1
|
Suliman BA. Potential clinical implications of molecular mimicry-induced autoimmunity. Immun Inflamm Dis 2024; 12:e1178. [PMID: 38415936 PMCID: PMC10832321 DOI: 10.1002/iid3.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Molecular mimicry is hypothesized to be a mechanism by which autoimmune diseases are triggered. It refers to sequence or structural homology between foreign antigens and self-antigens, which can activate cross-reactive lymphocytes that attack host tissues. Elucidating the role of molecular mimicry in human autoimmunity could have important clinical implications. OBJECTIVE To review evidence for the role of molecular mimicry in major autoimmune diseases and discuss potential clinical implications. METHODS Comprehensive literature review of clinical trials, observational studies, animal models, and immunology studies on molecular mimicry in multiple sclerosis, type 1 diabetes, rheumatoid arthritis, lupus, Guillain-Barre syndrome, autoimmune myocarditis, and primary biliary cirrhosis published from 2000-2023. RESULTS Substantial indirect evidence supports molecular mimicry as a contributor to loss of self-tolerance in several autoimmune conditions. Proposed microbial triggers include Epstein-Barr virus, coxsackievirus, Campylobacter jejuni, and bacterial commensals. Key mechanisms involve cross-reactive T cells and autoantibodies induced by epitope homology between microbial and self-antigens. Perpetuation of autoimmunity involves epitope spreading, inflammatory mediators, and genetic factors. CONCLUSIONS Molecular mimicry plausibly explains initial stages of autoimmune pathogenesis induced by infection or microbiota disturbances. Understanding mimicry antigens and pathways could enable improved prediction, monitoring, and antigen-specific immunotherapy for autoimmune disorders. However, definitive proof of causation in humans remains limited. Further research should focus on establishing clinical evidence and utility.
Collapse
Affiliation(s)
- Bandar A Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityMadinahSaudi Arabia
| |
Collapse
|
2
|
Real-Fernández F, Rusche H, Papini AM, Rovero P. Affinity Chromatography for Anti-Glucosylated Adhesin Antibody Purification: Depletion of Nonspecific Anti-Protein Antibodies and Antibody Recovery with Unconventional Elution Solutions. Methods Mol Biol 2024; 2821:157-163. [PMID: 38997487 DOI: 10.1007/978-1-0716-3914-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Antibodies from sera of a multiple sclerosis (MS) patient subpopulation preferentially recognize the hyperglucosylated adhesin protein HMW1ct(Glc) of the pathogen Haemophilus influenzae. This protein is the first example of an N-glucosylated native antigen candidate, potentially triggering pathogenic antibodies in MS. Specific antibodies in patients' sera can be isolated exploiting their biospecific interaction with antigens by affinity chromatography. Herein, the proteins HMW1ct and HMW1ct(Glc) were first immobilized on appropriately functionalized supports and further used to purify antibodies directly from MS patients sera. We describe a protocol to obtain an antibody fraction specifically recognizing the glusosylated residues on the HMW1ct(Glc) adhesin protein depleting antibodies to the unglucosylated HMW1ct sequence. Different elution solutions have been tested to recover the purified antibody fraction, strongly bound to the immobilized HMW1ct(Glc) adhesin protein.
Collapse
Affiliation(s)
- Feliciana Real-Fernández
- Institute of Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | | | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, Division of Pharmaceutical Sciences and Nutraceutic, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Strauss P, Nuti F, Quagliata M, Papini AM, Hurevich M. Accelerated solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites. Org Biomol Chem 2023; 21:1674-1679. [PMID: 36385318 DOI: 10.1039/d2ob01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptide fragments of glycoproteins containing multiple N-glycosylated sites are essential biochemical tools not only to investigate protein-protein interactions but also to develop glycopeptide-based diagnostics and immunotherapy. However, solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites is hampered by difficult couplings, which results in a substantial drop in yield. To increase the final yield, large amounts of reagents but also time-consuming steps are required. Therefore, we propose herein to utilize heating and stirring in combination with low-loading solid supports to set up an accelerated route to obtain, by an efficient High-Temperature Fast Stirring Peptide Synthesis (HTFS-PS), glycopeptides containing multiple N-glycosylated sites using equimolar excess of the precious glycosylated building blocks.
