1
|
Gao Y, Zhao X, Liu X, Liu C, Zhang K, Zhang X, Zhou J, Dong G, Wang Y, Huang J, Yang Z, Zhou Y, Yao Y. OsRAV1 Regulates Seed Vigor and Salt Tolerance During Germination in Rice. RICE (NEW YORK, N.Y.) 2024; 17:56. [PMID: 39218839 PMCID: PMC11366736 DOI: 10.1186/s12284-024-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Seed vigor is a complex trait encompassing seed germination, seedling emergence, growth, seed longevity, and stress tolerance, all are crucial for direct seeding in rice. Here, we report that the AP2/ERF transcription factor OsRAV1 (RELATED TO ABI3 AND VP1) positively regulates seed germination, vigor, and salt tolerance. Additionally, OsRAV1 was differently expressed in embryo and endosperm, with the OsRAV1 localized in the nucleus. Transcriptomic analysis revealed that OsRAV1 modulates seed vigor through plant hormone signal transduction and phenylpropanoid biosynthesis during germination. Haplotype analysis showed that rice varieties carrying Hap3 displayed enhanced salt tolerance during seed germination. These findings suggest that OsRAV1 is a potential target in breeding rice varieties with high seed vigor suitable for direct seeding cultivation.
Collapse
Affiliation(s)
- Yingbo Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Chang Liu
- Guangling College, Yangzhou University, Yangzhou, 225000, China
| | - Kunming Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxiang Zhang
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225007, China
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Jianye Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
3
|
Ji J, Lin S, Xin X, Li Y, He J, Xu X, Zhao Y, Su G, Lu X, Yin G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2284. [PMID: 37375909 DOI: 10.3390/plants12122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and wild-type (WT) rice seed during artificial aging treatment. Weight gain and time for the seed germination percentage decreased to 50% (P50) in OsAOX1a-RNAi rice seed, indicating possible impairment in seed development and storability. Compared to WT seeds at 100%, 90%, 80%, and 70% germination, the NADH- and succinate-dependent O2 consumption, the activity of mitochondrial malate dehydrogenase, and ATP contents all decreased in the OsAOX1a-RNAi seeds, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaker than in the WT seeds. In addition, the reduction in the abundance of Complex I subunits showed that the capacity of the mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seeds at the critical node of seed viability. The results indicate that ATP production was impaired in the OsAOX1a-RNAi seeds during aging. Therefore, we conclude that mitochondrial metabolism and alternative pathways were severely inhibited in the OsAOX1a-RNAi seeds at critical node of viability, which could accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability needs to be further analyzed. This finding might provide the basis for developing monitoring and warning indicators when seed viability declines to the critical node during storage.
Collapse
Affiliation(s)
- Jing Ji
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangshuang Lin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Xu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunxia Zhao
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gefei Su
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Choudhary P, Pramitha L, Aggarwal PR, Rana S, Vetriventhan M, Muthamilarasan M. Biotechnological interventions for improving the seed longevity in cereal crops: progress and prospects. Crit Rev Biotechnol 2023; 43:309-325. [PMID: 35443842 DOI: 10.1080/07388551.2022.2027863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seed longevity is a measure of the viability of seeds during long-term storage and is crucial for germplasm conservation and crop improvement programs. Also, longevity is an important trait for ensuring food and nutritional security. Thus, a better understanding of various factors regulating seed longevity is requisite to improve this trait and to minimize the genetic drift during the regeneration of germplasm. In particular, seed deterioration of cereal crops during storage adversely affects agricultural productivity and food security. The irreversible process of seed deterioration involves a complex interplay between different genes and regulatory pathways leading to: loss of DNA integrity, membrane damage, inactivation of storage enzymes and mitochondrial dysfunction. Identifying the genetic determinants of seed longevity and manipulating them using biotechnological tools hold the key to ensuring prolonged seed storage. Genetics and genomics approaches had identified several genomic regions regulating the longevity trait in major cereals such as: rice, wheat, maize and barley. However, very few studies are available in other Poaceae members, including millets. Deploying omics tools, including genomics, proteomics, metabolomics, and phenomics, and integrating the datasets will pinpoint the precise molecular determinants affecting the survivability of seeds. Given this, the present review enumerates the genetic factors regulating longevity and demonstrates the importance of integrated omics strategies to dissect the molecular machinery underlying seed deterioration. Further, the review provides a roadmap for deploying biotechnological approaches to manipulate the genes and genomic regions to develop improved cultivars with prolonged storage potential.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | |
