1
|
Yang L, Gao T, Yuan S, Dong Y, Chen Y, Wang X, Chen C, Tang L, Ohno T. Spatial charge separated two-dimensional/two-dimensional Cu-In 2S 3/CdS heterojunction for boosting photocatalytic hydrogen production. J Colloid Interface Sci 2023; 652:1503-1511. [PMID: 37659318 DOI: 10.1016/j.jcis.2023.08.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Two-dimensional (2D) beta indium sulfide (β-In2S3) shows great potential in photocatalytic hydrogen production due to its broad-spectrum response, relatively negative conduction band edge, high carrier mobility and low toxicity. However, the high charge recombination rate limits the application of In2S3. Here, we in-situ grew 2D cadmium sulfide (CdS) on the surface of In2S3 doped with copper ions (Cu2+) to construct a heterojunction photocatalyst that suppresses charge recombination. The in-situ grown method and shared sulfur composition were conducive to forming the efficient interface contact between In2S3 and CdS, promoting charge transfer and showing the high spatial charge separation rate, resulting in a hydrogen production rate of 868 µmol g-1h-1. The induced Cu2+ extended the light absorption range and stabilized the photocatalyst. By creating stable 2D/2D heterojunction photocatalysts with high charge separation efficiency, this work opens new possibilities for applying In2S3 materials in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Lei Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tengyang Gao
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Saisai Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Ying Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yiming Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xijuan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
| |
Collapse
|
2
|
Athar M, Rasool Z, Muneer M, M. Altass H, Althagafi II, Ahmed SA. Fabrication of Direct Z-Scheme CoNiWO 4/Ph-gC 3N 4 Heterocomposites: Enhanced Photodegradation of Bisphenol A and Anticancer Activity. ACS OMEGA 2023; 8:38272-38287. [PMID: 37867713 PMCID: PMC10586185 DOI: 10.1021/acsomega.3c04653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Photocatalysis is realized by the design of a visible-light-active catalyst with robust redox capacity and broad absorption. In this study, a series of novel Z-scheme CoNiWO4/Ph-gC3N4 photocatalysts are synthesized to improve their redox property and photocatalytic activity toward broad visible light absorption. An intimate stable heterojunction is made between cobalt-nickel tungstate (CoNiWO4) and phenyl-doped graphitic carbon nitride (Ph-gC3N4), and its physicochemical properties are studied. The bifunctional properties of all of the synthesized materials were assessed by studying the decomposition of bisphenol A (BPA) and methyl orange (MO) dye as model pollutants, followed by an evaluation of their anticancer activity on human lung cancer cell lines. The photocatalyst with 20 wt % CoNiWO4 heterocomposite showed an enhanced response toward the removal of cancerous cells. The synthesized pristine CoNiWO4 and Ph-gC3N4 exhibit well-matched band structures and, hence, make it easier to create a Z-scheme heterocomposite. This may increase the lifetime of photoinduced charge carriers with a high redox power, thereby improving their photocatalytic and anticancer activity. An extensive analysis of the mechanism demonstrates that hydroxyl radicals (•OH) and superoxide radical anions (•O2-) are responsible for the degradation of organic compounds via Z-scheme charge transfer approach. These findings point toward a new route for creating effective Co-Ni tungstate-based direct Z-scheme photocatalysts for various redox processes, particularly the mineralization of resistant organic molecules.
Collapse
Affiliation(s)
| | - Ziyaur Rasool
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Muneer
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hatem M. Altass
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ismail I. Althagafi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
3
|
Faryad S, Azhar U, Tahir MB, Ali W, Arif M, Sagir M. Spinach-derived boron-doped g-C 3N 4/TiO 2 composites for efficient photo-degradation of methylene blue dye. CHEMOSPHERE 2023; 320:138002. [PMID: 36731675 DOI: 10.1016/j.chemosphere.2023.138002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Green synthesis of nanoparticles can be beneficial due to their low toxicity, cost-effectiveness, and environment-friendliness. Its synthesis involves the use of eco-friendly and biodegradable materials such as plant extracts, natural products, and microorganisms to reduce the negative environmental impacts of traditional nanoparticle synthesis methods. Herein, Spinacia oleracea leaves are used as a boron source, and a visible light active photo-catalyst is produced. The effect of Co-Catalyst Boron in Graphitic carbon nitride based nanocomposites for methylene blue dye photo-degradation in water is examined. Titanium dioxide (TiO2) was activated by changing the hydrogen potential value while utilizing a typical orange dye as a sensitizer. The graphitic carbon nitride/TiO2 nanocomposites were synthesized through a hydrothermal technique. To improve their performance, Boron used as a co-catalyst and B-doped g-C3N4/TiO2nanocomposites prepared through wet chemical co-percipitate mathod. UV-visible spectroscopy, SEM and FTIR spectroscopy were used to analyze the photocatalyst and boron-doped composites in detail. The photocatalytic performance of pristine photocatalyst CNTx (x = 2%,4%,6%,8%) and B-doped CNTx composites were examined for Methylene Blue degradation in the presence of a light source. The spectroscopy analysis showed that B-doped g-C3N4/TiO2 -8% nano-composites performed better than all other synthesized pristine catalysts and composites in this research. This research has demonstrated that B-doped g-C3N4/TiO2 composites can provide an ideal solution for treating polluted water using visible light as a source to activate these photocatalysts.
Collapse
Affiliation(s)
- Sadia Faryad
- Institute of Physics, Center for Innovative Material Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Umair Azhar
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Bilal Tahir
- Institute of Physics, Center for Innovative Material Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Muhammad Arif
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| |
Collapse
|
4
|
Matias ML, Reis-Machado AS, Rodrigues J, Calmeiro T, Deuermeier J, Pimentel A, Fortunato E, Martins R, Nunes D. Microwave Synthesis of Visible-Light-Activated g-C 3N 4/TiO 2 Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1090. [PMID: 36985984 PMCID: PMC10057508 DOI: 10.3390/nano13061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The preparation of visible-light-driven photocatalysts has become highly appealing for environmental remediation through simple, fast and green chemical methods. The current study reports the synthesis and characterization of graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructures through a fast (1 h) and simple microwave-assisted approach. Different g-C3N4 amounts mixed with TiO2 (15, 30 and 45 wt. %) were investigated for the photocatalytic degradation of a recalcitrant azo dye (methyl orange (MO)) under solar simulating light. X-ray diffraction (XRD) revealed the anatase TiO2 phase for the pure material and all heterostructures produced. Scanning electron microscopy (SEM) showed that by increasing the amount of g-C3N4 in the synthesis, large TiO2 aggregates composed of irregularly shaped particles were disintegrated and resulted in smaller ones, composing a film that covered the g-C3N4 nanosheets. Scanning transmission electron microscopy (STEM) analyses confirmed the existence of an effective interface between a g-C3N4 nanosheet and a TiO2 nanocrystal. X-ray photoelectron spectroscopy (XPS) evidenced no chemical alterations to both g-C3N4 and TiO2 at the heterostructure. The visible-light absorption shift was indicated by the red shift in the absorption onset through the ultraviolet-visible (UV-VIS) absorption spectra. The 30 wt. % of g-C3N4/TiO2 heterostructure showed the best photocatalytic performance, with a MO dye degradation of 85% in 4 h, corresponding to an enhanced efficiency of almost 2 and 10 times greater than that of pure TiO2 and g-C3N4 nanosheets, respectively. Superoxide radical species were found to be the most active radical species in the MO photodegradation process. The creation of a type-II heterostructure is highly suggested due to the negligible participation of hydroxyl radical species in the photodegradation process. The superior photocatalytic activity was attributed to the synergy of g-C3N4 and TiO2 materials.
