1
|
Zhang Z, Zhou F, Lu M, Zhang D, Zhang X, Xu S, He Y. WTAP-mediated m 6A modification of TRIM22 promotes diabetic nephropathy by inducing mitochondrial dysfunction via ubiquitination of OPA1. Redox Rep 2024; 29:2404794. [PMID: 39314036 PMCID: PMC11423538 DOI: 10.1080/13510002.2024.2404794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and is the most common cause of end-stage renal disease. Tripartite motif-containing (TRIM) proteins are a large family of E3 ubiquitin ligases that contribute to protein quality control by regulating the ubiquitin - proteasome system. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. The current research aimed to determine the function and mechanism of TRIM22 in DN. METHODS DN models were established by inducing HK-2 cells using high glucose (HG) and diabetic mice (db/db mice). Cell viability, apoptosis, mitochondrial reactive oxygen species, and mitochondrial membrane potential were detected by Cell Counting Kit-8 and flow cytometry, respectively. Pathological changes were evaluated using hematoxylin and eosin, periodic acid schiff and Masson staining. The binding between TRIM22 and optic atrophy 1 (OPA1) was analyzed using co-immunoprecipitation. The m6A level of TRIM22 5'UTR was detected using RNA immunoprecipitation. RESULTS TRIM22 was highly expressed in patients with DN. TRIM22 silencing inhibited HG-induced apoptosis and mitochondrial dysfunction in HK-2 cells. Promoting mitochondrial fusion alleviated TRIM22 overexpression-induced cell apoptosis, mitochondrial dysfunction in HK-2 cells, and kidney damage in mice. Mechanistically, TRIM22 interacted with OPA1 and induced its ubiquitination. Wilms tumor 1-associating protein (WTAP) promoted m6A modification of TRIM22 through the m6A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). DISCUSSION TRIM22 silencing inhibited the progression of DN by interacting with OPA1 and inducing its ubiquitination. Furthermore, WTAP promoted m6A modification of TRIM22 via IGF2BP1.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Min Lu
- Department of Paediatrics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, People’s Republic of China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinyi Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Siyu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Qian YY, Huang FF, Chen SY, Zhang WX, Wang Y, Du PF, Li G, Ding WB, Qian L, Zhan B, Chu L, Jiang DH, Yang XD, Zhou R. Therapeutic effect of recombinant Echinococcus granulosus antigen B subunit 2 protein on sepsis in a mouse model. Parasit Vectors 2024; 17:467. [PMID: 39548530 PMCID: PMC11566433 DOI: 10.1186/s13071-024-06540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis is a potentially fatal systemic inflammatory response syndrome (SIRS) that threatens millions of lives worldwide. Echinococcus granulosus antigen B (EgAgB) is a protein released by the larvae of the tapeworm. This protein has been shown to play an important role in modulating host immune response. In this study we expressed EgAgB as soluble recombinant protein in E. coli (rEgAgB) and explored its protective effect on sepsis. METHODS The sepsis model was established by cecal ligation and puncture (CLP) procedure in BALB/c mice. The therapeutic effect of rEgAgB on sepsis was performed by interperitoneally injecting 5 µg rEgAgB in mice with CLP-induced sepsis and observing the 72 h survival rate after onset of sepsis. The proinflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-6] and regulatory cytokines [IL-10, transforming growth factor beta (TGF-β)] were measured in sera, and the histopathological change was observed in livers, kidneys, and lungs of septic mice treated with rEgAgB compared with untreated mice. The effect of rEgAgB on the macrophage polarization was performed in vitro by incubating rEgAgB with peritoneal macrophages. The levels of TLR2 and MyD88 were measured in these tissues to determine the involvement of TLR-2/MyD88 in the sepsis-induced inflammatory signaling pathway. RESULTS In vivo, we observed that treatment with rEgAgB significantly increased the survival rate of mice with CLP-induced sepsis up to 72 h while all mice without treatment died within the same period. The increased survival was associated with reduced pathological damage in key organs such as liver, lung, and kidneys. It was supported by the reduced proinflammatory cytokine levels and increased regulatory cytokine expression in peripheral blood and key organ tissues. Further study identified that treatment with rEgAgB promoted macrophage polarization from classically activated macrophage (M1) to regulatory M2-like macrophage via inhibiting TLR2/MyD88 signal pathway. CONCLUSIONS The therapeutic effects of rEgAgB on mice with sepsis was observed in a mice model that was associated with reduced inflammatory responses and increased regulatory responses, possibly through inducing polarization of macrophages from proinflammatory M1 to regulatory M2 phenotype through inhibiting TLR2/MyD88 inflammatory pathway.