Collapse
Affiliation(s)
- Poriah Strauss
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Mattan Hurevich
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
4
|
Quagliata M, Nuti F, Real-Fernandez F, Kirilova Kirilova K, Santoro F, Carotenuto A, Papini AM, Rovero P. Glucopeptides derived from myelin-relevant proteins and hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin cross-react with multiple sclerosis specific antibodies: A step forward in the identification of native autoantigens in multiple sclerosis. J Pept Sci 2023:e3475. [PMID: 36597597 DOI: 10.1002/psc.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed β-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Institute of Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Kalina Kirilova Kirilova
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- University of Burgos, Burgos, Spain
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Staśkiewicz A, Quagliata M, Real-Fernandez F, Nuti F, Lanzillo R, Brescia-Morra V, Rusche H, Jewginski M, Carotenuto A, Brancaccio D, Aharoni R, Arnon R, Rovero P, Latajka R, Papini AM. Role of Helical Structure in MBP Immunodominant Peptides for Efficient IgM Antibody Recognition in Multiple Sclerosis. Front Chem 2022; 10:885180. [PMID: 35795217 PMCID: PMC9250970 DOI: 10.3389/fchem.2022.885180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81–106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76–116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81–106) (1) is recognized more efficiently by IgM antibodies than MBP (76–116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Brescia-Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Hendrik Rusche
- Fischer Analytics GmbH, Weiler, Germany
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
| | - Michal Jewginski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
- *Correspondence: Anna Maria Papini,
| |
Collapse
|
6
|
Reintjens NR, Yakovlieva L, Marinus N, Hekelaar J, Nuti F, Papini AM, Witte MD, Minnaard AJ, Walvoort M. Palladium‐Catalyzed Oxidation of Glucose in Glycopeptides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niels R.M. Reintjens
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Liubov Yakovlieva
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Nittert Marinus
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Johan Hekelaar
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Francesca Nuti
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Anna Maria Papini
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Martin D. Witte
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Adriaan J. Minnaard
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Marthe Walvoort
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
7
|
B-cell-depletion reverses dysbiosis of the microbiome in multiple sclerosis patients. Sci Rep 2022; 12:3728. [PMID: 35260584 PMCID: PMC8904534 DOI: 10.1038/s41598-022-07336-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/11/2022] [Indexed: 01/02/2023] Open
Abstract
To elucidate cross-sectional patterns and longitudinal changes of oral and stool microbiota in multiple sclerosis (MS) patients and the effect of B-cell depletion. We conducted an observational, longitudinal clinical cohort study analysing four timepoints over 12 months in 36 MS patients, of whom 22 initiated B-cell depleting therapy with ocrelizumab and a healthy control group. For microbiota analysis of the oral cavity and the gut, provided stool and oral swab samples underwent 16S rDNA sequencing and subsequent bioinformatic analyses. Oral microbiota-patterns exhibited a reduced alpha-diversity and unique differential microbiota changes compared to stool such as increased levels of Proteobacteria and decreased abundance of Actinobacteria. Following B-cell depletion, we observed increased alpha-diversity in the gut and the oral cavity as well as a long-term sustained reduction of pro-inflammatory Gram-negative bacteria (e.g., Escherichia/Shigella). MS patients have altered stool and oral microbiota diversity patterns compared to healthy controls, which are most pronounced in patients with higher disease activity and disability. Therapeutic B-cell depletion is associated with persisting regression of these changes. Whether these microbial changes are unspecific side-effects of B-cell depletion or indirectly modulate MS disease activity and progression is currently unknown and necessitates further investigations.