Collapse
Affiliation(s)
- Maria Leonor Matias
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana S. Reis-Machado
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Joana Rodrigues
- Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tomás Calmeiro
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana Pimentel
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Daniela Nunes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Athar MS, Muneer M. Enhanced photodegradation of organic contaminants using V-ZnSQDs@TiO2 photocatalyst in an aqueous medium. Photochem Photobiol Sci 2022; 22:695-712. [PMID: 36495409 DOI: 10.1007/s43630-022-00345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Vanadium-doped zinc sulfide quantum dots complexed with TiO2 have been designed using the sol-gel technique and characterized using analytical techniques, such as X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (DRS), Fourier transforms Infra Red (FTIR), Brunauer-Emmett-Teller analysis (BET), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscopy (TEM). The X-ray diffraction analysis of the composite material showed sharp peaks corresponding to both TiO2 and ZnSQDs. The FTIR analysis exhibits a strong and broad absorption at 807 cm-1 indicating the assimilation of vanadium metal in the ZnSQDs lattice. The DRS spectra showed a bathochromic shift of 25 nm in the synthesized V-ZnSQDs@TiO2 composite compared with the pure sample. The photocatalytic performance of the synthesized composite was tested by studying the degradation of two different chromophoric organic dyes, rhodamine B (RhB), methylene blue (MB) and a drug derivative paracetamol (PCM) in aqueous suspension under UV-light illumination. Among the synthesized materials, the composite (V-ZnSQDs@TiO2) was established to be more active than the pure ZnSQDs, TiO2, and V-ZnSQDs for the degradation of compounds under investigation. The activity of the synthesized catalyst was also tested for the mineralization of all compounds by measuring the depletion in total organic carbon (TOC) at different irradiation times. The results showed that the catalyst degrades the compounds and mineralizes them efficiently. The primary reactive species involved in the photodegradation reaction were determined by quenching studies, terephthalic acid, and NBT probe methods. A probable mechanistic pathway for the decomposition of compounds has been proposed.
Collapse
|
6
|
Hussein Abdurahman M, Zuhairi Abdullah A, Da Oh W, Fazliani Shopware N, Faisal Gasim M, Okoye P, Ul-Hamid A, Rahman Mohamed A. Tunable band structure of synthesized carbon dots modified graphitic carbon nitride/bismuth oxychlorobromide heterojunction for photocatalytic degradation of tetracycline in water. J Colloid Interface Sci 2022; 629:189-205. [PMID: 36067598 DOI: 10.1016/j.jcis.2022.08.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
In this study, graphitic carbon nitride (CN) decorated with carbon quantum dot (CQD) and bismuth oxychlorobromide (BiOClxBr1-x) was fabricated by calcination and hydrothermal methods. The morphology characterization of the synthesized photocatalyst revealed that CQD and BiOClxBr1-x solid solution were deposited on the CN surface. CQD served as the electron reservoir, which could reduce the recombination of electron-hole pairs, thus improving the overall photocatalytic performance. The synergistic effect of 1 wt% CQDs and BiOCl0.75Br0.25 markedly improved the interfacial charge transfer efficiency and light-harvesting capacity of the composite. The degradation rate of tetracycline (TC) over CN/CQD/BiOCl0.75Br0.25 was 83.4 % after 30 min and favorable stability with near-initial capacity under visible light irradiation. Meanwhile, the reaction mechanism of the photocatalytic performance was demonstrated by the analysis of the surface adsorption sites, efficient utilization of visible light, and charge carrier transfer. The degradation by-products and potential degradation pathways were also analyzed using liquid chromatography-mass spectrometry. Finally, the toxicity estimation software tool (T.E.S.T) analysis indicated that the toxicity of most intermediates was lower than TC. This work provideed a strategy for fabricating visible light (VL) photocatalyst with excellent photocatalytic activity, furnishing a new insight for interface charge transfer.
Collapse
Affiliation(s)
- Mohamed Hussein Abdurahman
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Noor Fazliani Shopware
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Kampus Jeli, Kelantan, Malaysia
| | - Mohamed Faisal Gasim
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Patrick Okoye
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Anwar Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
7
|
Nivetha MRS, Kumar JV, Ajarem JS, Allam AA, Manikandan V, Arulmozhi R, Abirami N. Construction of SnO 2/g-C 3N 4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. ENVIRONMENTAL RESEARCH 2022; 209:112809. [PMID: 35104479 DOI: 10.1016/j.envres.2022.112809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The current study mainly focused on the fabrication of 2D graphitic carbon nitride-supported tin oxide nanoparticles (SnO2/g-C3N4) for the effective degradation of Amoxicillin (AMX). Tin oxide (SnO2) NPs were prepared by green and easy modification technique, and then it is decorated over g-C3N4 nanosheets. The structural morphology and surface composition of the synthesized SnO2/g-C3N4 nanocomposite were fully analysed by UV-Vis, XRD, XPS, and HR-SEM with EDAX, FT-IR, and BET analysis. The (HR-TEM) microscopy, the size of SnO2 NPs which as a diameter is about 6.2 nm. The Raman analysis revealed that the SnO2/g-C3N4 composite had a moderate graphitic structure, with a measured ID/Ig value of 0.79. The degradation efficiency of antibiotic pollutant AMX and pharma effluent treatment was monitored by UV spectroscopy. The optical band gap of SnO2 (2.9 eV) and g-C3N4 (2.8 eV) photocatalyst was measured by Tauc plots. To investigate the mechanism through the photodegradation efficiency of the catalyst was analysed by using different Scavenger EDTA-2Na holes (h+) has a greater contribution towards the degradation process. Under visible irradiation, SnO2/g-C3N4 nanocomposite has exhibited an excellent degradation performance of 92.1% against AMX and 90.8% for pharmaceutical effluent in 80 min.