Collapse
Affiliation(s)
- Ya-Yun Qian
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- First People's Hospital of Changzhou, Changzhou, 213000, China
| | - Fei-Fei Huang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Si-Yu Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214028, China
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Xiao Zhang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Peng-Fei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Gen Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Wen-Bo Ding
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Lei Qian
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Dong-Hui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
- Department of Critical Care Medicine, First People's Hospital of Haidong, Haidong, 810600, China.
| | - Xiao-Di Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China.
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
3
|
Ahsan N, Shariq M, Surolia A, Raj R, Khan MF, Kumar P. Multipronged regulation of autophagy and apoptosis: emerging role of TRIM proteins. Cell Mol Biol Lett 2024; 29:13. [PMID: 38225560 PMCID: PMC10790450 DOI: 10.1186/s11658-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
TRIM proteins are characterized by their conserved N-terminal RING, B-box, and coiled-coil domains. These proteins are efficient regulators of autophagy, apoptosis, and innate immune responses and confer immunity against viruses and bacteria. TRIMs function as receptors or scaffold proteins that target substrates for autophagy-mediated degradation. Most TRIMs interact with the BECN1-ULK1 complex to form TRIMosomes, thereby efficiently targeting substrates to autophagosomes. They regulate the functions of ATG proteins through physical interactions or ubiquitination. TRIMs affect the lipidation of MAP1LC3B1 to form MAP1LC3B2, which is a prerequisite for phagophore and autophagosome formation. In addition, they regulate MTOR kinase and TFEB, thereby regulating the expression of ATG genes. TRIM proteins are efficient regulators of apoptosis and are crucial for regulating cell proliferation and tumor formation. Many TRIM proteins regulate intrinsic and extrinsic apoptosis via the cell surface receptors TGFBR2, TNFRSF1A, and FAS. Mitochondria modulate the anti- and proapoptotic functions of BCL2, BAX, BAK1, and CYCS. These proteins use a multipronged approach to regulate the intrinsic and extrinsic apoptotic pathways, culminating in coordinated activation or inhibition of the initiator and executor CASPs. Furthermore, TRIMs can have a dual effect in determining cell fate and are therefore crucial for cellular homeostasis. In this review, we discuss mechanistic insights into the role of TRIM proteins in regulating autophagy and apoptosis, which can be used to better understand cellular physiology. These findings can be used to develop therapeutic interventions to prevent or treat multiple genetic and infectious diseases.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohd Shariq
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 460012, India.
| | - Reshmi Raj
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | | | - Pramod Kumar
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
4
|
Kang D, Hwang HJ, Baek Y, Sung JY, Kim K, Park HJ, Ko YG, Kim YN, Lee JS. TRIM22 induces cellular senescence by targeting PHLPP2 in hepatocellular carcinoma. Cell Death Dis 2024; 15:26. [PMID: 38199981 PMCID: PMC10781680 DOI: 10.1038/s41419-024-06427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The ubiquitin-proteasome system is a vital protein degradation system that is involved in various cellular processes, such as cell cycle progression, apoptosis, and differentiation. Dysregulation of this system has been implicated in numerous diseases, including cancer, vascular disease, and neurodegenerative disorders. Induction of cellular senescence in hepatocellular carcinoma (HCC) is a potential anticancer strategy, but the precise role of the ubiquitin-proteasome system in cellular senescence remains unclear. In this study, we show that the E3 ubiquitin ligase, TRIM22, plays a critical role in the cellular senescence of HCC cells. TRIM22 expression is transcriptionally upregulated by p53 in HCC cells experiencing ionizing radiation (IR)-induced senescence. Overexpression of TRIM22 triggers cellular senescence by targeting the AKT phosphatase, PHLPP2. Mechanistically, the SPRY domain of TRIM22 directly associates with the C-terminal domain of PHLPP2, which contains phosphorylation sites that are subject to IKKβ-mediated phosphorylation. The TRIM22-mediated PHLPP2 degradation leads to activation of AKT-p53-p21 signaling, ultimately resulting in cellular senescence. In both human HCC databases and patient specimens, the levels of TRIM22 and PHLPP2 show inverse correlations at the mRNA and protein levels. Collectively, our findings reveal that TRIM22 regulates cancer cell senescence by modulating the proteasomal degradation of PHLPP2 in HCC cells, suggesting that TRIM22 could potentially serve as a therapeutic target for treating cancer.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Jee Young Sung
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - KyeongJin Kim
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
| | - Heon Joo Park
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Yong-Nyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea.
