1
|
Grzybowski A, Auffarth GU, LaHood BR. How do intraocular lens materials influence the outcome of cataract surgery? Curr Opin Ophthalmol 2024:00055735-990000000-00201. [PMID: 39446645 DOI: 10.1097/icu.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the evidence on the effect of intraocular lens (IOL) material on the outcomes of cataract surgery, as well as on the surgical procedure itself. RECENT FINDINGS Differences in capsular biocompatibility between IOL materials lead to variations in capsular stability and posterior capsule opacification (PCO), while differences in uveal biocompatibility affect postoperative inflammatory response. SUMMARY Refractive outcomes are affected by both incision size and the rotational stability of toric IOLs. Small incision sizes favour hydrophilic IOLs. Rotational stability of hydrophobic and hydrophilic IOLs were comparable in recent studies. Visual outcomes are affected by chromatic aberrations, dysphotopsia, lens opacifications and PCO. Hydrophilic IOLs are associated with reduced chromatic dispersion. Hydrophobic IOL opacifications are caused by sub-surface glistenings, while hydrophilic IOL opacifications are due to surface calcifications. Some surgeries, including pars plana vitrectomy and lamellar corneal transplants, were shown to increase the risk of IOL calcifications, although the mechanism is still unknown. Hydrophilic IOLs have greater ease of manipulation, greater resistance to IOL damage, and higher uveal biocompatibility. Hydrophobic IOLs show better PCO prevention than hydrophilic IOLs, and should be preferred in highly myopic eyes where Nd:YAG capsulotomy might increase the risk of retinal detachment.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Gerd U Auffarth
- David J Apple Center for Vision Research, Department of Ophthalmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin R LaHood
- Ashford Advanced Eye Care
- Department of Ophthalmology, The Queen Elizabeth Hospital
- South Australian Institute of Ophthalmology
- Discipline of Ophthalmology and Vision Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Woitschach F, Kloss M, Kischkel S, Macháček T, Reinholdt C, Senz V, Schlodder K, Löbermann M, Grabow N, Reisinger EC, Sombetzki M. Utilization of a highly adaptable murine air pouch model for minimally invasive testing of the inflammatory potential of biomaterials. Front Bioeng Biotechnol 2024; 12:1367366. [PMID: 38737540 PMCID: PMC11082294 DOI: 10.3389/fbioe.2024.1367366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: The biocompatibility of an implanted material strongly determines the subsequent host immune response. After insertion into the body, each medical device causes tissue reactions. How intense and long-lasting these are is defined by the material properties. The so-called foreign body reaction is a reaction leading to the inflammation and wound healing process after implantation. The constantly expanding field of implant technology and the growing areas of application make optimization and adaptation of the materials used inevitable. Methods: In this study, modified liquid silicone rubber (LSR) and two of the most commonly used thermoplastic polyurethanes (TPU) were compared in terms of induced inflammatory response in the body. We evaluated the production of inflammatory cytokines, infiltration of inflammatory cells and encapsulation of foreign bodies in a subcutaneous air-pouch model in mice. In this model, the material is applied in a minimally invasive procedure via a cannula and in one piece, which allows material testing without destroying or crushing the material and thus studying an intact implant surface. The study design includes short-term (6 h) and long-term (10 days) analysis of the host response to the implanted materials. Air-pouch-infiltrating cells were determined by flow cytometry after 6 h and 10 days. Inflammation, fibrosis and angiogenesis markers were analyzed in the capsular tissue by qPCR after 10 days. Results: The foreign body reaction was investigated by macroscopic evaluation and scanning electron microscopy (SEM). Increased leukocyte infiltration was observed in the air-pouch after 6 h, but it markedly diminished after 10 days. After 10 days, capsule formations were observed around the materials without visible inflammatory cells. Discussion: For biocompatibility testing materials are often implanted in muscle tissue. These test methods are not sufficiently conclusive, especially for materials that are intended to come into contact with blood. Our study primarily shows that the presented model is a highly adaptable and minimally invasive test system to test the inflammatory potential of and foreign body reaction to candidate materials and offers more precise analysis options by means of flow cytometry.
