of T cells and endothelial cells in the skin tissue was observed.CONCLUSIONThese results indicate that mesenchymal and epithelial cells of a target organ in SSc, not the infiltrating lymphocytes, may be the primary focus for therapeutic effects of a Janus kinase inhibitor.TRIAL REGISTRATIONClinicalTrials.gov NCT03274076.FUNDINGPfizer, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01 AR070470, NIH/NIAMS K24 AR063120, Taubman Medical Research Institute and NIH P30 AR075043, and NIH/NIAMS K01 AR072129.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Padilla
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vivek Nagaraja
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja P Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- VA Medical Center, Ann Arbor, Michigan, USA
| | - Tracy Tabib
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Amber Young
- Division of Rheumatology, Department of Internal Medicine, and
| | - Suiyuan Huang
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, and
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Feng C, Liu X, Hu N, Tang Y, Feng M, Zhou Z. Aeromonas hydrophila Ssp1: A secretory serine protease that disrupts tight junction integrity and is essential for host infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:530-541. [PMID: 35798244 DOI: 10.1016/j.fsi.2022.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a Gram-negative bacterial pathogen with a broad host range, including fish and humans. In this study, we examined the function of a secretory serine protease (named Ssp1) identified in pathogenic A. hydrophila CCL1. Ssp1 possesses a trypsin-like serine protease domain and contains two conserved PDZ domains. Recombinant Ssp1 protein (rSsp1) treatment increased intestinal permeability by downregulating and redistributing tight junction protein Occludin in intestinal Caco-2 cells in vitro. Western blot demonstrated that rSsp1 treatment in Caco-2 cells resulted in marked increases in the expressions of myosin light chain kinase (MLCK) and phosphorylated myosin light chain (p-MLC). For virulence analysis, an isogenic CCL1 mutant ΔSsp1 was created. ΔSsp1 bears an in-frame deletion of the Ssp1 gene. A live infection study in crucian carps showed that, compared to CCL1, ΔSsp1 infection exhibited increased Occludin expression, reduced intestinal permeability and tissue dissemination capacity, and attenuated overall virulence in vivo. However, ΔSsp1 showed no differences in the biofilm formation, swimming motility, and resistance to environmental stress. These lost virulence capacities of ΔSsp1 were restored by complementation with the Ssp1 gene. Global transcriptome analysis and quantitative real-time RT-PCR showed that compared to CCL1 infection, ΔSsp1 promoted the expressions of antimicrobial molecules (MUC2, LEAP-2, Hepcidin-1, and IL-22). Finally, CCL1 infection caused significant dysbiosis of the gut microbiota, including increased Vibrio and Deefgea compared to ΔSsp1 infected fish. Taken together, these results indicate that Ssp1 is essential for the virulence of A. hydrophila and is required for the perturbation of intestinal tight junction barrier.
Collapse
Affiliation(s)
- Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengzhe Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
7
|
Xia P, Shi Y, Wang X, Li X. Advances in the application of low-intensity pulsed ultrasound to mesenchymal stem cells. Stem Cell Res Ther 2022; 13:214. [PMID: 35619156 PMCID: PMC9137131 DOI: 10.1186/s13287-022-02887-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells that exhibit self-renewal capacity and multi-directional differentiation potential. They can be extracted from the bone marrow and umbilical cord, as well as adipose, amnion, and other tissues. They are widely used in tissue engineering and are currently considered an important source of cells in the field of regenerative medicine. Since certain limitations, such as an insufficient cell source, mature differentiation, and low transplantation efficiency, are still associated with MSCs, researchers have currently focused on improving the efficacy of MSCs. Low-intensity pulsed ultrasound (LIPUS) has mechanical, cavitation, and thermal effects that can produce different biological effects on organs, tissues, and cells. It can be used for fracture treatment, cartilage repair, and stem cell applications. An in-depth study of the role and mechanism of action of LIPUS in MSC treatment would promote our understanding of LIPUS and promote research in this field. In this article, we have reviewed the progress in research on the use of LIPUS with various MSCs and comprehensively discussed the progress in the use of LIPUS for promoting the proliferation, differentiation, and migration of MSCs, as well as its future prospects.