Collapse
Affiliation(s)
- Michael Raj Sherlin Nivetha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Jothi Vinoth Kumar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Rajaram Arulmozhi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Natarajan Abirami
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
8
|
Environment Friendly g-C3N4-Based Catalysts and Their Recent Strategy in Organic Transformations. HIGH ENERGY CHEMISTRY 2022. [PMCID: PMC8960706 DOI: 10.1134/s0018143922020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic molecules synthesized in an environmentally friendly manner have excellent therapeutic potential. The entire preparation technique was examined in the existence of a light source, implying that light has been replaced by heating and the usage of dangerous chemicals has decreased, resulting in less pollution of the environment. The advantages of these nanocarbon catalysts include high efficiency, environmentally friendly synthesis, eco-friendly, inexpensive, and non-corrodible. In organic transformations, solid metal base/metal-free catalysts produce better results. Here, the metal-free semiconductor g-C3N4 was used to demonstrate the catalytic behavior of organic conversions. g-C3N4 is a two-dimensional material and a p‑type semiconductor to enhance the photocatalytic activity. The excellent properties of g-C3N4 sheet lead to the support of metals to form metal-organic frameworks. Most of the reactions gained positive response under visible light irradiation. This review will inspire readers in widen the applications of g-C3N4 based catalyst in various organic transformation reactions.
Collapse
|
9
|
Cui T, Zhang Y, Yan Y, Zhao J, Qi K, Jiang J. Synthesis and properties of Sm‐TiO
2
coupled with g‐C
3
N
4
for improved photocatalytic degradation toward methylene blue and tetracycline under visible‐light irradiation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tianyi Cui
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Yuan Zhang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Yumin Yan
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Jianbo Zhao
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering Shenyang Normal University Shenyang China
| | - Jianhui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| |
Collapse
|
10
|
Zhang M, Xu H, Wu L, Tan Y, Kong D, Yimiti M. Photocatalytic degradation of lignin by low content g-C 3N 4 modified TiO 2 under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj00859a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TiO2/g-C3N4 photocatalysts efficiently degraded lignin to obtain small molecule aromatics, which facilitated the efficient utilization of biomass.
Collapse
Affiliation(s)
- Minpeng Zhang
- Xinjiang University Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi 830046, China
| | - Huitong Xu
- Xinjiang University Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi 830046, China
| | - Lei Wu
- Xinjiang University Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi 830046, China
| | - Yu Tan
- Xinjiang University Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi 830046, China
| | - Dezhi Kong
- Xinjiang University Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi 830046, China
| | - Mamatjan Yimiti
- Xinjiang University Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi 830046, China
| |
Collapse
|
11
|
Jafarpour M, Feizpour F, Rezaeifard A, Pourmorteza N, Breit B. Tandem Photocatalysis Protocol for Hydrogen Generation/Olefin Hydrogenation Using Pd-g-C 3N 4-Imine/TiO 2 Nanoparticles. Inorg Chem 2021; 60:9484-9495. [PMID: 34133148 DOI: 10.1021/acs.inorgchem.1c00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented visible-light-driven photocatalytic system consisting of Pd nanoparticles stabilized on g-C3N4-imine-functionalized TiO2 nanoparticles was discovered for photoassisted hydrogen generation followed by olefin hydrogenation under mild conditions. The structural integrity of the as-synthesized photocatalyst was corroborated by Fourier transform infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-diffuse reflectance spectroscopy, Brunauer-Emmett-Teller measurements, and thermogravimetric analysis (TGA). Transmission electron microscopy and high-resolution scanning electron microscopy revealed the nanoscopic nature of the catalyst. The photocatalyst promoted several different transformations in a one-pot reaction sequence: hydrogen evolution through photocatalytic acceptorless formation of benzimidazoles as important therapeutic agents followed by visible-light-driven photocatalytic reduction of olefins with a high hydrogen utilization efficiency of up to 92% under mild conditions. A significant volume of H2 was produced under blue light-emitting diode (LED) irradiation during the selective formation of benzimidazole, while the selectivity reduced significantly under a Xe lamp or in the dark. The in situ-generated H2 could be activated by the as-prepared Pd-C3N4-imine/TiO2 photocatalyst to effectively hydrogenate olefins under mild conditions at appropriate time exposed to blue LED irradiation. The light-dependent photocatalytic performance of the title catalyst was assessed using action spectra by calculating the apparent quantum efficiency (AQE), which exhibited the maximum AQEs at 410 and 550 nm, at which the highest performance for styrene hydrogenation was obtained. The improved photoredox activity of the title nanohybrid could be caused by the synergistic effects of the heterojunction of carbon nitride-Pd on TiO2 nanoparticles evidenced by photoluminescence spectra and catalytic reactions. The catalyst proved to be air-stable, robust, recyclable, and very active in the absence of any undesirable additives and reducing agents. Thus, this work presents a new protocol for improving the photocatalytic properties of semiconducting materials for various photocatalytic applications under environmentally friendly conditions.
Collapse
Affiliation(s)
- Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran.,Institut für Organische Chemie, Albert-Ludwigs-Universität-Freiburg, Albertstrasse 21, Freiburg im Breisgau 79104, Germany
| | - Fahimeh Feizpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Narges Pourmorteza
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität-Freiburg, Albertstrasse 21, Freiburg im Breisgau 79104, Germany
| |
Collapse
|
12
|
Vodyankin A, Belik Y, Zaikovskii V, Vodyankina O. Investigating the influence of silver state on electronic properties of Ag/Ag2O/TiO2 heterojunctions prepared by photodeposition. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Ratshiedana R, Kuvarega AT, Mishra AK. Titanium dioxide and graphitic carbon nitride-based nanocomposites and nanofibres for the degradation of organic pollutants in water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10357-10374. [PMID: 33405162 DOI: 10.1007/s11356-020-11987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The paper reviews graphitic carbon nitride-based nanostructured photocatalytic materials and nanofibres for applications in water purification. Titanium dioxide has shown unique features that continue to attract research and development (R&D) due to its unique properties such as availability, ultraviolet absorptivity, photocatalysis, adsorption of pollutants and solar cell engineering. Graphitic carbon nitride is an attractive photocatalyst due to its non-toxicity characteristics, good visible light absorption and good thermal and chemical stabilities. In water purification, nanofibres are currently noticed due to their distinctive properties of effective separation and sometimes elimination of organic pollutants in water. In this review, synthesis and utility of doped titanium dioxide and carbon nitride with metal nanoparticles and polymeric nanofibres from nanocomposites as effective materials for the degradation of organic contaminations from water are discussed. The history, current trends and future perspectives are highlighted.