Collapse
|
8
|
Mazzoleni A, Real‐Fernandez F, Nuti F, Lanzillo R, Brescia Morra V, Dambruoso P, Bertoldo M, Rovero P, Mallet J, Papini AM. Selective Capture of Anti-N-glucosylated NTHi Adhesin Peptide Antibodies by a Multivalent Dextran Conjugate. Chembiochem 2022; 23:e202100515. [PMID: 34761861 PMCID: PMC9300045 DOI: 10.1002/cbic.202100515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Tentacle-like polymers decorated with several copies of peptide antigens can be interesting tools for increasing the ability to capture circulating antibodies in patient sera, using cooperative effects for stronger avidity. We previously showed that antibodies from multiple sclerosis (MS) patient sera preferentially recognize hyperglucosylated adhesin protein HMW1ct of non-typeable Haemophilus influenzae (NTHi). We selected the C-terminal HMW1ct(1347-1354) minimal epitope and prepared the diglucosylated analogue Ac-KAN(Glc)VTLN(Glc)TTG-K(N3 )-NH2 to graft a 40 kDa dextran scaffold modified with glycidyl-propargyl moieties to perform a copper catalyzed alkyne-azide coupling reaction (CuAAC). Quantitative NMR measurements allowed the characterization of the peptide loading (19.5 %) on the multivalent dextran conjugate. This novel polymeric structure displayed optimal capturing properties of both IgG and, more interestingly, IgM antibodies in MS sera. Specific antibodies from a representative MS serum, were successfully depleted using a Sepharose resin bearing the new glucosylated multivalent conjugate, as confirmed by ELISA. These results may offer a promising proof-of-concept for the selective purification of high affinity autoantibodies from sera of autoimmune patients, in general, and of specific high affinity antibodies against a minimally glcosylated epitope Asn(Glc) from sera of multiple sclerosis (MS) patients, in particular.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratoire des BiomoléculesDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS24 rue Lhomond75005ParisFrance
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Feliciana Real‐Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research CentreDepartment of NeurosciencesReproductive Sciences and OdontostomatologyFederico II UniversityVia Pancini 580131NaplesItaly
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research CentreDepartment of NeurosciencesReproductive Sciences and OdontostomatologyFederico II UniversityVia Pancini 580131NaplesItaly
| | - Paolo Dambruoso
- ISOF – Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
| | - Monica Bertoldo
- Dipartimento di Scienze chimiche, farmaceutiche ed agrarieUniversità di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Neurosciences, Psychology, Drug Research and Child HealthSection of Pharmaceutical Sciences and NutraceuticsUniversity of FlorenceVia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Jean‐Maurice Mallet
- Laboratoire des BiomoléculesDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS24 rue Lhomond75005ParisFrance
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| |
Collapse
|
9
|
Abstract
Nanopores are single-molecule sensors used in nucleic acid analysis, whereas their applicability towards full protein identification has yet to be demonstrated. Here, we show that an engineered Fragaceatoxin C nanopore is capable of identifying individual proteins by measuring peptide spectra that are produced from hydrolyzed proteins. Using model proteins, we show that the spectra resulting from nanopore experiments and mass spectrometry share similar profiles, hence allowing protein fingerprinting. The intensity of individual peaks provides information on the concentration of individual peptides, indicating that this approach is quantitative. Our work shows the potential of a low-cost, portable nanopore-based analyzer for protein identification. Peptide mass fingerprinting is a traditional approach for protein identification by mass spectrometry. Here, the authors provide evidence that peptide mass fingerprinting is also feasible using FraC nanopores, demonstrating protein identification based on nanopore measurements of digested peptides.
Collapse
|
10
|
Podbielska M, O’Keeffe J, Pokryszko-Dragan A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22147319. [PMID: 34298940 PMCID: PMC8303889 DOI: 10.3390/ijms22147319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system disease with complex pathogenesis, including two main processes: immune-mediated inflammatory demyelination and progressive degeneration with axonal loss. Despite recent progress in our understanding and management of MS, availability of sensitive and specific biomarkers for these both processes, as well as neuroprotective therapeutic options targeted at progressive phase of disease, are still being sought. Given their abundance in the myelin sheath, lipids are believed to play a central role in underlying immunopathogenesis in MS and seem to be a promising subject of investigation in this field. On the basis of our previous research and a review of the literature, we discuss the current understanding of lipid-related mechanisms involved in active relapse, remission, and progression of MS. These insights highlight potential usefulness of lipid markers in prediction or monitoring the course of MS, particularly in its progressive stage, still insufficiently addressed. Furthermore, they raise hope for new, effective, and stage-specific treatment options, involving lipids as targets or carriers of therapeutic agents.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-9912
| | - Joan O’Keeffe
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland;
| | | |
Collapse
|
11
|
Yakovlieva L, Ramírez-Palacios C, Marrink SJ, Walvoort MTC. Semiprocessive Hyperglycosylation of Adhesin by Bacterial Protein N-Glycosyltransferases. ACS Chem Biol 2021; 16:165-175. [PMID: 33401908 PMCID: PMC7812588 DOI: 10.1021/acschembio.0c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Processivity is an important feature
of enzyme families such as
DNA polymerases, polysaccharide synthases, and protein kinases, to
ensure high fidelity in biopolymer synthesis and modification. Here,
we reveal processive character in the family of cytoplasmic protein N-glycosyltransferases (NGTs). Through various activity
assays, intact protein mass spectrometry, and proteomics analysis,
we established that NGTs from nontypeable Haemophilus influenzae and Actinobacillus pleuropneumoniae modify an adhesin
protein fragment in a semiprocessive manner. Molecular modeling studies
suggest that the processivity arises from the shallow substrate binding
groove in NGT, which promotes the sliding of the adhesin over the
surface to allow further glycosylations without temporary dissociation.