Collapse
Affiliation(s)
- Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Yi Shi
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
8
|
Iovino L, Giusti V, Pischedda F, Giusto E, Plotegher N, Marte A, Battisti I, Di Iacovo A, Marku A, Piccoli G, Bandopadhyay R, Perego C, Bonifacino T, Bonanno G, Roseti C, Bossi E, Arrigoni G, Bubacco L, Greggio E, Hilfiker S, Civiero L. Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathol 2022; 144:81-106. [PMID: 35596783 PMCID: PMC9217889 DOI: 10.1007/s00401-022-02437-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson’s disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.
Collapse
|
9
|
Arora P, Singh K, Kumari M, Trivedi R. Temporal profile of serum metabolites and inflammation following closed head injury in rats is associated with HPA axis hyperactivity. Metabolomics 2022; 18:28. [PMID: 35486220 DOI: 10.1007/s11306-022-01886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Closed head injury (CHI) causes neurological disability along with systemic alterations that can activate neuro-endocrine response through hypothalamic-pituitary-adrenal (HPA) axis activation. A dysregulated HPA axis function can lead to relocation of energy substrates and alteration in metabolic pathways and inflammation at the systemic level. OBJECTIVES Assessment of time-dependent changes in serum metabolites and inflammation after both mild and moderate CHI. Along with this, serum corticosterone levels and hypothalamic microglial response were observed. METHODS Rats underwent mild and moderate weight-drop injury and their serum and hypothalamus were assessed at acute, sub-acute and chronic timepoints. Changes in serum metabolomics were determined using high resolution NMR spectroscopy. Serum inflammatory cytokine, corticosterone levels and hypothalamic microglia were assessed at all timepoints. RESULTS Metabolites including lactate, choline and branched chain amino acids were found as the classifiers that helped distinguish between control and injured rats during acute, sub-acute and chronic timepoints. While, increased αglucose: βglucose and TMAO: choline ratios after acute and sub-acute timepoints of mild injury differentiated from moderate injured rats. The injured rats also showed distinct inflammatory profile where IL-1β and TNF-α levels were upregulated in moderate injured rats while IL-10 levels were downregulated in mild injured rats. Furthermore, injury specific alterations in serum metabolic and immunologic profile were found to be associated with hyperactive HPA axis, with consistent increase in serum corticosterone concentration post injury. The hypothalamic microglia showed a characteristic activated de-ramified cellular morphology in both mild and moderate injured rats. CONCLUSION The study suggests that HPA axis hyperactivity along with hypothalamic microglial activation led to temporal changes in the systemic metabolism and inflammation. These time dependent changes in the metabolite profile of rats can further strengthen the knowledge of diagnostic markers and help distinguish injury related outcomes after TBI.
Collapse
Affiliation(s)
- Palkin Arora
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kavita Singh
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India
- Department of Biotechnology, Delhi Technological University (DTU), Delhi, 110042, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India.
| |
Collapse
|
10
|
de Souza Nunes Faria MS, Pimentel VE, Helaehil JV, Bertolo MC, Santos NTH, da Silva-Neto PV, Thomazini BF, de Oliveira CA, do Amaral MEC. Caloric restriction overcomes pre-diabetes and hypertension induced by a high fat diet and renal artery stenosis. Mol Biol Rep 2022; 49:5883-5895. [PMID: 35344116 DOI: 10.1007/s11033-022-07370-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Calorie restriction (CR) is a type of dietary intervention that is essential in weight loss through modulation of critical metabolic control pathways, is well established and understood in cases of systemic arterial hypertension, however, its role in renovascular hypertension is still unclear. METHODS Rats were divided into three groups: SHAM, and two groups that underwent surgery to clip the left renal artery and induce renovascular hypertension (OH and OHR). The SHAM diet was as follows: 14 weeks normolipidic diet; OH: 2 weeks normolipidic diet + 12 weeks hyperlipidic diet, both ad libitum; OHR, 2 weeks normolipidic diet + 8 weeks ad libitum high-fat diet + 4 weeks 40% calorie-restricted high-fat diet. RESULTS Rats in the OHR group had decreased blood pressure, body weight, and glucose levels. Reductions in insulinemia and in lipid and islet fibrotic areas in the OHR group were observed, along with increased insulin sensitivity and normalization of insulin-degrading enzyme levels. The expression of nicotinamide phosphoribosyltransferase (NAMPT), insulin receptor (IR), sirtuin 1 (SIRT1), and complex II proteins were increased in the liver tissue of the OHR group. Strong correlations, whether positive or negative, were evaluated via Spearman's model between SIRT1, AMPK, NAMPT, PGC-1α, and NNMT expressions with the restoration of normal blood pressure, weight loss, glycemic and lipid panel, and mitochondrial adaptation. CONCLUSION CR provided short-term beneficial effects to recover the physiological parameters induced by a high-fat diet and renal artery stenosis in obese and hypertensive animals. These benefits, even in the short term, can provide physiological benefits in the long term.