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
5
|
Cai T, Xu J, Fang Y, Wu Y, Qin Q, Zhang JA. Shared biomarkers of multi-tissue origin for primary Sjogren's syndrome and their importance in immune microenvironment alterations. Immunobiology 2023; 228:152726. [PMID: 37591179 DOI: 10.1016/j.imbio.2023.152726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
With the recent advancement in omics and molecular techniques, a wealth of new molecular biomarkers have become available for the diagnosis and classification of primary Sjögren's syndrome (pSS) patients. However, whether these biomarkers are universal is of great interest to us. In this study, we used various methods to obtain shared biomarkers derived from multiple tissue in pSS patients and to explore their relationship with immune microenvironment alterations. First we identified differentially expressed genes (DEGs) between pSS and healthy controls utilizing nine mRNA microarray datasets obtained from the Gene Expression Omnibus (GEO). Then, shared biomarkers were filtered out using robust rank aggregation (RRA), data integration analysis, weighted gene co-expression network analysis (WGCNA), and least absolute selection and shrinkage operator (LASSO) regression; their roles in pSS and association with changes in the immune microenvironment were also analyzed. In addition, these biomarkers were further confirmed with both the testing set and immunohistochemistry (IHC). As a result, ten biomarkers, i.e., EPSTI1, IFI44, IFIT1, IFIT2, IFIT3, MX1, OAS1, PARP9, SAMD9L and TRIM22, were identified. Receiver operating characteristic (ROC) curves showed that the ten genes could discriminate pSS from controls. Gene set enrichment analysis (GSEA) showed that the enrichment of immune-related gene sets was significant in pSS patients with high expression of either biomarker. Furthermore, the association between some immunocytes and these biomarkers was identified. In the two distinct molecular patterns of pSS patients based on the expressions of these biomarkers, the proportions of immunocytes were significantly different. Our study identified shared biomarkers of multi-tissue origin and revealed their relationship with altered immune microenvironment in pSS patients. These markers not only have diagnostic implications but also provide potential immunotherapeutic targets for the clinical treatment of pSS patients.
Collapse
Affiliation(s)
- Tiantian Cai
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People's Republic of China
| | - Jianbin Xu
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People's Republic of China
| | - Yudie Fang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People's Republic of China
| | - Yuqing Wu
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People's Republic of China
| | - Qiu Qin
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People's Republic of China.