We hypothesize that the processive character of these bacterial protein
glycosyltransferases is the mechanism to ensure multisite glycosylation
of adhesins in vivo, thereby creating the densely
glycosylated proteins necessary for bacterial self-aggregation and
adherence to human cells, as a first step toward infection.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Mazzoleni A, Real-Fernandez F, Larregola M, Nuti F, Lequin O, Papini AM, Mallet JM, Rovero P. Hyperglucosylated adhesin-derived peptides as antigenic probes in multiple sclerosis: Structure optimization and immunological evaluation. J Pept Sci 2020; 26:e3281. [PMID: 32790009 DOI: 10.1002/psc.3281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides mimicking antigenic epitopes targeted by antibodies can be powerful tools to be used as antigen surrogates for the specific diagnosis and treatment of autoimmune diseases. Obtaining structural insights about the nature of peptide-antibody interaction in complex mixtures such as sera is a critical goal. In multiple sclerosis (MS), we previously demonstrated that the N-linked β-d-glucopyranosyl moieties (N-Glc) containing epitopes in nontypeable Haemophilus influenzae adhesin C-terminal portion HMW1(1205-1526) were essential for high-affinity antibody binding in a subpopulation of MS patients. With the aim of developing peptide probes and assessing their binding properties to antibodies from sera of representative patients, we performed the systematic analysis of synthetic peptides based on HMW1(1347-1354) fragment bearing one or two N-Glc respectively on Asn-1349 and/or Asn-1352. The N-glucosylated nonapeptides efficiently bind to IgG antibodies, displaying IC50 in the range 10-8 -10-10 M by competitive indirect enzyme-linked immunosorbent assay (ELISA) in three representative MS patient sera. We selected the di-N-glucosylated adhesin peptide Ac-KAN (Glc)VTLN (Glc)TT-NH2 as the shortest sequence able to inhibit high-avidity interaction with N-Glc targeting IgM antibodies. Nuclear magnetic resonance (NMR)- and circular dichroism (CD)-based characterization showed that the binding properties of these antigens could not be ascribed to structural differences induced by the presence of up to two N-glucosyl moieties. Therefore, the antibody binding is not easily correlated to the position of the sugar or to a determined conformation in water.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratoire des Biomolécules, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.,Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Maud Larregola
- UMR 8076 CNRS-BioCIS Team of Chemical Biology and PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,UMR 8076 CNRS-BioCIS Team of Chemical Biology and PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Petit B, Mitaine-Offer AC, Fernández FR, Papini AM, Delaude C, Miyamoto T, Tanaka C, Rovero P, Lacaille-Dubois MA. Triterpene glycosides from Blighia welwitschii and evaluation of their antibody recognition capacity in multiple sclerosis. PHYTOCHEMISTRY 2020; 176:112392. [PMID: 32512361 DOI: 10.1016/j.phytochem.2020.112392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) in a multifactorial autoimmune disease in which reliable biomarkers are needed for therapeutic monitoring and diagnosis. Autoantibodies (autoAbs) are known biomarker candidates although their detection in biological fluids requires a thorough characterization of their associated antigens. Over the past twenty years, a reverse chemical-based approach aiming to screen putative autoantigens has underlined the role of glycans, in particular glucose, in MS. Despite the progress achieved, a lack of consensus regarding the nature of innate antigens as well as difficulties proposing new synthetic glucose-based structures have proved to be obstacles. Here is proposed a strategy to extend the current methodology to the field of natural glycosides, in order to dramatically increase the diversity of glycans that could be tested. Triterpene saponins from the Sapindaceace family represent an optimal starting material as their abundant description in the literature has revealed a prevalence of glucose-based oligosaccharides. Blighia welwitschii (Sapindaceae) was thus selected as a case study and twelve triterpene saponins were isolated and characterized. Their structures were elucidated on the basis of 1D and 2D NMR as well as mass spectrometry, revealing seven undescribed compounds. A selection of natural glycosides exhibiting various oligosaccharide moieties were then tested as antigens in enzyme-linked immunosorbent assay (ELISA) to recognize IgM antibodies (Abs) in MS patients' sera. Immunoassay results indicated a correlation between the glycan structures and their antibody recognition capacity, allowing the determination of structure-activity relationships that were coherent with previous studies. This approach might help to identify sugar epitopes putatively involved in MS pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Bastien Petit
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France.