Collapse
Affiliation(s)
| | - Vinicíus Eduardo Pimentel
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Ribeirão Prêto, São Paulo, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil.,Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Mayara Correa Bertolo
- Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | | | - Pedro Vieira da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Camila Andréa de Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | | |
Collapse
|
11
|
Briel N, Ruf VC, Pratsch K, Roeber S, Widmann J, Mielke J, Dorostkar MM, Windl O, Arzberger T, Herms J, Struebing FL. Single-nucleus chromatin accessibility profiling highlights distinct astrocyte signatures in progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 2022; 144:615-635. [PMID: 35976433 PMCID: PMC9468099 DOI: 10.1007/s00401-022-02483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
Tauopathies such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) exhibit characteristic neuronal and glial inclusions of hyperphosphorylated Tau (pTau). Although the astrocytic pTau phenotype upon neuropathological examination is the most guiding feature in distinguishing both diseases, regulatory mechanisms controlling their transitions into disease-specific states are poorly understood to date. Here, we provide accessible chromatin data of more than 45,000 single nuclei isolated from the frontal cortex of PSP, CBD, and control individuals. We found a strong association of disease-relevant molecular changes with astrocytes and demonstrate that tauopathy-relevant genetic risk variants are tightly linked to astrocytic chromatin accessibility profiles in the brains of PSP and CBD patients. Unlike the established pathogenesis in the secondary tauopathy Alzheimer disease, microglial alterations were relatively sparse. Transcription factor (TF) motif enrichments in pseudotime as well as modeling of the astrocytic TF interplay suggested a common pTau signature for CBD and PSP that is reminiscent of an inflammatory immediate-early response. Nonetheless, machine learning models also predicted discriminatory features, and we observed marked differences in molecular entities related to protein homeostasis between both diseases. Predicted TF involvement was supported by immunofluorescence analyses in postmortem brain tissue for their highly correlated target genes. Collectively, our data expand the current knowledge on risk gene involvement (e.g., MAPT, MAPK8, and NFE2L2) and molecular pathways leading to the phenotypic changes associated with CBD and PSP.
Collapse
Affiliation(s)
- Nils Briel
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Munich Medical Research School, Faculty of Medicine, Ludwig-Maximilians-University, Bavariaring 19, 80336 Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Katrin Pratsch
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Jeannine Widmann
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Janina Mielke
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Mario M. Dorostkar
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Otto Windl
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| |
Collapse
|
12
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Xu Z, Lin J, Xie Y, Tang H, Xie J, Zeng R. HtrA2 is required for inflammatory responses in BMDMs via controlling TRAF2 stability in collagen-induced arthritis. Mol Immunol 2020; 129:78-85. [PMID: 33229071 DOI: 10.1016/j.molimm.2020.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by the destruction of cartilage and bone. The present study aims to investigate the role of HtrA serine peptidase 2 (HtrA2) in the collagen-induced arthritis. The expressions of HtrA2 were determined in the database BioGPS and bone marrow-derived macrophages (BMDMs). The populations of myeloid and lymphoid cells were determined in wild type and HtrA2 knockout (HtrA2MKO) mice using flow cytometry. In addition, the expressions of pro-inflammatory cytokines (Il6, Tnf, and Il1β) were determined in the activated BMDMs from wild type (WT) and HtrA2MKO mice. STRING database was used to predict the interactive proteins of HtrA2 and Co-Immunoprecipitation was used to confirm these interactions. A collagen-induced arthritis model was established to investigate the effects of HtrA2 on the arthritis symptoms. It was found that HtrA2 reduction was associated with the activation of myeloid cells. Interestingly, HtrA2 deficiency did not affect the development of myeloid and lymphoid cells. Further studies demonstrated that HtrA2 deficiency suppressed the production of pro-inflammatory cytokines in BMDMs induced by lipopolysaccharide or CpG. Co-Immunoprecipitation results demonstrated that HtrA2 enhanced the stability of TNF receptor-associated factor 2 (TRAF2). HtrA2 participated in the activation of the inflammatory response in a collagen-induced arthritis model. In summary, HtrA2 modulates inflammatory responses in BMDMs by controlling TRAF2 stability in a collagen-induced arthritis mouse model.