Collapse
Affiliation(s)
- Franziska Woitschach
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Marlen Kloss
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Sabine Kischkel
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemünde, Germany
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemünde, Germany
| | | | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemünde, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
Lin X, Ma D, Yang J. Exploring anterion capsular contraction syndrome in cataract surgery: insights into pathogenesis, clinical course, influencing factors, and intervention approaches. Front Med (Lausanne) 2024; 11:1366576. [PMID: 38439904 PMCID: PMC10911763 DOI: 10.3389/fmed.2024.1366576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Anterior capsular contraction syndrome (ACCS) is a challenging complication that can occur following phacoemulsification cataract surgery. Characterized by capsular bag wrinkling, intraocular lens (IOL) decentration and tilt, ACCS can have negative effects on visual outcomes and patient satisfaction. This review aims to investigate the pathogenesis, clinical course, influencing factors, and intervention approaches for ACCS after cataract surgery. By understanding the underlying mechanisms and identifying factors that contribute to ACCS, surgeons can enhance their ability to predict and manage this complication. Various intervention strategies are discussed, highlighting their importance in reducing complications and improving surgical outcomes. However, further research is needed to determine optimal prevention and management strategies through long-term follow-up and comparative analyses. Advancements in this field will ultimately lead to improved visual outcomes and optimized cataract surgery for patients.
Collapse
Affiliation(s)
- Xuanqiao Lin
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia, Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dongmei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia, Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jin Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia, Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Zhang C, Chen S, Hu J, Shen L, Yu Y. Research Progress Concerning a Novel Intraocular Lens for the Prevention of Posterior Capsular Opacification. Pharmaceutics 2022; 14:1343. [PMID: 35890240 PMCID: PMC9318653 DOI: 10.3390/pharmaceutics14071343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, and intraocular lens (IOL) pitting. Therefore, finding how to prevent PCO development is the subject of active investigations. As a replacement organ, the IOL is implanted into the lens capsule after cataract surgery, but it is also associated with the occurrence of PCO. Using IOL as a medium for PCO prophylaxis is a more facile and efficient method that has demonstrated various clinical application prospects. Thus, scientists have conducted a lot of research on new intraocular lens fabrication methods, such as optimizing IOL materials and design, and IOL surface modification (including plasma/ultraviolet/ozone treatment, chemical grafting, drug loading, coating modification, and layer-by-layer self-assembly methods). This paper summarizes the research progress for different types of intraocular lenses prepared by different surface modifications, including anti-biofouling IOLs, enhanced-adhesion IOLs, micro-patterned IOLs, photothermal IOLs, photodynamic IOLs, and drug-loading IOLs. These modified intraocular lenses inhibit PCO development by reducing the residual intraoperative lens epithelial cells or by regulating the cellular behavior of lens epithelial cells. In the future, more works are needed to improve the biosecurity and therapeutic efficacy of these modified IOLs.
Collapse
Affiliation(s)
- Yidong Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Silong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Jianghua Hu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
- Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lifang Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Yibo Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| |
Collapse
|
5
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Liu D, Tang J, Shen L, Liu S, Zhu S, Wen S, Lin Q. Foldable Bulk Anti-adhesive Polyacrylic Intraocular Lens Material Design and Fabrication for Posterior Capsule Opacification Prevention. Biomacromolecules 2022; 23:1581-1591. [PMID: 35271252 DOI: 10.1021/acs.biomac.1c01388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Posterior capsular opacification (PCO) is a primary complication after phacoemulsification combined with intraocular lens (IOL) implantation, which is attributed to adhesion, proliferation, and migration of residual lens epithelial cells on IOL. Although surface hydrophilic coating is considered to be a powerful way to inhibit PCO incidence after surgery, it requires complex post-production processes, thus limiting their applicability. In comparison, bulk modification is a stable, effective, and facile IOL synthesis method for PCO prevention. Herein, a new anti-adhesive IOL material was designed and successfully synthesized by radical copolymerization of ethylene glycol phenyl ether methacrylate (EGPEMA) and 2-(2-ethoxyethoxy) ethyl acrylate (EA). The physicochemical properties of P(EGPEMA-co-EA) copolymer materials, including chemical structure, mechanical, thermal, surface, and optical properties, were analyzed by using 1H NMR spectroscopy, FT-IR spectroscopy, tensile test, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angle measurement, and UV-vis spectroscopy. The elongation at break and the modulus of elasticity of the copolymer were tunable through the change of the composition of monomers. Compared to other components, the tensile results showed that P(EGPEMA-co-EA) materials (70% EGPEMA in mass ratio, F7) are suitable for the preparation of foldable intraocular lens with lower elastic modulus and higher elongation at break. TGA and DSC showed that the material has high thermal stability, and the glass transition temperature of F7 material is 16.1 °C. The water contact angle measurement results showed that the introduction of EA improved the hydrophilicity of the material. The percentage of transmittance of all copolymers at 400-800 nm is above 85%. Then, the biocompatibility of the materials was evaluated by in vitro assay and subcutaneous implantation. Both in vitro results and subcutaneous implantation experiments showed that the designed IOL materials exhibited a good anti-adhesion effect and no cytotoxicity. Finally, phacoemulsification and IOL intraocular implantation were performed, and the in vivo results confirmed the good PCO prevention ability as well as the biocompatibility of the new IOL materials.