Collapse
Affiliation(s)
- Rudzani Ratshiedana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
| | - Ajay Kumar Mishra
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa.
| |
Collapse
|
14
|
Cai J, Li S. Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites. CURRENT ORGANOCATALYSIS 2020. [DOI: 10.2174/2213337207999200701214637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanostructured materials often exhibit unique physical properties, such as fast carrier
transport, subwavelength optical waveguiding, and a high surface-area-to-volume ratio. When the size
of a material is reduced to nanoscale dimensions, its physical and chemical properties can change dramatically.
In addition, nanostructures offer exciting new opportunities for environmental applications.
In this review, we aim to provide an up-to-date summary of recent research related to multifunctional
TiO2-based inorganic and organic semiconductor nanomaterials, covering both their synthesis and applications.
After a brief introduction of the definition and classification of TiO2-based inorganic and
organic semiconductor nanomaterial structures, we discuss various application strategies, such as sewage
treatment, heavy metal removal, and the oxidation of alcohols to the corresponding aldehydes. In
our previous work, we fabricated a variety of TiO2-based hollow spheres using a diverse range of materials
from inorganic semiconductors to organic semiconductors and applied these structures as photocatalysts.
Further, the development of these nanostructures may enable numerous applications in the
field of environmental technology.
Collapse
Affiliation(s)
- Jiabai Cai
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Shunxing Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| |
Collapse
|
15
|
A first report of separation calls in southern yellow-cheeked gibbons (Nomascus gabriellae) in captivity. Primates 2020; 62:5-10. [PMID: 33098481 DOI: 10.1007/s10329-020-00870-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
The effects of social separation, including vocalization, have been studied for a very long time in non-human primates under laboratory conditions. As part of the long-term research on the vocal behaviour of Nomascus gibbons in zoos, this study provides the first record of calls of the southern yellow-cheeked gibbon (Nomascus gabriellae) in response to involuntary separation. Our study revealed that calls were also emitted by an infant (aged 1 year 8 months), and that the acoustic structure of the infant's calls was similar to that of older individuals' calls. Separation-induced calls seem to have a shorter developmental convergence than vocalizations with a stable pattern (which are specific for species and sex). The acoustic structure of the calls reported here comprised simple syllables, and differed from the sex- and species-specific vocal patterns of this species. Our findings demonstrate a novel paradigm in this genus, and provide evidence of the ability of gibbons to express distress when socially separated.
Collapse
|
16
|
Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125193] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Wang W, Lin F, Yan B, Cheng Z, Chen G, Kuang M, Yang C, Hou L. The role of seashell wastes in TiO 2/Seashell composites: Photocatalytic degradation of methylene blue dye under sunlight. ENVIRONMENTAL RESEARCH 2020; 188:109831. [PMID: 32798949 DOI: 10.1016/j.envres.2020.109831] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
This paper proposes a sustainable and facile approach for the synthesis of photocatalysts in which shell waste is used as support material. The synthesized photocatalysts exhibited a significant performance in the mineralization of organic substances under solar irradiation or artificial lighting. Calcined abalone shell with a TiO2 loading of 23.4% led to a significant improvement in optical absorption: the degradation efficiencies of methylene blue (MB) after 140 min under UV light, vis light, UV-vis light, and natural sunlight were 93%, 96%, 100%, and 100%, respectively. Notably, the byproducts obtained after the degradation by commercial P25 TiO2 disappeared with the utilization of shell waste as support material. The Na, Sr, S present in the calcined abalone shell were doped into the substitutional sites of TiO2 and were indispensable to achieve the desired band-gap narrowing and photocatalytic performance; moreover, the Ti and Zn oxides in the calcined abalone shell acted as semiconductors and improved the charge separation efficiency of TiO2. Above all, this paper describes a green synthesis based on the use of waste seashell. This material acts as an excellent photocatalyst support for environmental pollution treatments, leading to the 'control of waste by waste' and opening up new possibilities for shell waste reutilization and sustainable chemistry.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Guanyi Chen
- School of Science, Tibet University, Lhasa, 850012, China
| | - Meng Kuang
- State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing, 100024, PR China
| | - Chao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Lian Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China; Xi'an High-Tech Institute, Xi'an, 710025, China.
| |
Collapse
|
18
|
Selective Photocatalytic Oxidation of Benzyl Alcohol at Ambient Conditions using Spray-Dried g-C3N4/TiO2 Granules. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Han M, Duan X, Cao G, Zhu S, Ho SH. Graphitic nitride-catalyzed advanced oxidation processes (AOPs) for landfill leachate treatment: A mini review. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2020; 139:230-240. [PMID: 32372848 PMCID: PMC7198436 DOI: 10.1016/j.psep.2020.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 05/13/2023]
Abstract
Landfill leachate poses significant risks to public health via the release of high-toxicity contaminants, including refractory organic compounds, ammonia-nitrogen compounds, and heavy metals. Significant efforts have been made to develop useful methods for leachate disposition and treatment. Advanced oxidation processes (AOPs) are one of the most promising methods, because they can rapidly degrade diverse pollutants and significantly improve the biodegradability of leachate. Graphitic carbon nitride (g-C3N4), a fascinating conjugated polymer, has become a hot topic in AOP research due to its metal-free benefits and high photosensitivity. Thus, combining AOPs with g-C3N4 achieves excellent degradation of refractory pollutants in leachate. Since the composition of leachate is complex in the practical conditions, the information reported by current studies of using g-C3N4 as a remediator is still incomplete and fragmented. Thus, in this review, the recent status of leachate treatment and approaches for its disposal has been summarized and some conclusions have been drawn. In addition, a brief introduction to g-C3N4 and its application in AOPs for leachate treatment have been critically discussed and with its future outlook assessed. Although the development of g-C3N4 in AOPs for leachate treatment is highly efficient and practical, comprehensive study about its application and technology expansion is urgently needed, based on the complex operating conditions. Perspectives on the treatment of leachate using g-C3N4-AOPs are also included. The information and perspectives provided in this review will provide guidance and novel understanding to accelerate the development of g-C3N4-based AOPs for leachate treatment.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province,150090, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Guoliang Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province,150090, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
- Corresponding author at: School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province,150090, PR China
- Corresponding author.