Collapse
Affiliation(s)
- Zhitong Xu
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jinding Lin
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yongsong Xie
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Haifeng Tang
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Junjie Xie
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Rongdong Zeng
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
14
|
Zhou H, Yuan D, Gao W, Tian J, Sun H, Yu S, Wang J, Sun L. Loss of high-temperature requirement protein A2 protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. IUBMB Life 2020; 72:1659-1679. [PMID: 32353215 DOI: 10.1002/iub.2289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Cellular homeostasis requires tight coordination between nucleus and mitochondria, organelles that each possesses their own genomes. Disrupted mitonuclear communication has been found to be implicated in many aging processes. However, little is known about mitonuclear signaling regulator in sarcopenia which is a major contributor to the risk of poor health-related quality of life, disability, and premature death in older people. High-temperature requirement protein A2 (HtrA2/Omi) is a mitochondrial protease and plays an important role in mitochondrial proteostasis. HtrA2mnd2(-/-) mice harboring protease-deficient HtrA2/Omi Ser276Cys missense mutants exhibit premature aging phenotype. Additionally, HtrA2/Omi has been established as a signaling regulator in nervous system and tumors. We therefore asked whether HtrA2/Omi participates in mitonuclear signaling regulation in muscle degeneration. Using motor functional, histological, and molecular biological methods, we characterized the phenotype of HtrA2mnd2(-/-) muscle. Furthermore, we isolated the gastrocnemius muscle of HtrA2mnd2(-/-) mice and determined expression of genes in mitochondrial unfolded protein response (UPRmt ), mitohormesis, electron transport chain (ETC), and mitochondrial biogenesis. Here, we showed that HtrA2/Omi protease deficiency induced denervation-independent skeletal muscle degeneration with sarcopenia phenotypes. Despite mitochondrial hypofunction, upregulation of UPRmt and mitohormesis-related genes and elevated total reactive oxygen species (ROS) production were not observed in HtrA2mnd2(-/-) mice, contrary to previous assumptions that loss of protease activity of HtrA2/Omi would lead to mitochondrial dysfunction as a result of proteostasis disturbance and ROS burst. Instead, we showed that HtrA2/Omi protease deficiency results in different changes between the expression of nuclear DNA- and mitochondrial DNA-encoded ETC subunits, which is in consistent with their transcription factors, nuclear respiratory factors 1 and 2, and coactivator peroxisome proliferator-activated receptor γ coactivator 1α. These results reveal that loss of HtrA2/Omi protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. The novel mechanistic insights may be of importance in developing new therapeutic strategies for sarcopenia.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, China
| | - Jiayi Tian
- Department of Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuang Yu
- Department of Reproductive Medicine, Second Hospital, Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Hu Q, Myers M, Fang W, Yao M, Brummer G, Hawj J, Smart C, Berkland C, Cheng N. Role of ALDH1A1 and HTRA2 expression in CCL2/CCR2-mediated breast cancer cell growth and invasion. Biol Open 2019; 8:bio.040873. [PMID: 31208996 PMCID: PMC6679398 DOI: 10.1242/bio.040873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemokines mediate immune cell trafficking during tissue development, wound healing and infection. The chemokine CCL2 is best known to regulate macrophage recruitment during wound healing, infection and inflammatory diseases. While the importance of CCL2/CCR2 signaling in macrophages during