| | - Feliciana Real Fernández
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Laboratory of Chemical Biology, EA 4505 PeptLab@UCP, University of Cergy Pontoise, 95031, Cergy, Pontoise Cedex, France
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000, Liège I, Belgium
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| |
Collapse
|
14
|
Bello C, Rovero P, Papini AM. Just a spoonful of sugar: Short glycans affect protein properties and functions. J Pept Sci 2019; 25:e3167. [PMID: 30924227 DOI: 10.1002/psc.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation has a strong impact on the chemical and physical properties of proteins and on their activity. The heterogeneous nature of this modification complicates the elucidation of the role of each glycan, thus slowing down the progress in glycobiology. Nevertheless, the great advances recently made in protein engineering and in the chemical synthesis, and semisynthesis of glycoproteins are giving impulse to the field, fostering important discoveries. In this review, we report on the findings of the last two decades on the importance that the attachment site, linkage, and composition of short glycans have in affecting protein properties and functions.
Collapse
Affiliation(s)
- Claudia Bello
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
| |
Collapse
|
15
|
Mazzoleni A, Mallet JM, Rovero P, Papini AM. Glycoreplica peptides to investigate molecular mechanisms of immune-mediated physiological versus pathological conditions. Arch Biochem Biophys 2019; 663:44-53. [PMID: 30594643 DOI: 10.1016/j.abb.2018.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022]
Abstract
Investigation of the role of saccharides and glycoconjugates in mechanisms of immune-mediated physiological and pathological conditions is a hot topic. In fact, in many autoimmune diseases cross-reactivity between sugar moieties exposed on exogenous pathogens and self-molecules has long been hinted. Several peptides have been reported as mimetics of glycans specifically interacting with sugar-binding antibodies. The seek for these glycoreplica peptides is instrumental in characterizing antigen mimicry pathways and their involvement in triggering autoimmunity. Therefore, peptides mimicking glycan-protein interactions are valuable molecular tools to overcome the difficulties of oligosaccharide preparations. The clinical impact of peptide-based probes for autoimmune diseases diagnosis and follow-up is emerging only recently as just the tip of the iceberg of an overlooked potential. Here we provide a brief overview of the relevance of the structural and functional aspects of peptide probes and their mimicry effect in autoimmunity mechanisms for promising applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy; Laboratoire des Biomolécules, UMR 7203, Département de chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS, 24 rue Lhomond, 75005, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, UMR 7203, Département de chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS, 24 rue Lhomond, 75005, Paris, France
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceuticals, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy; Platform of Peptide and Protein Chemistry and Biology - PeptLab@UCP and Laboratory of Chemical Biology EA4505, Université Paris-Seine, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise CEDEX, France.