Collapse
Affiliation(s)
- Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Junmei Tang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Sihao Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
7
|
Jiang Z, Zhang N, Dong J. Reversible deposition of inflammatory cells on the surface of an intraocular lens in a patient with uveitis: Case report and literature review. Eur J Ophthalmol 2022; 33:NP126-NP130. [PMID: 35243920 DOI: 10.1177/11206721221086156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The deposition of inflammatory cells on an intraocular lens (IOL) is a rare but potentially serious complication. We report a patient who presented with reversible severe deposition of inflammatory cells on the anterior surface of a hydrophobic IOL. CASE DESCRIPTION A 68-year-old woman with remissive uveitis presented with blurred vision in her right eye that persisted for 1 month. She had undergone cataract surgery and hydrophobic IOL (ZA9003, Johnson & Johnson Surgical Vision) implantation 3 months before presentation. Deposition of inflammatory cells was diagnosed by ocular examination. The IOL became transparent after 6 months of treatment with combined antibiotic/steroid eyedrops (tobramycin/dexamethasone eyedrops) and atropine. However, the cellular deposition recurred after either discontinuing the tobramycin/dexamethasone eyedrops or switching to steroid-only eyedrops (fluorometholone). Therefore, she was prescribed continuous tobramycin/dexamethasone eyedrops, twice-daily, and her IOL remained transparent at the time of submission of this article. CONCLUSIONS We have reported a case of reversible severe deposition of inflammatory cells on the anterior surface of a hydrophobic IOL in a patient with uveitis that was managed by continuous administration of combined antibiotic/steroid eyedrops. The morphology of the inflammatory cells deposits and the treatment differed from those of previously reported cases.
Collapse
Affiliation(s)
- Zhijian Jiang
- Department of Ophthalmology, 117880Shanghai Xuhui Central Hospital, Shanghai, China
| | - Nan Zhang
- Department of Ophthalmology, 117880Shanghai Xuhui Central Hospital, Shanghai, China
| | - Jianhong Dong
- Department of Ophthalmology, 117880Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
8
|
Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance. Pharmaceutics 2021; 13:pharmaceutics13040532. [PMID: 33920327 PMCID: PMC8069945 DOI: 10.3390/pharmaceutics13040532] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Contact lenses (CLs) are prone to biofilm formation, which may cause severe ocular infections. Since the use of antibiotics is associated with resistance concerns, here, two alternative strategies were evaluated to endow CLs with antibiofilm features: copolymerization with the antifouling monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) and loading of the antioxidant resveratrol with known antibacterial activity. MPC has, so far, been used to increase water retention on the CL surface (Proclear® 1 day CLs). Both poly(hydroxyethyl methacrylate) (HEMA) and silicone hydrogels were prepared with MPC covering a wide range of concentrations (from 0 to 101 mM). All hydrogels showed physical properties adequate for CLs and successfully passed the hen’s egg-chorioallantoic membrane (HET-CAM) test. Silicone hydrogels had stronger affinity for resveratrol, with higher loading and a slower release rate. Ex vivo cornea and sclera permeability tests revealed that resveratrol released from the hydrogels readily accumulated in both tissues but did not cross through. The antibiofilm tests against Pseudomonas aeruginosa and Staphylococcus aureus evidenced that, in general, resveratrol decreased biofilm formation, which correlated with its concentration-dependent antibacterial capability. Preferential adsorption of lysozyme, compared to albumin, might also contribute to the antimicrobial activity. In addition, importantly, the loading of resveratrol in the hydrogels preserved the antioxidant activity, even against photodegradation. Overall, the designed hydrogels can host therapeutically relevant amounts of resveratrol to be sustainedly released on the eye, providing antibiofilm and antioxidant performance.