cancer progression is well documented, we recently showed that CCL2-mediated breast cancer progression depends on CCR2 expression in carcinoma cells. Using 3D Matrigel: Collagen cultures of SUM225 and DCIS.com breast cancer cells, this study characterized the mechanisms of CCL2/CCR2 signaling in cell growth and invasion. SUM225 cells, which expressed lower levels of CCR2 than DCIS.com cells, formed symmetrical spheroids in Matrigel: Collagen, and were not responsive to CCL2 treatment. DCIS.com cells formed asymmetric cell clusters in Matrigel: Collagen. CCL2 treatment increased growth, decreased expression of E-cadherin and increased TWIST1 expression. CCR2 overexpression in SUM225 cells increased responsiveness to CCL2 treatment, enhancing growth and invasion. These phenotypes corresponded to increased expression of Aldehyde Dehydrogenase 1A1 (ALDH1A1) and decreased expression of the mitochondrial serine protease HTRA2. CCR2 deficiency in DCIS.com cells inhibited CCL2-mediated growth and invasion, corresponding to decreased ALDH1A1 expression and increased HTRA2 expression. ALDH1A1 and HTRA2 expression were modulated in CCR2-deficient and CCR2-overexpressing cell lines. We found that ALDH1A1 and HTRA2 regulates CCR2-mediated breast cancer cell growth and cellular invasion in a CCL2/CCR2 context-dependent manner. These data provide novel insight on the mechanisms of chemokine signaling in breast cancer cell growth and invasion, with important implications on targeted therapeutics for anti-cancer treatment. This article has an associated First Person interview with the first author of the paper. Summary: Chemokines are known to regulate immune cell recruitment during inflammation. This report characterizes novel molecular mechanisms through which CCL2/CCR2 chemokine signaling in breast cancer cells regulates growth and invasion.
Collapse
Affiliation(s)
- Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Megan Myers
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Min Yao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gage Brummer
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Justin Hawj
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis Smart
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Jhun J, Lee SH, Kim SY, Ryu J, Kwon JY, Na HS, Jung K, Moon SJ, Cho ML, Min JK. RIPK1 inhibition attenuates experimental autoimmune arthritis via suppression of osteoclastogenesis. J Transl Med 2019; 17:84. [PMID: 30876479 PMCID: PMC6419814 DOI: 10.1186/s12967-019-1809-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic and systemic inflammatory disease characterized by upregulation of inflammatory cell death and osteoclastogenesis. Necrostatin (NST)-1s is a chemical inhibitor of receptor-interacting serine/threonine-protein kinase (RIPK)1, which plays a role in necroptosis. Methods We investigated whether NST-1s decreases inflammatory cell death and inflammatory responses in a mouse model of collagen-induced arthritis (CIA). Results NST-1s decreased the progression of CIA and the synovial expression of proinflammatory cytokines. Moreover, NST-1s treatment decreased the expression of necroptosis mediators such as RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL). In addition, NST-1s decreased osteoclastogenesis in vitro and in vivo. NST-1s downregulated T helper (Th)1 and Th17 cell expression, but promoted Th2 and regulatory T (Treg) cell expression in CIA mice. Conclusions These results suggest that NST-1s attenuates CIA progression via the inhibition of osteoclastogenesis and might be a potential therapeutic agent for RA therapy.
Collapse
Affiliation(s)
- Jooyeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jaeyoon Ryu
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | - Su-Jin Moon
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Jun-Ki Min
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea.