| |
Collapse
|
20
|
Li Y, Luo N, Tian Z, Li H, Yang M, Shang W, Yifeng S, Qu M, Zhou A. H2O2-free photo-Fenton degradation of organic pollutants on thermally exfoliated g-C3N4. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Pt nanoparticles decorated heterostructured g-C 3N 4/Bi 2MoO 6 microplates with highly enhanced photocatalytic activities under visible light. Sci Rep 2019; 9:7636. [PMID: 31114005 PMCID: PMC6529451 DOI: 10.1038/s41598-019-42973-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Exploring an efficient and photostable heterostructured photocatalyst is a pivotal scientific topic for worldwide energy and environmental concerns. Herein, we reported that Pt decorated g-C3N4/Bi2MoO6 heterostructured composites with enhanced photocatalytic performance under visible light were simply synthesized by one-step hydrothermal method for methylene blue (MB) dye degradation. Results revealed that the synthetic Pt decorated g-C3N4/Bi2MoO6 composites with Bi2MoO6 contents of 20 wt.% (Pt@CN/20%BMO) presented the highest photocatalytic activity, exhibiting 7 and 18 times higher reactivity than the pure g-C3N4 and Bi2MoO6, respectively. Structural analyses showed that Bi2MoO6 microplates were anchored on the wrinkled flower-like g-C3N4 matrix with Pt decoration, leading to a large expansion of specific surface area from 10.79 m2/g for pure Bi2MoO6 to 46.09 m2/g for Pt@CN/20%BMO. In addition, the Pt@CN/20%BMO composites exhibited an improved absorption ability in the visible light region, presenting a promoted photocatalytic MB degradation. Quenching experiments were also conducted to provide solid evidences for the production of hydroxyl radicals (•OH), electrons (e−), holes (h+) and superoxide radicals (•O2−) during dye degradation. The findings in this critical work provide insights into the synthesis of heterostructured photocatalysts with the optimization of band gaps, light response and photocatalytic performance in wastewater remediation.
Collapse
|
22
|
Humayun M, Hu Z, Khan A, Cheng W, Yuan Y, Zheng Z, Fu Q, Luo W. Highly efficient degradation of 2,4-dichlorophenol over CeO 2/g-C 3N 4 composites under visible-light irradiation: Detailed reaction pathway and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:635-644. [PMID: 30396137 DOI: 10.1016/j.jhazmat.2018.10.088] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 05/14/2023]
Abstract
Herein, we report for the first time the highly efficient degradation of 2,4-dichlorophenol (2,4-DCP) over CeO2/g-C3N4 composites (xCeO/CN) prepared via wet-chemical solution method. It is shown that the resultant nanocomposites with a proper mass ratio percentage (15%) of CeO coupled exhibit greatly enhanced visible-light activity for 2,4-dichlorophenol (2,4-DCP) degradation compared to the bare g-C3N4. From photoluminescence (PL) and Fluorescence (FL) results, it is suggested that enhanced photo-degradation is attributed to the significantly improved charge separation and transfer as a result of the proper band alignments between g-C3N4 and CeO components. Further, from radical trapping experiments, it is confirmed that hydroxyl radicals (OH) are the predominant oxidants involved in the degradation of 2,4-DCP over CeO/CN composites. Furthermore, a possible reaction pathway and detailed photocatalytic mechanism for 2,4-DCP degradation is proposed mainly based on the detected liquid chromatography tandem mass spectrometry (LC-MS) intermediate products, that readily transform into CO2 and H2O. This work would help researchers to deeply understand the reaction mechanism of 2,4-DCP and would provide feasible routes to fabricate g-C3N4-based highly efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Muhammad Humayun
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhewen Hu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KP, Pakistan
| | - Wei Cheng
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yang Yuan
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhiping Zheng
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qiuyun Fu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Wei Luo
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
23
|
Immunomodulatory effect of mesenchymal stem cells: Cell origin and cell quality variations. Mol Biol Rep 2019; 46:1157-1165. [PMID: 30628022 DOI: 10.1007/s11033-018-04582-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
The immunomodulatory property of mesenchymal stem cells (MSCs) has been previously reported. Still it is unclear if this property can be affected by the cell origin and cell quality. Using primary MSCs expanded from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of mice, we investigated whether the immunomodulatory property of MSCs varied with cell origin and cell quality (early- vs. late-passaged BM-MSCs). BM-MSCs (p1) and AD-MSCs (p1) had a typical spindle shape, but morphological changes were observed in late-passaged BM-MSCs (p6). A pathway-focused array showed that the expression of chemokine/cytokine genes varied with different cell origins and qualities. By co-culturing with spleen mononuclear cells (MNC) for 3 days, the expression of CD4 was suppressed by all types of MSCs. By contrast, the expression of CD8 was suppressed by BM-MSCs and increased by AD-MSCs. The expression ratio of CD206 to CD86 was at a comparable level after co-culture with AD-MSCs and BM-MSCs, but was lower with late-passaged BM-MSCs. AD-MSCs highly induced the release of IL6, IL-10 and TGF-β in culture medium. Compared with early-passaged BM-MSCs (p1), late-passaged BM-MSCs (p6) released less TGF-β. Our data suggests that the immunomodulatory properties of MSCs vary with cell origin and cell quality and that BM-MSCs of good quality are likely the optimal source of immunomodulation.
Collapse
|
24
|
Verma A, Jaihindh DP, Fu YP. Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping. Dalton Trans 2019; 48:8594-8610. [DOI: 10.1039/c9dt01046g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterostructured Cl-CuO/g-C3N4 composite for OER and photocatalytic 4-nitrophenol degradation.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering
- National Dong Hwa University
- Hualien-97401
- R.O.C
| | | | - Yen-Pei Fu
- Department of Materials Science and Engineering
- National Dong Hwa University
- Hualien-97401
- R.O.C
| |
Collapse
|
25
|
Vidyasagar D, Manwar N, Gupta A, Ghugal SG, Umare SS, Boukherroub R. Phenyl-grafted carbon nitride semiconductor for photocatalytic CO2-reduction and rapid degradation of organic dyes. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02220h] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular engineering of graphitic carbon nitride (g-C3N4) is achieved by the copolymerization of π-conjugated phenyl urea, melamine, and urea.