| | - Jin-An Zhang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| |
Collapse
|
6
|
Fei X, Wu X, Dou YN, Sun K, Guo Q, Zhang L, Li S, Wei J, Huan Y, He X, Fei Z. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics 2022; 26:413-428. [PMID: 36159777 PMCID: PMC9465028 DOI: 10.1016/j.omto.2022.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Tripartite motif 22 (TRIM22) is an agonist of nuclear factor κB (NF-κB) that plays an important role in the proliferation and drug sensitivity of glioblastoma (GBM). However, the molecular mechanism underlying the protein network between TRIM22 and nuclear factor κB (NF-κB) in GBM remains unclear. Here, we found that knockout of TRIM22 effectively inhibited tumor proliferation and increased the sensitivity of GBM cells to temozolomide (TMZ) in vivo and in vitro. Moreover, TRIM22 forms a complex with cytosolic purine 5-nucleotidase (NT5C2) in GBM and regulates the ubiquitination of retinoic acid-inducible gene-I (RIG-I). TRIM22 promotes the K63-linked ubiquitination of RIG-I, while NT5C2 is responsible for K48-linked ubiquitination. This regulation directly affects the RIG-I/NF-κB/cell division cycle and apoptosis regulator protein 1 (CCAR1) signaling axis. Ubiquitin modification inhibitor of RIG-I restores the inhibition of tumor growth induced by TRIM22 knockout. The follow-up results showed that compared with patients with high TRIM22 expression, patients with low TRIM22 expression had a longer survival time and were more sensitive to treatment with TMZ. Our results revealed that the TRIM22-NT5C2 complex orchestrates the proliferation of GBM and benefits of TMZ through post-translational modification of RIG-I and the regulation of the RIG-I/NF-κB/CCAR1 pathway and is a promising target for single-pathway multi-target therapy.
Collapse
|
7
|
Ye B, Lu Z. Role of TRIM22 in ulcerative colitis and its underlying mechanisms. Mol Med Rep 2022; 26:249. [PMID: 35674157 PMCID: PMC9218723 DOI: 10.3892/mmr.2022.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
Ulcerative colitis (UC) is a common chronic recurrent inflammatory disease, which seriously threatens human life and health. Therefore, the present study aimed to explore the role of tripartite motif-containing (TRIM)22 in UC and its potential mechanism. C57BL/6 mice and HT-29 cell models of UC were constructed using 2% dextran sulphate sodium (DSS). The protein and mRNA expression levels were detected by western blotting and reverse transcription-quantitative PCR, respectively. Cell transfection was performed to overexpress Kruppel-like factor 2 (KLF2), or knockdown KLF2, TRIM22 and TRIM30 expression. The levels of inflammatory factors were evaluated by enzyme-linked immunosorbent assays. Cell Counting Kit-8 and TUNEL staining assay were employed to assess cell viability and apoptosis. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to determine the binding ability of the TRIM22 promoter to KLF2. The results revealed that DSS increased the expression levels of TRIM22 in HT-29 cells and TRIM30 in mice. Short hairpin RNA (sh)-TRIM30 could inhibit the NF-κB pathway, and reduce the levels of TNF-α, IL-6 and IFN-γ. Furthermore, KLF2 expression was downregulated in the cell model of UC, and the luciferase assay confirmed that the 3′ untranslated region of TRIM22 was a direct target of KLF2. The ChIP assay also verified the binding of KLF2 with the TRIM22 promoter. Notably, knockdown of KLF2 reversed the enhancing effects of sh-TRIM22 on the viability of DSS-treated HT-29 cells. In addition, compared with in the DSS + sh-TRIM22 group, the protein expression levels of phosphorylated (p)-NF-κB and p-IκBα were increased in the DSS + sh-TRIM22 + sh-KLF2 group, as were the levels of TNF-α, IL-6 and IFN-γ. In conclusion, TRIM22 was upregulated in DSS-induced HT-29 cells. TRIM22 knockdown increased DSS-induced HT-29 cell viability and decreased apoptosis and inflammation; this was reversed by knockdown of KLF2. These findings suggested that TRIM22 may promote disease development through the NF-κB signaling pathway in UC and could be inhibited by KLF2 transcription.