| |
Collapse
|
17
|
Lee SY, Lee SH, Na HS, Kwon JY, Kim GY, Jung K, Cho KH, Kim SA, Go EJ, Park MJ, Baek JA, Choi SY, Jhun J, Park SH, Kim SJ, Cho ML. The Therapeutic Effect of STAT3 Signaling-Suppressed MSC on Pain and Articular Cartilage Damage in a Rat Model of Monosodium Iodoacetate-Induced Osteoarthritis. Front Immunol 2018; 9:2881. [PMID: 30619261 PMCID: PMC6305125 DOI: 10.3389/fimmu.2018.02881] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that induces pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for treatment of OA. However, MSC therapy can cause excessive inflammation. Signal transducer and activator of transcription 3 (STAT3) modulates secretion of many proinflammatory cytokines. Experimental OA was induced by intra-articular (IA) injection of monosodium iodoacetate (MIA) to the right knee of rats. MSCs from OA patients (OA-MSCs) were treated with STA21, a small molecule that blocks STAT3 signaling, by IA or intravenous (IV) injection after MIA injection. Pain severity was quantified by assessment of secondary tactile allodynia using the von Frey assessment test. Cartilage degradation was measured by microcomputed tomography image analysis, histological analysis, and the Mankin score. Protein and gene expression was evaluated by enzyme-linked immunosorbent assay, immunohistochemistry, and real-time polymerase chain reaction. MSCs increased production of proinflammatory cytokines under inflammatory conditions. STA21 significantly decreased expression of these proinflammatory molecules via inhibition of STAT3 activity but increased gene expression of molecules related to migration potential and immunomodulation in OA-MSCs. STAT3-inhibited OA-MSCs administrated by IV or IA injection decreased pain severity and cartilage damage in rats with MIA-induced OA rats by decreasing proinflammatory cytokines in the joints. Combined IA and IV-injected STAT3-inhibited OA-MSCs had an additive effect of pain relief in MIA-induced OA rats. STAT3 inhibition may optimize the therapeutic activities of MSCs for treating OA by attenuating pain and progression of MIA by inhibiting inflammation and cartilage damage.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Goo-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Si Young Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Impact Biotech, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
18
|
Lee SH, Lee HR, Kwon JY, Jung K, Kim SY, Cho KH, Choi J, Lee HH, Lee BI, Jue DM, Cho ML. A20 ameliorates inflammatory bowel disease in mice via inhibiting NF-κB and STAT3 activation. Immunol Lett 2018; 198:44-51. [PMID: 29608924 DOI: 10.1016/j.imlet.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
A20 is a zinc finger protein that effectively inhibits the activation of nuclear factor (NF)-κB to downregulate the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-17. A20 also plays a crucial role as a feedback inhibitor of the inflammatory response. Due to its inhibitory role, A20 may be useful in regulating diseases resulting from chronic inflammation and excessive pro-inflammatory cytokine production, such as colitis. Patients with colitis produce high levels of pro-inflammatory cytokines in the intestine. Therefore, this study aimed to investigate whether A20 improves experimental colitis by reducing high levels of inflammation in the intestine. An A20 overexpression vector was administered to mice by intrarectal injection after colitis induction. Histological analysis by immunohistochemistry was used to score sections of the intestine. Confocal laser scanning microscopy was used to identify the expression of IL-17 and forkhead box p (FOXP) 3 protein in spleen tissues. Protein expression induced by STAT3 and NF-κB signaling was analyzed by western blot. We found that A20 reduced the colitis activity index score and the histological score of the intestine. A20 also decreased inflammatory cytokine levels in the intestine and increased colon length. Additionally, A20 overexpression downregulated the activation of NF-kB and STAT3. A20 also reduced IL-17 expression in CD4+ T cells from spleen sections. In contrast, A20 overexpression enhanced the expression of FOXP3 in CD4+ T cells. These results suggest that A20 may inhibit the progression of colitis by decreasing inflammation via inhibition of NF-κB, phosphorylated STAT3, and IL-17.
Collapse
Affiliation(s)
- Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hye-Rim Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - KyungAh Jung
- Impact Biotech, Korea 505 Banpo-Dong, Seocho-Ku, 137-040, Seoul, Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Han Hee Lee
- Division of Gastroenterlogy, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo-In Lee
- Division of Gastroenterlogy, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Myung Jue
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
19
|
Lee SY, Lee SH, Jhun J, Seo HB, Jung KA, Yang CW, Park SH, Cho ML. A Combination with Probiotic Complex, Zinc, and Coenzyme Q10 Attenuates Autoimmune Arthritis by Regulation of Th17/Treg Balance. J Med Food 2018; 21:39-46. [DOI: 10.1089/jmf.2017.3952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seon-Young Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Impact Biotech, Seoul, Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Impact Biotech, Seoul, Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | - Chul Woo Yang
- Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Impact Biotech, Seoul, Korea
| |
Collapse
|
20
|
Fan J, Luo J, Yan C, Hao R, Zhao X, Jia R, He J, Xu D, Miao M, Li X. Methotrexate, combined with cyclophosphamide attenuates murine collagen induced arthritis by modulating the expression level of Breg and DCs. Mol Immunol 2017; 90:106-117. [DOI: 10.1016/j.molimm.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/16/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
|