Collapse
|
5
|
Zhou L, Lu L, Chen C, Zhou T, Wu Q, Wen F, Chen J, Pritchard HW, Peng C, Pei J, Yan J. Comparative changes in sugars and lipids show evidence of a critical node for regeneration in safflower seeds during aging. FRONTIERS IN PLANT SCIENCE 2022; 13:1020478. [PMID: 36388552 PMCID: PMC9661361 DOI: 10.3389/fpls.2022.1020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
During seed aging, there is a critical node (CN) where the population viability drops sharply. Exploring the specific locations of the CN in different species of plants is crucial for understanding the biological storage properties of seeds and refining seed life span management. Safflower, a bulk oil crop that relies on seeds for propagation, has a short seed life. However, at present, its biological characteristics during storage are not clear, especially the changes in metabolic capability and cell structures. Such knowledge is needed to improve the management of safflower seed life span and effective preservation in gene banks. Here, the seed survival curve of oilseed safflower under the controlled deterioration conditions of 60% relative humidity and 50°C was detected. The seed population showed an inverted S shape for the fall in germination. In the first 12 days of aging, germination remained above 86%. Prior to the CN at approximately day 10 (C10), when viability was in the "plateau" interval, seed vigor reduced at the same imbibition time point. Further analysis of the changes in sugar concentration found that the sucrose content decreased slowly with aging and the content of raffinose and two monosaccharides decreased abruptly at C10. Differentially metabolized lipids, namely lysophospholipids [lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamines (LPE)] and PMeOH, increased at day 3 of aging (C3). Fatty acid content increased by C6, and the content of phospholipids [phosphatidylcholines (PC), phosphatidylethanolamines (PE), and phosphatidylinositols (PI) and glycolipids [digalactosyl diacylglycerol, monogalactosyl diacylglycerol, and sulphoquinovosyl diglycerides (SQDG)] decreased significantly from C10. In addition, the activities of raffinose hydrolase alpha-galactosidase and the glyoxylate key enzyme isocitrate lyase decreased with seed aging. Confocal microscopy and transmission electron microscopy revealed shrinkage of the seed plasma membrane at C10 and the later fragmentation. Seedling phenotypic indicators and 2,3,5-triphenyltetrazolium chloride activity assays also verified that there were significant changes in seeds quality at the CN. In summary, the time point C10 is a CN during seed population aging. Before the CN, sugar and lipid metabolism, especially fatty acid metabolism into sugar, can make up for the energy consumed by aging. After this point, the seeds were irreversibly damaged, and their viability was greatly and rapidly reduced as the cell structure became increasingly destroyed.
Collapse
Affiliation(s)
- Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hugh W. Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst, Ardingly, United Kingdom
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming Yunnan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Granado-Rodríguez S, Maestro-Gaitán I, Matías J, Rodríguez MJ, Calvo P, Hernández LE, Bolaños L, Reguera M. Changes in nutritional quality-related traits of quinoa seeds under different storage conditions. Front Nutr 2022; 9:995250. [PMID: 36324620 PMCID: PMC9620721 DOI: 10.3389/fnut.2022.995250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Within the context of climate change and its impact on global food security, seed storage has become key, as it ensures long-term food and next-season seed preservation. Aiming at evaluating quality-related changes in quinoa seeds over storage time, different storage temperatures (–20, 4, 12, 25, and 37°C) and humidity conditions (use of silica gel or not) were studied and different seed nutritional parameters were evaluated at different points during a year of storage. Also, to determine if these variations could be conditioned by the genotype used, two quinoa cultivars were compared. The results proved that quinoa seed quality is highly dependent on the storage temperature but is not consistently affected by the use of silica gel if the seed moisture content (SMC) is kept between 5 and 12%. Furthermore, quality can be maintained and even improved by keeping SMC lower than 12% and storage temperatures low (4°C). Under these conditions (at 4°C in hermetic packaging with or without silica gel), and after 12 months of storage, there was an increase in amino acids like isoleucine, serine, arginine, glycine, and glutamic acid and in seed viability and germination. On the contrary, quinoa seeds stored at 37°C showed an accumulation of reactive oxygen species (ROS) which was related to a lower antioxidant capacity and a reduction in the contents of essential amino acids like isoleucine, lysine, histidine, and threonine, resulting in a delayed and reduced germination capacity, and, therefore, lower seed quality. Besides, quality-related differences appeared between cultivars highlighting differences linked to the genotype. Overall, this work demonstrates that optimal storage temperatures and SMC can preserve or even improve quinoa seed nutritional quality, which in turn can impact food safety and agriculture.