Collapse
Affiliation(s)
- Devthade Vidyasagar
- Materials and Catalysis Laboratory
- Department of Chemistry
- Visvesvaraya National Institute of Technology (VNIT)
- Nagpur
- India
| | - Nilesh Manwar
- Chemical and Materials Science Division (CMSD)
- CSIR-Indian Institute of Petroleum (IIP)
- Dehradun
- India
| | - Akanksha Gupta
- Materials and Catalysis Laboratory
- Department of Chemistry
- Visvesvaraya National Institute of Technology (VNIT)
- Nagpur
- India
| | | | - Suresh S. Umare
- Materials and Catalysis Laboratory
- Department of Chemistry
- Visvesvaraya National Institute of Technology (VNIT)
- Nagpur
- India
| | | |
Collapse
|
26
|
Amorin LH, Suzuki VY, de Paula NH, Duarte JL, da Silva MAT, Taft CA, de Almeida La Porta F. Electronic, structural, optical, and photocatalytic properties of graphitic carbon nitride. NEW J CHEM 2019. [DOI: 10.1039/c9nj02702e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Graphitic carbon nitride (g-C3N4)-based materials exhibit an organized layered porous structure and a band position optimum for the development of various optoelectronic devices and photocatalysts.
Collapse
Affiliation(s)
- Luís Henrique Amorin
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| | - Victor Yuudi Suzuki
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| | - Natália Herédia de Paula
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| | - José Leonil Duarte
- Grupo de Óptica e Optoeletrônica (GOO)
- Universidade Estadual de Londrina (UEL)
- Londrina
- Brazil
| | - Marco Aurélio Toledo da Silva
- Dispositivos Fotônicos e Materiais Nanoestruturados (DFMNano)
- Universidade Tecnológica Federal do Paraná (UTFPR)
- Londrina
- Brazil
| | - Carlton Anthony Taft
- Departamento de Materia Condensada
- CBPF—Centro Brasileiro de Pesquisas Físicas
- Rio de Janeiro
- Brazil
| | - Felipe de Almeida La Porta
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| |
Collapse
|
27
|
Two-step hydrothermal synthesis of peanut-shaped molybdenum diselenide/bismuth vanadate (MoSe2/BiVO4) with enhanced visible-light photocatalytic activity for the degradation of glyphosate. J Colloid Interface Sci 2018; 532:456-463. [DOI: 10.1016/j.jcis.2018.07.142] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 11/19/2022]
|
28
|
Pham TT, Shin EW. Influence of g-C 3N 4 Precursors in g-C 3N 4/NiTiO 3 Composites on Photocatalytic Behavior and the Interconnection between g-C 3N 4 and NiTiO 3. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13144-13154. [PMID: 30336055 DOI: 10.1021/acs.langmuir.8b02596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, composite photocatalysts were produced from NiTiO3 and N2-rich precursors (dicyandiamide, melamine, urea, and thiourea) under N2 flow conditions. The goal of the study was to investigate the interaction between NiTiO3 and the synthesized g-C3N4. The properties of the g-C3N4/NiTiO3 (CNT) composites were different depending on the starting materials. Dicyandiamide and thiourea created strong connections with NiTiO3 and resulted in the generation of Ti-N and Ti-O-S bonds. Urea and melamine, however, had difficulty forming g-C3N4 structures or interconnections with NiTiO3. The Ti-N and Ti-O-S bridges in the composite photocatalysts led to increased photocatalytic activity as well as inhibition of the recombination rate. Additionally, the band diagrams of g-C3N4 prepared from dicyandiamide and thiourea exhibited positions suitable for the Z-scheme charge-transfer model with NiTiO3, implying that the composite photocatalysts were applicable for photocatalytic degradation of organic contaminants under the visible-light irradiation. Higher reaction rate constants for the composites prepared with dicyandiamide and thiourea confirmed the significant role of the Ti-N/Ti-O-S bridge between g-C3N4 and NiTiO3.
Collapse
Affiliation(s)
- Thanh-Truc Pham
- School of Chemical Engineering , University of Ulsan , Daehakro 93 , Nam-gu, Ulsan 44610 , South Korea
| | - Eun Woo Shin
- School of Chemical Engineering , University of Ulsan , Daehakro 93 , Nam-gu, Ulsan 44610 , South Korea
| |
Collapse
|
29
|
Xiao G, Xu S, Li P, Su H. Visible-light-driven activity and synergistic mechanism of TiO 2@g-C 3N 4 heterostructured photocatalysts fabricated through a facile and green procedure for various toxic pollutants removal. NANOTECHNOLOGY 2018; 29:315601. [PMID: 29737308 DOI: 10.1088/1361-6528/aac304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heterostructured photocatalysts based on g-C3N4 and TiO2 represent a promising kind of photocatalyst in environmental fields, but the synthesis methods are always complex and not green. In the present paper, a facile and green one-step calcination procedure at lower temperature (450 °C) with the assistance of water is developed to synthesize a visible-light-active TiO2@g-C3N4 heterostructured photocatalyst, which shows higher visible-light-driven activity (k = 0.014 min-1) than pure g-C3N4 (k = 0.0036 min-1) and TiO2 (k = 0.0067 min-1) for methyl orange degradation. Excellent performance (over 90% conversion) was also observed for the removal of rhodamine B, phenol, and Cr(VI) under visible light. The heterostructured photocatalyst showed favorable reusability, preserving 86% of its activity after five successive cycles. A mechanism study demonstrates that the enhanced photocatalytic activity results from the efficient separation of the photo-generated charge carriers through the intimate interface between the two semiconductors based on their appropriate band structures and light-induced mechanism. The heterostructured photocatalyst will certainly find wide applications in the treatment of various toxic pollutants in wastewater using abundant solar energy. Furthermore, this facile and green procedure and the proposed synergistic mechanism will provide guidelines in designing other g-C3N4 based organic-inorganic composite photocatalysts for various applications.