Collapse
|
9
|
Cheng Q, Asha AB, Liu Y, Peng YY, Diaz-Dussan D, Shi Z, Cui Z, Narain R. Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9006-9014. [PMID: 33576614 DOI: 10.1021/acsami.0c22658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development and application of natural antibacterial materials have always been the focus of biomedical research. Borneol as a natural antibacterial compound has received extensive attention. However, the hydrophobicity caused by its unique structure limits its application range to a certain extent. In this study, we combine zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) with a complex bicyclic monoterpene structure borneol compound and prepare an excellent antifouling and antibacterial surface via the Schiff-base bond. The prepared coating has excellent hydrophilicity verified by the contact angle (CA), and its polymer layer is confirmed by X-ray photoelectron spectroscopy (XPS). The zwitterion MPC and borneol moieties in the copolymer play a coordinating role, relying on super hydration and the special stereochemical structure to prevent protein adsorption and inhibit bacterial adhesion, respectively, which are demonstrated by bovine serum albumin (BSA) adsorption and antibacterial activity test. Moreover, the water-soluble borneol derivative as the antibacterial surfaces we designed here was biocompatible toward MRC-5 (lung fibroblasts), as showed by in vitro cytotoxicity assays. Such results indicate the potential application of the as-prepared hydrophilic surfaces in the biomedical materials.
Collapse
Affiliation(s)
- Qiuli Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Anika Benozir Asha
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zuosen Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhanchen Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
10
|
Resurgence of inflammatory giant-cell deposits in modern surface-modified intraocular lenses. J Cataract Refract Surg 2021; 46:149-151. [PMID: 32050246 DOI: 10.1097/j.jcrs.0000000000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design. Drug Deliv Transl Res 2021; 11:1903-1923. [PMID: 33454927 DOI: 10.1007/s13346-020-00879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The last 30 years has seen a proliferation of research on protein-resistant biomaterials targeted at designing bio-inert surfaces, which are prerequisite for optimal performance of implantable devices that contact biological fluids and tissues. These efforts have only been able to yield minimal results, and hence, the ideal anti-fouling biomaterial has remained elusive. Some studies have yielded biomaterials with a reduced fouling index among which high molecular weight polyethylene glycols have remained dominant. Interestingly, the field of implantable ocular devices has not experienced an outflow of research in this area, possibly due to the assumption that biomaterials tested in other body fluids can be translated for application in the ocular space. Unfortunately, progression in the molecular understanding of many ocular conditions has brought to the fore the need for treatment options that necessitates the use of anti-fouling biomaterials. From the earliest implanted horsehair and silk seton for glaucoma drainage to the recent mini telescopes for sight recovery, this review provides a concise incursion into the gradual evolution of biomaterials for the design of implantable ocular devices as well as approaches used to overcome the challenges with fouling. The implication of fouling for drug delivery, the design of immune-responsive biomaterials, as well as advanced surface immobilization approaches to support the overall performance of implantable ocular devices are also reviewed.
Collapse
|
12
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
13
|
Mylona I, Tsinopoulos I. A Critical Appraisal of New Developments in Intraocular Lens Modifications and Drug Delivery Systems for the Prevention of Cataract Surgery Complications. Pharmaceuticals (Basel) 2020; 13:E448. [PMID: 33302370 PMCID: PMC7762578 DOI: 10.3390/ph13120448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cataract surgery is the commonest ophthalmic surgery worldwide. The replacement of the diseased lens with a synthetic one (intraocular lens-IOL) remains the treatment of choice, despite its potential complications that include infection, inflammation and posterior capsule opacification. The potential for drug delivery via the IOL has been researched extensively over a period of twenty-five years, yet there is very limited progress in transferring the findings from research to everyday practice. The objective of this review is to assess the progress made in the field of IOL lens modifications and drug delivery systems over the past five years. Thirty-six studies that were conducted during the past five years were identified and deemed suitable for inclusion. They were grouped in three broad categories, studies that described new methods for loading a drug onto the IOL, assessment of the effects of drugs that were loaded to the IOL and studies that assessed the effects of non-pharmaceutical modifications of IOLs. While considerable progress is continually being made with regard to methods and materials, there is still little capitalization upon these research studies, with no commercially available IOL-based drug delivery system being available. Close cooperation between researchers in basic sciences (chemistry, physics, materials science and pharmacy), clinical researchers, IOL manufacturers and the pharmaceutical industry is an important prerequisite for further development.