Collapse
Affiliation(s)
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Agrarian Research Institute “La Orden-Valdesequera” of Extremadura, Guadajira, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | - Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Maria Reguera,
| |
Collapse
|
7
|
Li BB, Zhang SB, Lv YY, Wei S, Hu YS. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One 2022; 17:e0263553. [PMID: 35358205 PMCID: PMC8970375 DOI: 10.1371/journal.pone.0263553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
During the seed aging process, reactive oxygen species (ROS) can induce the carbonylation of proteins, which changes their functional properties and affects seed vigor. However, the impact and regulatory mechanisms of protein carbonylation on wheat seed vigor are still unclear. In this study, we investigated the changes in wheat seed vigor, carbonyl protein content, ROS content and embryo cell structure during an artificial aging process, and we analyzed the correlation between protein carbonylation and seed vigor. During the artificial wheat-seed aging process, the activity levels of antioxidant enzymes and the contents of non-enzyme antioxidants decreased, leading to the accumulation of ROS and an increase in the carbonyl protein content, which ultimately led to a decrease in seed vigor, and there was a significant negative correlation between seed vigor and carbonyl protein content. Moreover, transmission electron microscopy showed that the contents of protein bodies in the embryo cells decreased remarkably. We postulate that during the wheat seed aging process, an imbalance in ROS production and elimination in embryo cells leads to the carbonylation of proteins, which plays a negative role in wheat seed vigor.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- * E-mail:
| |
Collapse
|
8
|
Li W, Niu Y, Zheng Y, Wang Z. Advances in the Understanding of Reactive Oxygen Species-Dependent Regulation on Seed Dormancy, Germination, and Deterioration in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:826809. [PMID: 35283906 PMCID: PMC8905223 DOI: 10.3389/fpls.2022.826809] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 05/31/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in the regulation of seed dormancy, germination, and deterioration in plants. The low level of ROS as signaling particles promotes dormancy release and triggers seed germination. Excessive ROS accumulation causes seed deterioration during seed storage. Maintaining ROS homeostasis plays a central role in the regulation of seed dormancy, germination, and deterioration in crops. This study highlights the current advances in the regulation of ROS homeostasis in dry and hydrated seeds of crops. The research progress in the crosstalk between ROS and hormones involved in the regulation of seed dormancy and germination in crops is mainly summarized. The current understandings of ROS-induced seed deterioration are reviewed. These understandings of ROS-dependent regulation on seed dormancy, germination, and deterioration contribute to the improvement of seed quality of crops in the future.
Collapse
Affiliation(s)
- Wenjun Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yongzhi Niu
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yuxi, China
| | - Yunye Zheng
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yuxi, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Moreau C, Issakidis-Bourguet E. A Simplified Method to Assay Protein Carbonylation by Spectrophotometry. Methods Mol Biol 2022; 2526:135-141. [PMID: 35657517 DOI: 10.1007/978-1-0716-2469-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein carbonylation is an irreversible oxidation process leading to a loss of function of carbonylated proteins. Carbonylation is largely considered as a hallmark of oxidative stress, the level of protein carbonylation being an indicator of the oxidative cellular status. The method described herein represents an adaptation to the commonly used 2,4-dinitrophenylhydrazine (DNPH)-based spectrophotometric method to monitor protein carbonylation level. The classical final sample precipitation was replaced by a gel filtration step avoiding the tedious and repetitive washings of the protein pellet to remove free DNPH while allowing optimal protein recovery.This improved protocol here implemented to assay protein carbonylation in plant leaves can potentially be used with any cellular extract.