| |
Collapse
|
16
|
Nuti F, Gallo A, Real-Fernandez F, Rentier C, Rossi G, Piarulli F, Traldi P, Carganico S, Rovero P, Lapolla A, Papini AM. Study of Aberrant Modifications in Peptides as a Test Bench to Investigate the Immunological Response to Non-Enzymatic Glycation. Folia Biol (Praha) 2019; 65:195-202. [PMID: 31903893 DOI: 10.14712/fb2019065040195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A side effect of diabetes is formation of glycated proteins and, from them, production of advanced early glycation end products that could determine aberrant immune responses at the systemic level. We investigated a relevant aberrant post-translational modification (PTM) in diabetes based on synthetic peptides modified on the lysine side chain residues with 1-deoxyfructopyranosyl moiety as a possible modification related to glycation. The PTM peptides were used as molecular probes for detection of possible specific autoantibodies developed by diabetic patients. The PDC-E2(167-186) sequence from the pyruvate dehydrogenase complex was selected and tested as a candidate peptide for antibody detection. The structure-based designed type I' β-turn CSF114 peptide was also used as a synthetic scaffold. Twenty-seven consecutive type 1 diabetic patients and 29 healthy controls were recruited for the study. In principle, the 'chemical reverse approach', based on the use of patient sera to screen the synthetic modified peptides, leads to the identification of specific probes able to characterize highly specific autoantibodies as disease biomarkers of autoimmune disorders. Quite surprisingly, both peptides modified with the (1-deoxyfructosyl)-lysine did not lead to significant results. Both IgG and IgM differences between the two populations were not significant. These data can be rationalized considering that i) IgGs in diabetic subjects exhibit a high degree of glycation, leading to decreased functionality; ii) IgGs in diabetic subjects exhibit a privileged response vs proteins containing advanced glycation products (e.g., methylglyoxal, glyoxal, glucosone, hydroimidazolone, dihydroxyimidazolidine) and only a minor one with respect to (1-deoxyfructosyl)-lysine.
Collapse
Affiliation(s)
- F Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - A Gallo
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - F Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - C Rentier
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
| | - G Rossi
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
- Pharma Quality Europe PQE SrL, Località Prulli, Firenze, Italy
| | - F Piarulli
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - P Traldi
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - S Carganico
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Pharma Quality Europe PQE SrL, Località Prulli, Firenze, Italy
| | - P Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - A Lapolla
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - A M Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
| |
Collapse
|
17
|
Lameijer LN, le Roy J, van der Vorm S, Bonnet S. Synthesis of O-1- O-6 Substituted Positional Isomers of d-Glucose-Thioether Ligands and Their Ruthenium Polypyridyl Conjugates. J Org Chem 2018; 83:12985-12997. [PMID: 30272448 PMCID: PMC6218880 DOI: 10.1021/acs.joc.8b01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
A library of positional isomers of d-glucose (O-1–O-6) as ligands and their 11
light-active ruthenium conjugates has been synthesized. A protecting
group strategy without the necessity of using palladium on carbon
for the modification for the 2-O and 4-O position allows for the incorporation of sulfur donor atoms as ligands
for transition metal complexes.
Collapse
Affiliation(s)
- Lucien N Lameijer
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| | - Julien le Roy
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| | - Stefan van der Vorm
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| |
Collapse
|
18
|
Saberi A, Akhondzadeh S, Kazemi S. Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurol Belg 2018; 118:361-377. [PMID: 30006858 DOI: 10.1007/s13760-018-0976-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) causes demyelination of white matter of central nervous system and neuro-degeneration due to inflammation. Different types of MS, as well as disease progression, come with different pathology and pathophysiology. The objective of this study was to evaluate the possible association between different micro-organisms and the relapse or progression of MS. Studies indexed in Medline/PMC, Scopus and Web of Science published without time and language limitation until March 2017 were identified through the search terms "infection" or "infectious" and "multiple sclerosis". A total of 20878 abstracts were identified through the initial search terms. Selection of articles and assessment of their quality was done based on Cochrane library guidelines. Full texts were reviewed for 33 articles out of which 14 articles met the criteria for inclusion. Different micro-organisms are known to play roles in the pathogenesis of MS and its relapse; including Human herpesvirus 6 (HHV-6), Human herpesvirus 7 (HHV-7), Epstein-Barr virus (EBV), Chlamydia pneumoniae and Torque teno virus (TTV). But in this review only HHV-6, C. pneumoniae and TTV have been considered to play a role in disease progression in some studies and not all of them. This review concluded that some micro-organisms such as HHV-6, C. pneumoniae and TTV have been considered as cofactors to make MS a progressive type. It should be considered that these findings do not necessarily rule out the role of other pathogens in MS progression but may represent population differences or different sensitivity of the technique used.