Collapse
Affiliation(s)
- Bin Ye
- Department of Gastroenterology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhongkai Lu
- Department of Gastroenterology, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
8
|
MicroRNA-376b-3p Promotes Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Restriction Factor TRIM22. J Virol 2021; 96:e0159721. [PMID: 34757838 DOI: 10.1128/jvi.01597-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus is a major economically significant pathogen and has evolved several strategies to evade host's antiviral response and provide favorable conditions for survival. In the present study, we demonstrated that a host microRNA, miR-376b-3p, was upregulated by PRRSV infection through the viral components, nsp4 and nsp11, and miR-376b-3p can directly target tripartite motif-containing 22 (TRIM22) to impair its anti-PRRSV activity, thus facilitating the replication of PRRSV. Meanwhile, we found that TRIM22 induced degradation of the nucleocapsid protein (N) of PRRSV by interacting with N protein to inhibit PRRSV replication, and further study indicated that TRIM22 could enhance the activation of lysosomal pathway by interacting with LC3 to induce lysosomal degradation of N protein. In conclusion, PRRSV increased miR-376b-3p expression and hijacked the host miR-376b-3p to promote PRRSV replication by impairing the antiviral effect of TRIM22. Therefore, our finding outlines a novel strategy of immune evasion exerted by PRRSV, which is helpful for better understanding the pathogenesis of PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes enormous economic losses each year in the swine industry worldwide. MicroRNAs (miRNAs) play important roles during viral infections via modulating the expression of viral or host genes at post-transcriptional level. TRIM22 has recently been identified as a key restriction factor that inhibited the replication of a number of human virus such as HIV, ECMV, HCV, HBV, IAV, and RSV. Here we showed that host miR-376b-3p could be up-regulated by PRRSV and functioned to impair the anti-PRRSV role of TRIM22 to facilitate PRRSV replication. Meanwhile, we found that TRIM22 inhibited the replication of PRRSV by interacting with viral N protein and accelerating its degradation through the lysosomal pathway. Collectively, the paper described a novel mechanism that PRRSV exploited the host miR-376b-3p to evade antiviral responses and provided a new insight into the study of virus-host interactions.
Collapse
|
9
|
Meng K, Fang C. Knockdown of Tripartite motif-containing 22 (TRIM22)relieved the apoptosis of lens epithelial cells by suppressing the expression of TNF receptor-associated factor 6 (TRAF6). Bioengineered 2021; 12:7213-7222. [PMID: 34558381 PMCID: PMC8806417 DOI: 10.1080/21655979.2021.1980645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cataract is a disease that causes severe visual impairment in patients. Recent studies have found that lens epithelial cell apoptosis caused by oxidative damage is the critical cause of cataract. Moreover, TRIM22 could alleviate the ubiquitination of TRAF6. The expression of TRAF6 could activate the p38/MAPK pathway and aggravate the oxidative stress induced damage of lens epithelial cells. However, whether the TRIM22 could alleviate the oxidative stress induced damage of lens epithelial cells by regulating the expression of TRAF6 and p38/MAPK pathway is unclear. In this study, we stimulated the lens epithelial cells with the H2O2 and established the TRIM22 knockdown cells. Next, proliferation of these cells was determined by CCK-8 and EdU assays. Apoptosis of these cells was detected with the TUNEL assays. Levels of ROS was explored with the DCFH-DA staining. Finally, the expression levels of TRAF6, p-p38 and p-ERK were determined with the western blotting. According to the results, we found that knockdown of TRIM22 suppressed the proliferation and relieved the H2O2 induced DNA double-strand break and apoptosis of these cells. Inhibition of TRIM22 inhibited the production of ROS in these cells. Moreover, restriction of TRIM22 induced the decreased levels of TRAF6, p-p38 and p-ERK in lens epithelial cells. We concluded that inhibition of TRIM22 relieved the apoptosis of lens epithelial cells by suppressing the expression of TRAF6, p-p38 and p-ERK.
Collapse
Affiliation(s)
- Kai Meng
- Department of Ophthalmology, Fuyang Futian Eye Hospital, Fuyang, Anhui Province, China
| | - Chengbo Fang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
10
|
Usnic Acid and Usnea barbata (L.) F.H. Wigg. Dry Extracts Promote Apoptosis and DNA Damage in Human Blood Cells through Enhancing ROS Levels. Antioxidants (Basel) 2021; 10:antiox10081171. [PMID: 34439420 PMCID: PMC8388874 DOI: 10.3390/antiox10081171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs.