Collapse
Affiliation(s)
- Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | |
Collapse
|
30
|
RanguMagar AB, Chhetri BP, Parameswaran-Thankam A, Watanabe F, Sinha A, Kim JW, Saini V, Biris AS, Ghosh A. Nanocrystalline Cellulose-Derived Doped Carbonaceous Material for Rapid Mineralization of Nitrophenols under Visible Light. ACS OMEGA 2018; 3:8111-8121. [PMID: 31458947 PMCID: PMC6644635 DOI: 10.1021/acsomega.8b01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 05/23/2023]
Abstract
Nitrophenols (NPs) and related derivatives are industrially important chemicals, used notably to synthesize pharmaceuticals, insecticides, herbicides, and pesticides. However, NPs and their metabolites are highly toxic and mutagenic. They pose a serious threat to human health and ecosystem. Current work was undertaken to develop a suitable visible-light active catalyst for the sustainable and efficient mineralization of NPs in an aqueous environment. Nanocrystalline cellulose (NCs)-based nitrogen-doped titanium dioxide and carbonaceous material (N-TiO2/C) was synthesized by pyrolysis and sol-gel methods using NCs, polydopamine, and TiO2. The synthesized N-TiO2/C was characterized using different analytical techniques. Photocatalytic degradation of NPs under visible light indicated that acidic pH (3) was most suitable for the optimal degradation. 4-NP degradation followed both pseudo-first-order (R 2 = 0.9985) and Langmuir-Hinshelwood adsorption kinetic models (adsorption constant, K LH = 1.13 L mg-1). Gas chromatography-mass spectrometry and ion chromatography analysis confirmed the total mineralization of 4-NP into smaller molecular fragments such as acids, alcohols, and nitrates. The total organic carbon showed that 67% of total carbon present in 4-NP was mineralized into CO2 and CO. The catalyst was recycled for five consecutive cycles without losing its catalytic activities. The degradation mechanism of NPs with N-TiO2/C was also explored.
Collapse
Affiliation(s)
- Ambar B. RanguMagar
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Bijay P. Chhetri
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Anil Parameswaran-Thankam
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Fumiya Watanabe
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Arvind Sinha
- Department of Biological & Agricultural Engineering and Institute for
Nanoscience and Engineering, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering and Institute for
Nanoscience and Engineering, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Viney Saini
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Alexandru S. Biris
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Anindya Ghosh
- Department
of Chemistry and Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| |
Collapse
|
31
|
Zhao R, Wang Z, Zou T, Wang Z, Yang Y, Xing X, Wang Y. Synthesis and Enhanced Sensing Performance of g-C3N4/SnO2 Composites toward Isopropanol. CHEM LETT 2018. [DOI: 10.1246/cl.180296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rongjun Zhao
- Department of Physics, Yunnan University, Kunming, 650091, P. R. China
| | - Zhezhe Wang
- Department of Physics, Yunnan University, Kunming, 650091, P. R. China
| | - Tong Zou
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, P. R. China
| | - Zidong Wang
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, P. R. China
| | - Yue Yang
- Department of Physics, Yunnan University, Kunming, 650091, P. R. China
| | - Xinxin Xing
- Department of Physics, Yunnan University, Kunming, 650091, P. R. China
| | - Yude Wang
- Department of Physics, Yunnan University, Kunming, 650091, P. R. China
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
32
|
Wang P, Guo X, Rao L, Wang C, Guo Y, Zhang L. A weak-light-responsive TiO 2/g-C 3N 4 composite film: photocatalytic activity under low-intensity light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20206-20216. [PMID: 29748808 DOI: 10.1007/s11356-018-2201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
A TiO2/g-C3N4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO2/g-C3N4 composite films. The prepared TiO2/g-C3N4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO2 and g-C3N4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C3N4 retard the anatase-to-rutile phase transition of TiO2 significantly, the specific surface area were increased with g-C3N4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO2/g-C3N4 (90.8%) was higher than pure TiO2 (52.1%) and slightly lower than pure g-C3N4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO2 and g-C3N4, which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiang Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lei Rao
- College of Mechanics and Materials, Hohai University, Nanjing, 21100, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lixin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
33
|
Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C 3N 4) quantum dots. Mikrochim Acta 2018; 185:332. [PMID: 29926199 DOI: 10.1007/s00604-018-2864-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
A composite (Ag-g-CNQDs) was prepared from graphitic carbon nitride quantum dots and silver nanoparticles by water phase synthesis. Aided by metal-enhanced fluorescence, the composite exhibits excitation-dependent red emission with a peak at 600 nm with a quantum yield of 21%. If the composite is coated with polyethylenimine (PEI) to form the Ag-g-CNQD/PEI complexe, fluorescence is strongly reduced. Upon addition of heparin, the fluorescence of the system is enhanced because PEI has a higher affinity for heparin than Ag-g-CNQDs. The effect was used to design a fluorometric assay for heparin. The emission at 600 nm increases linearly in the 0.025 to 2.5 μM heparin concentration range, with a 8.2 nM limit of detection. Graphical abstract Schematic illustration for fabricating a composite consisting of silver nanoparticles and graphitic carbon nitride quantum dots (Ag-g-CNQDs). Its red fluorescence is weak in presence of polyethyleneimine but restored on addition of heparin. This forms the basis for a new method for heparin detection.
Collapse
|
34
|
Rekha MY, Mallik N, Srivastava C. First Report on High Entropy Alloy Nanoparticle Decorated Graphene. Sci Rep 2018; 8:8737. [PMID: 29880871 PMCID: PMC5992158 DOI: 10.1038/s41598-018-27096-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/24/2018] [Indexed: 12/23/2022] Open
Abstract
This is the first report on synthesis of multimetal high entropy alloy (HEA) nanoparticle-few layer graphene composite. A two-step methodology for synthesizing multi-component HEA nanoparticle-graphene composite is provided. In the first step, high purity graphite powder was mechanically milled with metal powders (Ni, Cr, Co, Cu, Fe) to produce multimetal-graphite composite. This composite was then sonicated with sodium lauryl sulphate (SLS) for 2 hours to produce a dispersion of graphene decorated with multi-component nanoparticles with face centred cubic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy methods revealed that the HEA nanoparticle graphene composite possess excellent corrosion resistance properties which was better than the corrosion resistance exhibited by milled and exfoliated graphene. The HEA nanoparticle-graphene composite can be used for corrosion resistant coating applications.