Collapse
Affiliation(s)
- Corentin Moreau
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | | |
Collapse
|
10
|
Chen X, Börner A, Xin X, Nagel M, He J, Li J, Li N, Lu X, Yin G. Comparative Proteomics at the Critical Node of Vigor Loss in Wheat Seeds Differing in Storability. FRONTIERS IN PLANT SCIENCE 2021; 12:707184. [PMID: 34527008 PMCID: PMC8435634 DOI: 10.3389/fpls.2021.707184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The critical node (CN, 85% germination) of seed viability is an important threshold for seed regeneration decisions after long-term conservation. Dependent on the germplasm, the storage period until CN is reached varies and information on the divergence of the proteomic profiles is limited. Therefore, the study aims to identify key proteins and mechanisms relevant for a long plateau phase and a late CN during artificial seed aging of wheat. Seeds of the storage-tolerant genotype (ST) TRI 23248, and the storage-sensitive genotype (SS) TRI 10230 were exposed to artificial ageing (AA) and extracted embryos of imbibed seeds were analyzed using an iTRAQ-based proteomic technique. ST and SS required AA for 24 and 18 days to reach the CN, respectively. Fifty-seven and 165 differentially abundant proteins (DAPs) were observed in the control and aged groups, respectively. Interestingly, a higher activity in metabolic processes, protein synthesis, transcription, cell growth/division, and signal transduction were already found in imbibed embryos of control ST seeds. After AA, 132 and 64 DAPs were accumulated in imbibed embryos of both aged ST and SS seeds, respectively, which were mainly associated with cell defense, rescue, and metabolism. Moreover, 78 DAPs of ST appeared before CN and were mainly enriched in biological pathways related to the maintenance of redox and carbon homeostasis and they presented a stronger protein translation ability. In contrast, in SS, only 3 DAPs appeared before CN and were enriched only in the structural constituents of the cytoskeleton. In conclusion, a longer span of plateau phase might be obtained in seeds when proteins indicate an intense stress response before CN and include the effective maintenance of cellular homeostasis, and avoidance of excess accumulation of cytotoxic compounds. Although key proteins, inherent factors and the precise regulatory mechanisms need to be further investigated, the found proteins may also have functional potential roles during long-term seed conservation.
Collapse
Affiliation(s)
- Xiuling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Andreas Börner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manuela Nagel
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jisheng Li
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Na Li
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Tola AJ, Jaballi A, Missihoun TD. Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1451. [PMID: 34371653 PMCID: PMC8309296 DOI: 10.3390/plants10071451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Collapse
Affiliation(s)
| | | | - Tagnon D. Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada; (A.J.T.); (A.J.)
| |
Collapse
|
12
|
Boucelha L, Abrous-Belbachir O, Djebbar R. Is protein carbonylation a biomarker of seed priming and ageing? FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:611-623. [PMID: 33617758 DOI: 10.1071/fp21001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
For a long time, it has been known that seed priming allows the improvement of plant production and tolerance to abiotic stresses. However, a negative effect on the longevity of the seeds thus primed was observed; these mechanisms are still poorly understood. In addition, it has been shown by several authors that seed ageing is associated with the oxidation and particularly with carbonylation of protein. Our work consisted in studying the AOPP and carbonyl protein at the different parts of the embryo from freshly primed seeds and from those that have been primed for 4 years (after storage). We subjected Vigna unguiculata (L.) Walp. seeds to a single or double hydropriming. Our study showed that hydropriming, and more particularly a double cycle of hydration-dehydration, makes it possible to attenuate the oxidation of the protein while it favours a certain threshold of carbonylation in the freshly dehydrated seeds in order to better trigger the germination process. On the other hand, after a storage period of 4 years, these dehydrated seeds are characterised by a strong accumulation of the products of oxidation and especially carbonylated protein, compared with the untreated seeds, which could explain the decrease of the longevity of these seeds.