Collapse
|
11
|
Kang C, Lu Z, Zhu G, Chen Y, Wu Y. Knockdown of TRIM22 Relieves Oxygen-Glucose Deprivation/Reoxygenation-Induced Apoptosis and Inflammation Through Inhibition of NF-κB/NLRP3 Axis. Cell Mol Neurobiol 2020; 41:341-351. [PMID: 32335773 DOI: 10.1007/s10571-020-00855-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Tripartite motif-containing 22 (TRIM22) has been documented to participate in numerous cellular activities during human diseases. However, whether TRIM22 is involved in the regulation of neuronal survival during the progression of cerebral ischemia/reperfusion (I/R) injury remains unknown. In the present study, treatment of HCN-2 cells with oxygen-glucose deprivation/reoxygenation (OGD/R) markedly upregulated TRIM22 expression. A significant increase in TRIM22 expression was observed in the ischemic cortex tissues from middle cerebral artery occlusion/reperfusion mice. OGD/R inhibited the viability and induced the apoptosis of HCN-2 cells, which was accompanied by an increase in caspase-3 activity and an increase in LDH release. Furthermore, OGD/R increased the levels of tumor necrosis factor-alpha, interleukin (IL)-1 beta, IL-6, and monocyte chemoattractant protein-1 and induced NLRP3 inflammasome activation, as evidenced by increases in NACHT, LRR and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a caspase recruitment domain and cleaved caspase-1 expression and caspase-1 activity. However, these changes induced by OGD/R were blocked by silencing of TRIM22. In addition, TRIM22 regulated NF-κB activity in HCN-2 cells undergoing OGD/R stimulation. Furthermore, inhibition of NF-κB by pyrrolidine dithiocarbamate inhibited OGD/R-induced NLRP3 inflammasome activation in HCN-2 cells. Taken together, silencing of TRIM22 protects neurons against OGD/R-induced apoptosis and inflammation. The anti-inflammatory effect of TRIM22 knockdown was the consequence of inhibition of NF-κB/NLRP3 axis. TRIM22 may be a potential target for treating cerebral I/R injury.
Collapse
Affiliation(s)
- Chongyang Kang
- Department of Emergency, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhaofeng Lu
- Department of Emergency, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China. .,Department of Emergency, First Affiliated Hospital of Henan University of Science and Technology, No.24, Jinghua road, Luoyang, 471000, China.
| | - Gangyi Zhu
- Department of Emergency, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuehua Chen
- Department of Emergency, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yafang Wu
- Department of Emergency, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
12
|
An X, Ji B, Sun D. TRIM34 localizes to the mitochondria and mediates apoptosis through the mitochondrial pathway in HEK293T cells. Heliyon 2020; 6:e03115. [PMID: 31956709 PMCID: PMC6956761 DOI: 10.1016/j.heliyon.2019.e03115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 01/21/2023] Open
Abstract
Tripartite motif 34 (TRIM34) is a member of TRIM family that can be highly induced by type I Interferon. Currently little is known about the subcellular localization and biological function of TRIM34. In the present study, confocal microscope assay showed that TRIM34 proteins were mainly distributed in the cytoplasm and part of TRIM34 proteins were localized to the mitochondria in human embryonic kidney 293T (HEK293T) cells. Western blot results demonstrated FLAG-TRIM34 could also be identified in the mitochondrial fractions of HEK293T cells transfected with the 5'FLAG-pcDNA3.1-TRIM34 vector. The CCK-8 assay further demonstrated that TRIM34 significantly decreased the viability of HEK293T cells. Nevertheless, TRIM34 had no apparent effect on the cell cycle distribution. Interestingly, flow cytometry showed that TRIM34 could obviously induce apoptosis in HEK293T cells. Moreover, we discovered that TRIM34 promoted apoptosis by inducing the loss of mitochondrial membrane potential (MMP) in HEK293T cells, leading to the release of cytochrome c from mitochondia. In short, these results demonstrate that TRIM34 proteins can localize to the mitochondria and induce apoptosis via the depolarization of MMP in HEK293T cells.