Collapse
Affiliation(s)
- Alia Saberi
- Neuroscience Research Center, Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Kazemi
- Deputy of Research and Technology, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
19
|
Osman KL, Jefferies JM, Woelk CH, Cleary DW, Clarke SC. The adhesins of non-typeable Haemophilus influenzae. Expert Rev Anti Infect Ther 2018; 16:187-196. [PMID: 29415569 DOI: 10.1080/14787210.2018.1438263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen of the respiratory tract and the greatest contributor to invasive Haemophilus disease. Additionally, in children, NTHi is responsible for the majority of otitis media (OM) which can lead to chronic infection and hearing loss. In adults, NTHi infection in the lungs is responsible for the onset of acute exacerbations in chronic obstructive pulmonary disease (COPD). Unfortunately, there is currently no vaccine available to protect against NTHi infections. Areas covered: NTHi uses an arsenal of adhesins to colonise the respiratory epithelium. The adhesins also have secondary roles that aid in the virulence of NTHi, including mechanisms that avoid immune clearance, adjust pore size to avoid antimicrobial destruction, form micro-colonies and invoke phase variation for protein mediation. Bacterial adhesins can also be ideal antigens for subunit vaccine design due to surface exposure and immunogenic capabilities. Expert commentary: The host-pathogen interactions of the NTHi adhesins are not fully investigated. The relationship between adhesins and the extracellular matrix (ECM) play a part in the success of NTHi colonisation and virulence by immune evasion, migration and biofilm development. Further research into these immunogenic proteins would further our understanding and enable a basis for better combatting NTHi disease.
Collapse
Affiliation(s)
- Karen L Osman
- a Faulty of Medicine , University of Southampton , Southampton , UK
| | | | - Christopher H Woelk
- a Faulty of Medicine , University of Southampton , Southampton , UK.,b Merck Exploratory Science Center , Merck Research Laboratories , Cambridge , MA , USA
| | - David W Cleary
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK
| | - Stuart C Clarke
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK.,e Global Health Research Institute , University of Southampton , Southampton SO17 1BJ , UK
| |
Collapse
|
20
|
Braganza CD, Santoso KT, Dangerfield EM, La Flamme AC, Timmer MSM, Stocker BL. Evaluation of anti α-d-Glcp-(1→4)-α-d-Glcp (GAGA4) IgM antibodies as a biomarker for multiple sclerosis. RSC Adv 2018; 8:28086-28093. [PMID: 35542693 PMCID: PMC9084297 DOI: 10.1039/c8ra04897e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/22/2018] [Indexed: 12/03/2022] Open
Abstract
The correct diagnosis of multiple sclerosis (MS) remains challenging due to the complex pathophysiological and clinical characteristics of the disease. Consequently, there has been immense interest in finding a non-invasive diagnostic test for MS. Recent studies found that serum anti-α-d-Glcp-(1→4)-α-d-Glcp (GAGA4) IgM antibodies were upregulated in MS patients, and this finding led to the development of a commercial diagnostic test (gMS® Dx test), although the test has poor selectivity and has not been independently validated. Herein, we developed an enzyme-linked immunosorbent assay (ELISA) to evaluate the use and reliability of several anti-glucose IgM antibodies, including those against GAGA4, as diagnostic biomarkers for MS. In contrast to previous studies, our results show that serum anti-GAGA4 IgM antibody levels are not significantly higher in MS patients, which could potentially explain the poor selectivity of the commercial test. Anti-glucose IgM antibodies are not upregulated in RRMS patients and thus are not a suitable biomarker for MS.![]()
Collapse
Affiliation(s)
- Chriselle D. Braganza
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- Centre for Biodiscovery
| | - Kristiana T. Santoso
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- Centre for Biodiscovery
| | - Emma M. Dangerfield
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- Centre for Biodiscovery
| | - Anne C. La Flamme
- Centre for Biodiscovery
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- Malaghan Institute of Medical Research
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- Centre for Biodiscovery
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- Centre for Biodiscovery
| |
Collapse
|