Collapse
Affiliation(s)
- Ioanna Mylona
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, 564 29 Thessaloniki, Greece;
| | | |
Collapse
|
14
|
Sui S, Li L, Shen J, Ni G, Xie H, Lin Q, Zhao Y, Guo J, Duan W. Plasma treatment of polymethyl methacrylate to improve surface hydrophilicity and antifouling performance. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siyuan Sui
- Institute of Plasma Physics Hefei China
- University of Science and Technology of China Hefei China
| | - Lin Li
- Institute of Plasma Physics Hefei China
| | - Jie Shen
- Institute of Plasma Physics Hefei China
- AnHui Province Key Laboratory of Medical Physics and Technology Hefei China
| | - Guohua Ni
- Institute of Plasma Physics Hefei China
- AnHui Province Key Laboratory of Medical Physics and Technology Hefei China
| | | | - Qifu Lin
- Institute of Plasma Physics Hefei China
- University of Science and Technology of China Hefei China
| | - Yanjun Zhao
- Institute of Plasma Physics Hefei China
- University of Science and Technology of China Hefei China
| | - Jingwei Guo
- Institute of Plasma Physics Hefei China
- University of Science and Technology of China Hefei China
- AnHui Province Key Laboratory of Medical Physics and Technology Hefei China
| | - Wenxue Duan
- Institute of Plasma Physics Hefei China
- AnHui Province Key Laboratory of Medical Physics and Technology Hefei China
| |
Collapse
|
15
|
Yusef YN, Yusef SN, Ivanov MN, Vvedenskiy AS, Fokina ND, Alkharki L, Shashorina SA. [Evolution of IOL exchange. Part 1. Development of methods for IOL exchange]. Vestn Oftalmol 2020; 136:248-253. [PMID: 33063973 DOI: 10.17116/oftalma2020136052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review presents the history of development and improvement of methods for intraocular lens (IOL) exchange. Existing techniques of IOL exchange are comparatively analyzed.
Collapse
Affiliation(s)
- Yu N Yusef
- Research Institute of Eye Diseases, Moscow, Russia
| | - S N Yusef
- Research Institute of Eye Diseases, Moscow, Russia
| | - M N Ivanov
- Research Institute of Eye Diseases, Moscow, Russia
| | | | - N D Fokina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - L Alkharki
- Research Institute of Eye Diseases, Moscow, Russia
| | | |
Collapse
|
16
|
Xiang Y, Zou M, Zhang Y, Jin R, Nie Y. Drug-loaded and Blue-ray Filtered Hydrogel as a Potential Intraocular Lens for Cataract Treatment. Pharm Nanotechnol 2020; 8:302-312. [PMID: 32167435 DOI: 10.2174/2211738508666200313144112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
Background:
Indomethacin (IND) is a class of non-steroidal, anti-inflammatory
drugs, which is used to treat various kinds of ocular inflammation, and has been reported to
prevent posterior capsule opacification (PCO) by inhibiting the mitosis and collagen synthesis
of human lens epithelial cells (LECs). In addition, the specific absorption spectrum of indomethacin
shows the effect of absorbing short-wavelength blue-violet light.
Objective:
We prepared an indomethacin-loaded hydrogel as a potential intraocular lens (IOLs)
material to prevent endophthalmitis, PCO and filter harmful blue light.
Methods:
Indomethacin prodrugs (HEMA-IND) (HI) were prepared by esterification of indomethacin
and 2-hydroxyethyl methacrylate (HEMA), and poly (HEMA-co-MAA-co-MMA-co-
HI) (HAMI) hydrogels were prepared by free-radical polymerization of 2-hydroxyethyl methacrylate
(HEMA), methyl methacrylate (MMA), methacrylic acid (MAA) and HI. The physical
and chemical properties of obtained hydrogel were detected, including optical, morphology,
thermomechanical and surface properties, equilibrium water content, drug release behaviors and
cytotoxicity.
Results:
HAMI hydrogels can filter harmful short-wavelength blue light and show other necessary
properties like visible light transparency, glass transition temperatures, mechanical
strength, and biocompatibility for making intraocular lenses. Meanwhile, MAA increases the
hydrophilicity of the hydrogels, resulting in a lower water contact angle and controllable drug
release from the hydrogels.
Conclusion:
In summary, HAMI hydrogels show a great potential as IOL biomaterials that can
maintain the sustained release of indomethacin and filter harmful blue light after cataract surgery.
Lay Summary:
People with cataract surgery can be at high risk of postoperative complications,
such as PCO and postoperative endophthalmitis. Moreover, early IOLs allowed all ultraviolet
(UV) and visible light to pass through retina without restriction, thus to damage the retina and
the retinal pigment epithelium, which may lead to retinopathy and age-related macular degeneration
(AMD). Herein, we sought to design and prepare a kind of IOLs loaded with indomethacin
to mitigate those postoperative complications and filter harmful blue light to improve the
treatment prognosis.