Collapse
Affiliation(s)
- Xinye An
- Laboratory of Clinical Medicine, Binzhou, 256603, China
| | - Bing Ji
- Laboratory of Clinical Medicine, Binzhou, 256603, China
| | - Dakang Sun
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, China
| |
Collapse
|
13
|
Nuclear localization signal in TRIM22 is essential for inhibition of type 2 porcine reproductive and respiratory syndrome virus replication in MARC-145 cells. Virus Genes 2019; 55:660-672. [PMID: 31375995 PMCID: PMC7089487 DOI: 10.1007/s11262-019-01691-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes one of the most economically important swine diseases worldwide. Tripartite motif-containing 22 (TRIM22), a TRIM family protein, has been identified as a crucial restriction factor that inhibits a group of human viruses. Currently, the role of cellular TRIM22 in PRRSV infection remains unclear. In the present study, we analyzed the effect of TRIM22 on PRRSV replication in vitro and explored the underlying mechanism. Ectopic expression of TRIM22 impaired the viral replication, while TRIM22-RNAi favored the replication of PRRSV in MARC-145 cells. Additionally, we observed that TRIM22 deletion SPRY domain or Nuclear localization signal (NLS) losses the ability to inhibit PRRSV replication. Finally, Co-IP analysis identified that TRIM22 interacts with PRRSV nucleocapsid (N) protein through the SPRY domain, while the NLS2 motif of N protein is involved in interaction with TRIM22. Although the concentration of PRRSV N protein was not altered in the presence of TRIM22, the abundance of N proteins from simian hemorrhagic fever virus (SHFV), equine arteritis virus (EAV), and murine lactate dehydrogenase-elevating virus (LDV) diminished considerably with increasing TRIM22 expression. Together, our findings uncover a previously unrecognized role for TRIM22 and extend the antiviral effects of TRIM22 to arteriviruses.
Collapse
|
14
|
Lin YW, Huang CY, Shih CM, Tsai YT, Lin CS, Lin CY, Li CY, Loh SH, Lin CY, Lin FY, Tsai CS. Eotaxin-2 induces monocytic apoptosis in patients who have undergone coronary artery bypass surgery and in THP-1 cells in vitro regulated by thrombomodulin. Am J Transl Res 2018; 10:3133-3149. [PMID: 30416656 PMCID: PMC6220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Cardiopulmonary bypass (CPB) induces cytokine production and causes postoperative monocytic inflammatory responses, which are associated with patient outcomes. In fact, monocytes regulate immunity through dynamic networks of survival and cellular apoptosis as well as thrombomodulin (TM)-associated differenciiation. Whether CPB affects the plasma level of eotaxin-2, a potent chemoattractant, or stimulates monocyte apoptosis among patients undergoing elective coronary artery bypass graft (CABG) surgery is also unknown. Thus, we aimed to investigate this subject and explored the feasible roles of TM in the phenomena. Firstly, clinical data showed that after CABG surgery, patients with lower plasma eotaxin-2 levels and higher TM expression levels exhibited reduced monocytic apoptosis, compared with that in patients with lower TM expression levels. Subsequently, to explore the hypothesis that eotaxin-2 induces monocytic apoptosis mediation by TM expression, we used in vitro monocytic THP-1 cells. The results indicated that treatment of THP-1 cells with eotaxin-2 markedly increased apoptosis. Knockdown of TM significantly increased, and overexpression of TM significantly reversed eotaxin-2-induced monocyte apoptosis, which was compared with that of only eotaxin-2-treated THP-1 cells. TM may regulate mitochondria-mediated apoptosis by its PI3K/Akt axis signaling pathway, which acts as an extinguisher for p53 and BAX activation, as well as limit further downstream release of cytochrome c and cleavage of caspases 8 and 3; we suggest that TM interacts with the cofilin cytoskeleton, which further supports a role for TM in eotaxin-induced THP-1 cell apoptosis. Based on clinical observation and in vitro study, we conclude that TM expression on monocytes is associated with their apoptosis. The above mechanisms may be relevant to clinical phenomena in which patients exhibiting more monocytic apoptosis are complicated by higher plasma levels of eotaxin-2 and lower TM expression on monocytes after CABG surgery.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University HospitalTaipei, Taiwan
- Institute of Oral Biology, National Yang-Ming UniversityTaipei, Taiwan
| | - Chun-Yao Huang
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University HospitalTaipei, Taiwan
- Department of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chun-Min Shih
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University HospitalTaipei, Taiwan
- Department of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Chi-Yuan Li