Collapse
Affiliation(s)
- M Y Rekha
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nitin Mallik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Chandan Srivastava
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
35
|
Kang S, Huang W, Zhang L, He M, Xu S, Sun D, Jiang X. Moderate Bacterial Etching Allows Scalable and Clean Delamination of g-C 3N 4 with Enriched Unpaired Electrons for Highly Improved Photocatalytic Water Disinfection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13796-13804. [PMID: 29600845 DOI: 10.1021/acsami.8b00007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Delamination treatment is crucial in promoting the activity of bulk graphitic carbon nitride (g-C3N4). However, most of the currently used methods of exfoliating bulk g-C3N4 to achieve g-C3N4 thin layers suffer from low yield and environmental pollution. Herein, we developed a facile bacterial etching approach for the preparation of high-quality g-C3N4 nanosheets by exfoliating bulk g-C3N4 under room temperature. Morphology and physicochemical characterizations show that the bacteria-treated g-C3N4 (BT-CN) samples, especially BT-CN-2d, have a lamina-like two-dimensional (2D) in-plane porous structure, a significantly enlarged specific surface area (82.61 m2 g-1), and a remarkable narrow band gap (2.11 eV). X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra confirm the dramatic enrichment of unpaired electron in the BT-CN-2d g-C3N4 nanosheets. EIS spectra and photocurrent tests indicate the fast electron transportation. As a result, the representative BT-CN-2d g-C3N4 photocatalyst shows an optimal visible light-driven photocatalytic performance in water disinfection (fourfold higher than bulk g-C3N4), as well as good cycle stability. This moderate and clean bacterial etching process can be realized in tens of gram scale in the laboratory and should be readily extended to kilogram scale. The present work provides fundamental knowledge about the scalable production of high-quality g-C3N4 by bioengineering method, offering extendable availability for designing and fabricating other functional 2D materials.
Collapse
Affiliation(s)
- Shifei Kang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration , Chinese Research Academy of Environmental Sciences , Beijing 102218 , P. R. China
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P. R. China
| | - Wei Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration , Chinese Research Academy of Environmental Sciences , Beijing 102218 , P. R. China
| | - Lu Zhang
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P. R. China
| | - Maofen He
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P. R. China
| | - Suyun Xu
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P. R. China
| | - Di Sun
- Department of Ultrasound in Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine , Shanghai 200233 , P. R. China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration , Chinese Research Academy of Environmental Sciences , Beijing 102218 , P. R. China
| |
Collapse
|
36
|
Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance. J Colloid Interface Sci 2018; 514:791-800. [DOI: 10.1016/j.jcis.2018.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
|
37
|
Singaram B, Varadharajan K, Jeyaram J, Rajendran R, Jayavel V. Preparation of cerium and sulfur codoped TiO2 nanoparticles based photocatalytic activity with enhanced visible light. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J Colloid Interface Sci 2017; 508:419-425. [DOI: 10.1016/j.jcis.2017.08.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 11/20/2022]
|
39
|
Zhang Q, Quan X, Wang H, Chen S, Su Y, Li Z. Constructing a visible-light-driven photocatalytic membrane by g-C 3N 4 quantum dots and TiO 2 nanotube array for enhanced water treatment. Sci Rep 2017; 7:3128. [PMID: 28600572 PMCID: PMC5466622 DOI: 10.1038/s41598-017-03347-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/27/2017] [Indexed: 11/09/2022] Open
Abstract
Photocatalytic membranes that driven by visible light are highly desired for water treatment. Here g-C3N4 quantum dots (QDs) assembled into TiO2 nanotube array (TNA) membranes were fabricated for the first time as a visible-light-driven g-C3N4/TNA membrane. Benefiting from the synergistic effect of membrane filtration and photocatalysis, more than 60% of rhodamine B could be removed from water under visible light irradiation. Meanwhile, the g-C3N4/TNA membrane presented an enhanced anti-fouling ability during filtering water containing Escherichia coli under visible light irradiation, and a permeate flux of 2 times higher than that of filtration alone was obtained by integrated process. This study offers a promising strategy for the potential application of the visible-light-driven membranes in water treatment.
Collapse
Affiliation(s)
- Qi Zhang
- School of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hua Wang
- School of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, China.
| | - Shuo Chen
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Yan Su
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhangliang Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, China
| |
Collapse
|
40
|
Photosensitization of TiO 2 nanofibers by Ag 2S with the synergistic effect of excess surface Ti 3+ states for enhanced photocatalytic activity under simulated sunlight. Sci Rep 2017; 7:255. [PMID: 28325907 PMCID: PMC5428275 DOI: 10.1038/s41598-017-00366-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
TiO2 nanofibers, with mean diameter ~200 nm, were fabricated by electrospinning and successfully photosensitized with low bandgap Ag2S nanoparticles of 11, 17, 23 and 40 nm mean sizes, with corresponding loading of 4, 10, 18 and 29 wt.% Ag2S, respectively. 17 nm Ag2S@TiO2 nanofibers exhibited optimal activity in the photodegradation of methylene blue under simulated sunlight with pseudo-first order rate constant of 0.019 min−1 compared to 0.009 min−1 for pure TiO2 nanofibers. In spite of greater visible-light absorption and reduced bandgap, larger than 17 nm Ag2S nanoparticles exhibited sluggish photodegradation kinetics probably due to less photo-induced carriers generation in TiO2 and reduced electron injection rates from the larger sized Ag2S into TiO2. Furthermore, a UV-O3 surface treatment induced excess Ti3+ surface states and oxygen vacancies which synergistically enhanced the photodegradation rate constant to 0.030 min−1 for 17 nm Ag2S@TiO2 sample which is ~70% better than the previously reported for Ag2S/TiO2 hierarchical spheres. This was attributed to the efficient charge separation and transfer driven by increased visible-light absorption, bandgap narrowing and reduced electron-hole recombination rates. The present study demonstrate the potential utilization of Ag2S@TiO2 nanofibers in filtration membranes for removal of organic pollutants from wastewater.
Collapse
|
41
|
Liu Y, She X, Zhang X, Liang C, Wu J, Yu P, Nakanishi Y, Xie B, Xu H, Ajayan P, Yang W. Metallic 1T-TiS2 nanodots anchored on a 2D graphitic C3N4 nanosheet nanostructure with high electron transfer capability for enhanced photocatalytic performance. RSC Adv 2017. [DOI: 10.1039/c7ra10826e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The introduction of metallic TiS2 nanodots in 2D-C3N4 nanosheets improved the photocatalytic activity due to the suppression of e–h recombination.
Collapse
|
42
|
Kumar N, Sinha Ray S, Ngila JC. Ionic liquid-assisted synthesis of Ag/Ag2Te nanocrystals via a hydrothermal route for enhanced photocatalytic performance. NEW J CHEM 2017. [DOI: 10.1039/c7nj03295a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, Ag2Te and Ag/Ag2Te nanocrystals were synthesised via a hydrothermal method using diphenyl ditelluride as a new tellurium source and 1-butyl-3-methyl imidazolium acetate (BMIA IL) as a structure controlling and conducting coating source.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
| | - Suprakas Sinha Ray
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST-CSIR National Centre for Nanostructured Materials
| | - Jane Catherine Ngila
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
| |
Collapse
|