Collapse
Affiliation(s)
- Yang Xiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Mengwei Zou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ying Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Tan X, Chen C, Zhu Y, Deng J, Qiu X, Huang S, Shang F, Cheng B, Liu Y. Proteotoxic Stress Desensitizes TGF-beta Signaling Through Receptor Downregulation in Retinal Pigment Epithelial Cells. Curr Mol Med 2018. [PMID: 28625142 PMCID: PMC5688417 DOI: 10.2174/1566524017666170619113435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Proteotoxic stress and transforming growth factor (TGFβ)-induced epithelial-mesenchymal transition (EMT) are two main contributors of intraocular fibrotic disorders, including proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). However, how these two factors communicate with each other is not well-characterized. Objective: The aim was to investigate the regulatory role of proteotoxic stress on TGFβ signaling in retinal pigment epithelium. Methods: ARPE-19 cells and primary human retinal pigment epithelial (RPE) cells were treated with proteasome inhibitor MG132 and TGFβ. Cell proliferation was analyzed by CCK-8 assay. The levels of mesenchymal markers α-SMA, fibronectin, and vimentin were analyzed by real-time polymerase chain reaction (PCR), western blot, and immunofluorescence. Cell migration was analyzed by scratch wound assay. The levels of p-Smad2, total Smad2, p-extracellular signal-regulated kinase 1/2 (ERK1/2), total ERK1/2, p-focal adhesion kinase (FAK), and total FAK were analyzed by western blot. The mRNA and protein levels of TGFβ receptor-II (TGFβR-II) were measured by real-time PCR and western blot, respectively. Results: MG132-induced proteotoxic stress resulted in reduced cell proliferation. MG132 significantly suppressed TGFβ-induced upregulation of α-SMA, fibronectin, and vimentin, as well as TGFβ-induced cell migration. The phosphorylation levels of Smad2, ERK1/2, and FAK were also suppressed by MG132. Additionally, the mRNA level and protein level of TGFβR-II decreased upon MG132 treatment. Conclusion: Proteotoxic stress suppressed TGFβ-induced EMT through downregulation of TGFβR-II and subsequent blockade of Smad2, ERK1/2, and FAK activation.
Collapse
Affiliation(s)
- X Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - C Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - Y Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - J Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - X Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - S Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - F Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong. China
| | - B Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060. China
| | - Y Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060. China
| |
Collapse
|
18
|
Ma W, Liu L, Chen H, Zhao Y, Yang P, Huang N. Micropatterned immobilization of membrane-mimicking polymer and peptides for regulation of cell behaviors in vitro. RSC Adv 2018; 8:20836-20850. [PMID: 35542362 PMCID: PMC9080867 DOI: 10.1039/c8ra02607f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The Ti-PDA-M/R(P) biomimetic micropattern was successfully fabricated with PMMPC-HD and GREDVY. The Ti-PDA-M/R(P) micropattern can regulate EC morphology, orientation and functions, and inhibit platelet adhesion and proliferation of SMCs.