- Department of Anesthesiology and Graduate Institute of Clinical Medical Science, China Medical University and HospitalTaipei, Taiwan
| | - Shih-Hurng Loh
- Department and Graduate Institute of Pharmacology, National Defense Medical CenterTaipei, Taiwan
| | - Cheng-Yen Lin
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University HospitalTaipei, Taiwan
- Healthcare Information and Management Department, Ming Chuan UniversityTaoyuan, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University HospitalTaipei, Taiwan
- Department of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University HospitalTaipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical CenterTaipei, Taiwan
| |
Collapse
|
15
|
Gupta I, Singh K, Varshney NK, Khan S. Delineating Crosstalk Mechanisms of the Ubiquitin Proteasome System That Regulate Apoptosis. Front Cell Dev Biol 2018; 6:11. [PMID: 29479529 PMCID: PMC5811474 DOI: 10.3389/fcell.2018.00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/26/2018] [Indexed: 01/10/2023] Open
Abstract
Regulatory functions of the ubiquitin-proteasome system (UPS) are exercised mainly by the ubiquitin ligases and deubiquitinating enzymes. Degradation of apoptotic proteins by UPS is central to the maintenance of cell health, and deregulation of this process is associated with several diseases including tumors, neurodegenerative disorders, diabetes, and inflammation. Therefore, it is the view that interrogating protein turnover in cells can offer a strategy for delineating disease-causing mechanistic perturbations and facilitate identification of drug targets. In this review, we are summarizing an overview to elucidate the updated knowledge on the molecular interplay between the apoptosis and UPS pathways. We have condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate. We have also provided a detailed insight into how the UPS proteins are able to fine-tune the intrinsic, extrinsic, and p53-mediated apoptotic pathways to regulate cell survival or cell death. This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Kanika Singh
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
16
|
Hou J, Chen Q, Wu X, Zhao D, Reuveni H, Licht T, Xu M, Hu H, Hoeft A, Ben-Sasson SA, Shu Q, Fang X. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis. Am J Respir Crit Care Med 2017; 196:1559-1570. [PMID: 28850247 DOI: 10.1164/rccm.201701-0241oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. OBJECTIVES To investigate the role of S1PR3 in antibacterial immunity during sepsis. METHODS Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. MEASUREMENTS AND MAIN RESULTS S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3-/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3-/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3-/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. CONCLUSIONS S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.
Collapse
Affiliation(s)
- JinChao Hou
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | | | - XiaoLiang Wu
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | - DongYan Zhao
- 3 Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany; and
| | - Hadas Reuveni
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Licht
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - MengLong Xu
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | - Hu Hu
- 5 Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andreas Hoeft
- 3 Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany; and
| | - Shmuel A Ben-Sasson
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - XiangMing Fang
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| |
Collapse
|
17
|
Forlani G, Accolla RS. Tripartite Motif 22 and Class II Transactivator Restriction Factors: Unveiling Their Concerted Action against Retroviruses. Front Immunol 2017; 8:1362. [PMID: 29093716 PMCID: PMC5651408 DOI: 10.3389/fimmu.2017.01362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Coevolution of the three basic mechanisms of immunity, intrinsic, innate and adaptive, is a constant feature of the host defense against pathogens. Within this frame, a peculiar role is played by restriction factors (RFs), elements of intrinsic immunity that interfere with viral life cycle. Often considered as molecules whose specific functions are distinct and unrelated among themselves recent results indicate instead, at least for some of them, a concerted action against the pathogen. Here we review recent findings on the antiviral activity of tripartite motif 22 (TRIM22) and class II transactivator (CIITA), first discovered as human immunodeficiency virus 1 RFs, but endowed with general antiviral activity. TRIM22 and CIITA provide the first example of cellular proteins acting together to potentiate their intrinsic immunity.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|