Collapse
Affiliation(s)
- Wenyong Ma
- Key Laboratory of Advanced Technology of Materials
- Ministry of Education
- School of Material Science and Technology of Southwest Jiaotong University
- Chengdu 610031
- PR China
| | - Luying Liu
- Key Laboratory of Advanced Technology of Materials
- Ministry of Education
- School of Material Science and Technology of Southwest Jiaotong University
- Chengdu 610031
- PR China
| | - Huiqing Chen
- Key Laboratory of Advanced Technology of Materials
- Ministry of Education
- School of Material Science and Technology of Southwest Jiaotong University
- Chengdu 610031
- PR China
| | - Yuancong Zhao
- Key Laboratory of Advanced Technology of Materials
- Ministry of Education
- School of Material Science and Technology of Southwest Jiaotong University
- Chengdu 610031
- PR China
| | - Ping Yang
- Key Laboratory of Advanced Technology of Materials
- Ministry of Education
- School of Material Science and Technology of Southwest Jiaotong University
- Chengdu 610031
- PR China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials
- Ministry of Education
- School of Material Science and Technology of Southwest Jiaotong University
- Chengdu 610031
- PR China
| |
Collapse
|
19
|
Lin Y, Li T, Ma C, Gao H, Chen C, Zhu Y, Liu B, Lian Y, Huang Y, Li H, Wu Q, Liang X, Jin C, Huang X, Ye J, Lu L. Genetic variations in Bestrophin‑1 and associated clinical findings in two Chinese patients with juvenile‑onset and adult‑onset best vitelliform macular dystrophy. Mol Med Rep 2018; 17:225-233. [PMID: 29115605 PMCID: PMC5780130 DOI: 10.3892/mmr.2017.7927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Best vitelliform macular dystrophy (BVMD) is a hereditary retinal disease characterized by the bilateral accumulation of large egg yolk‑like lesions in the sub‑retinal and sub‑retinal pigment epithelium spaces. Macular degeneration in BVMD can begin in childhood or adulthood. The variation in the age of onset is not clearly understood. The present study characterized the clinical characteristics of two Chinese patients with either juvenile‑onset BVMD or adult‑onset BVMD and investigated the underlying genetic variations. A 16‑year‑old male (Patient 1) was diagnosed with juvenile‑onset BVMD and a 43‑year‑old female (Patient 2) was diagnosed with adult‑onset BVMD. Comprehensive ophthalmic examinations were performed, including best‑corrected visual acuity, intraocular pressure, slit‑lamp examination, fundus photography, optical coherence tomography, fundus fluorescein angiography imaging and Espion electrophysiology. Genomic DNA was extracted from peripheral blood leukocytes collected from these patients, their family members, and 200 unrelated subjects within in the same population. The 11 exons of the bestrophin‑1 (BEST1) gene were amplified by polymerase chain reaction and directly sequenced. Both patients presented lesions in the macular area. In Patient 1, a heterozygous mutation c.903T>G (p.D301E) in exon 8 of the BEST1 gene was identified. This mutation was not present in any of the unaffected family members or the normal controls. Polymorphism phenotyping and the sorting intolerant from tolerant algorithm predicted that the amino acid substitution D301E in bestrophin‑1 protein was damaging. In Patient 2, a single nucleotide polymorphism c.1608C>T (p.T536T) in exon 10 of the BEST1 gene was identified. These findings expand the spectrum of BEST1 genetic variation and will be valuable for genetic counseling and the development of therapeutic interventions for patients with BVMD.
Collapse
Affiliation(s)
- Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chenghong Ma
- Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongbin Gao
- Guangdong Laboratory Animals Monitoring Institute, Key Laboratory of Guangdong Laboratory Animals, Guangzhou, Guangdong 510640, P.R. China
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yu Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Qingxiu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xinhua Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianhua Ye
- Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Jianhua Ye, Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail:
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Dr Lin Lu, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, P.R. China, E-mail:
| |
Collapse
|
20
|
Lin Y, Li T, Gao H, Lian Y, Chen C, Zhu Y, Li Y, Liu B, Zhou W, Jiang H, Liu X, Zhao X, Liang X, Jin C, Huang X, Lu L. Bestrophin 1 gene analysis and associated clinical findings in a Chinese patient with Best vitelliform macular dystrophy. Mol Med Rep 2017; 16:4751-4755. [PMID: 28791410 PMCID: PMC5647057 DOI: 10.3892/mmr.2017.7174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
The aim of the present study was to investigate the clinical characteristics and the underlying genetic causes of Best vitelliform macular dystrophy (BVMD) in a sporadic case in a Chinese patient. A 10‑year‑old boy was diagnosed with BVMD; complete ophthalmic examinations were performed, including best‑corrected visual acuity, intraocular pressure, slit‑lamp examination, fundus photograph, optical coherence tomography and fundus fluorescein angiography imaging. Genomic DNA was extracted from leukocytes of the peripheral blood collected from this patient and his family members. DNA samples from 200 unrelated subjects from the Chinese population were used as controls. A total of 11 exons of the bestrophin 1 (BEST1) gene were amplified by polymerase chain reaction and directly sequenced. The results revealed that the patient presented with yellowish lesions in the macular area. Heterozygous mutations c.292G>A (p.Glu98Lys) in exon 4 and c.1608C>T (p.Thr536Thr) in exon 10 of the BEST1 gene were identified in this sporadic case; however, this was not identified in any of his unaffected family members or in the normal controls. The c.292G>A (p.Glu98Lys) mutation has not been previously reported, whereas the c.1608C>T (p.Thr536Thr) mutation is a previously characterized single nucleotide polymorphism (SNP). In conclusion, BEST1 gene mutations and polymorphisms have been reported in diverse ethnic groups, and the present study identified a novel BEST1 gene mutation and an SNP that occurred simultaneously in a Chinese patient with BVMD.
Collapse
Affiliation(s)
- Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Hongbin Gao
- Guangdong Laboratory Animals Monitoring Institute, Key Laboratory of Guangdong Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Yu Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Wenli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiujuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xinhua Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
21
|
Qin Y, Zhu Y, Luo F, Chen C, Chen X, Wu M. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification. Cell Death Dis 2017; 8:e2920. [PMID: 28703800 PMCID: PMC5550862 DOI: 10.1038/cddis.2017.315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The most common complication after cataract surgery is postoperative capsular opacification, which includes anterior capsular opacification (ACO) and posterior capsular opacification (PCO). Increased adhesion of lens epithelial cells (LECs) to the intraocular lens material surface promotes ACO formation, whereas proliferation and migration of LECs to the posterior capsule lead to the development of PCO. Cell adhesion is mainly mediated by the binding of integrin to extracellular matrix proteins, while cell proliferation and migration are regulated by fibroblast growth factor (FGF). Syndecan-4 (SDC-4) is a co-receptor for both integrin and FGF signaling pathways. Therefore, SDC-4 may be an ideal therapeutic target for the prevention and treatment of postoperative capsular opacification. However, how SDC-4 contributes to FGF-mediated proliferation, migration, and integrin-mediated adhesion of LECs is unclear. Here, we found that downregulation of SDC-4 inhibited FGF signaling through the blockade of ERK1/2 and PI3K/Akt/mTOR activation, thus suppressing cell proliferation and migration. In addition, downregulation of SDC-4 suppressed integrin-mediated cell adhesion through inhibiting focal adhesion kinase (FAK) phosphorylation. Moreover, SDC-4 knockout mice exhibited normal lens morphology, but had significantly reduced capsular opacification after injury. Finally, SDC-4 expression level was increased in the anterior capsule LECs of age-related cataract patients. Taken together, we for the first time characterized the key regulatory role of SDC-4 in FGF and integrin signaling in human LECs, and provided the basis for future pharmacological interventions of capsular opacification.
Collapse
Affiliation(s)
- Yingyan Qin
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi Zhu
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Furong Luo
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chuan Chen
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaoyun Chen
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mingxing Wu
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
22
|
Tang F, Chen C, Zhu Y, Zuo C, Zhong Y, Wang N, Zhou L, Zou Y, Liang D. Comparison between flipped classroom and lecture-based classroom in ophthalmology clerkship. MEDICAL EDUCATION ONLINE 2017; 22:1395679. [PMID: 29096591 PMCID: PMC5678346 DOI: 10.1080/10872981.2017.1395679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/17/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND In recent years, the flipped classroom method of teaching has received much attention in health sciences education. However, the application of flipped classrooms in ophthalmology education has not been well investigated. OBJECTIVE The goal of this study was to investigate the effectiveness and acceptability of the flipped classroom approach to teaching ophthalmology at the clerkship level. DESIGN Ninety-five fourth year medical students in an ophthalmology clerkship were randomly divided into two groups. An ocular trauma module was chosen for the content of this study. One group (FG (flipped group), n = 48) participated in flipped classroom instruction and was asked to watch a recorded lecture video and to read study materials before a face-to-face class meeting. They used the in-class time for discussion. The other group (TG (traditional group), n = 47) was assigned to traditional lecture-based instruction. These students attended a didactic lecture and completed assigned homework after the lecture. Feedback questionnaires were collected to compare students' perspectives on the teaching approach they experienced and to evaluate students' self-perceived competence and interest in ocular trauma. Pre- and post-tests were performed to assess student learning of the course materials. RESULTS More students in the FG agreed that the classroom helped to promote their learning motivation, improve their understanding of the course materials, and enhance their communication skill and clinical thinking. However, students in the FG did not show a preference for this method of teaching, and also reported more burden and pressure than those from the TG. Students from the FG performed better on the post test over the ocular trauma-related questions when compared to those from the TG. CONCLUSIONS The flipped classroom approach shows promise in ophthalmology clerkship teaching. However, it has some drawbacks. Further evaluation and modifications are required before it can be widely accepted and implemented. Abbreviations FG: Flipped classroom group; TG: Traditional lecture-based classroom group; TBL: Team-based learning; PBL: Problem-based learning; ZOC: Zhongshan Ophthalmic Center.
Collapse
Affiliation(s)
- Fen Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yimin Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Nan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lijun Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuxian Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|