Collapse
Affiliation(s)
- Lilya Boucelha
- University of Science and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, BP 32 El Alia, 16111 Bab Ezzouar Algiers (Algeria)
| | - Ouzna Abrous-Belbachir
- University of Science and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, BP 32 El Alia, 16111 Bab Ezzouar Algiers (Algeria)
| | - Réda Djebbar
- University of Science and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, BP 32 El Alia, 16111 Bab Ezzouar Algiers (Algeria); and Corresponding author.
| |
Collapse
|
13
|
Timing for antioxidant-priming against rice seed ageing: optimal only in non-resistant stage. Sci Rep 2020; 10:13294. [PMID: 32764704 PMCID: PMC7411016 DOI: 10.1038/s41598-020-70189-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
Seed deterioration due to ageing strongly affects both germplasm preservation and agricultural production. Decelerating seed deterioration and boosting seed viability become increasingly urgent. The loss of seed viability is inevitable even under cold storage. For species with short-lived seed or for regions with poor preservation infrastructure where cold storage is not readily available, seed enhancement is more reliable to increase seed viability and longevity. Antioxidant priming as a way of seed enhancement usually improves seed germination. As for post-priming survival, however, significant uncertainty exists. The controversy lies particularly on seeds of high germination percentage (GP > 95%) whose viability is hardly improvable and the benefits of priming depend on prolonging seed longevity. Therefore, this study timed antioxidant priming to prolong the longevity of high-viability seeds under artificially accelerated ageing (AAA). Rice (Nipponbare) seeds (GP > 97%) under room-temperature-storage (RTS) for 6 months. were resistant to AAA first with little viability loss for a certain period, the resistant stage. This resistance gradually vanished without GP change, during a prolonged RTS period which was named the vulnerable stage. According to the results, although antioxidant priming severely curtailed the resistant stage for seeds with a long plateau in the survival curve, it decelerated viability loss for seeds in the vulnerable stage. In complement to seed storage, priming potentially retains high seed GP which would decrease without seed enhancement. To maximize the benefits of priming for high-GP seeds, two time points are advised as the start of a time window for priming: (1) just at the end of the resistant stage without notable viability loss, which is hard to grasp by GP monitoring; (2) slight but identifiable GP decline.
Collapse
|
14
|
Cheng H, Ma X, Jia S, Li M, Mao P. Transcriptomic analysis reveals the changes of energy production and AsA-GSH cycle in oat embryos during seed ageing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:40-52. [PMID: 32474385 DOI: 10.1016/j.plaphy.2020.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Deterioration during seed storage generally causes seed vigour declining. However, the mechanism of deterioration occurred still not clear. Seeds and embryos of oat (Avena sativa L.) were selected to analyze the relation of physiological and metabolic reactions with DEGs by using RNA-seq. Oat seed vigour declined during seeds aged 0 day (CK), 16 days (CD16) and 32 days (CD32). The changes of MDA and H2O2 contents, antioxidant enzymes activities of APX, DHAR, MDHAR and GR related with AsA-GSH cycle in embryos illustrated that seed vigour declined to the minimum at CD32. Transcriptomic analysis showed a total of 11335 and 8274 DEGs were identified at CD16 and CD32 compared with CK respectively, of which 4070 were overlapped. When seed vigour declined to the moderate level (CD16), the accumulation of H2O2 caused by the inhibition of complex I in ETC could be alleviated with AsA-GSH cycle. RNA-seq and qRT-PCR results both showed alternative oxidase in alternate respiratory pathway was upregulated which would maintain seed respiration. However, as seed vigour was at the lowest level (CD32), blocked ETC caused by down-regulation of complex III, including Ubiquinol-cytochrome C reductase complex 14kD subunit and Ubiquinol-cytochrome C reductase, UQCRX/QCR9 like, were more seriously and H2O2 scavenging was limited by the inactive AsA-GSH cycle. It could be suggested that the function of AsA-GSH would play a key role for regulating the physiological responses of ETC in embryos during seed ageing. These results would provide an insight into embryo for the transcriptomic information during oat seed ageing.
Collapse
Affiliation(s)
- Hang Cheng
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiqing Ma
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shangang Jia
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Manli Li
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Peisheng Mao
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Quercus ilex Species Based on Protein Signatures as Revealed by 2-DE Coupled to MALDI-TOF/TOF Proteomics Strategy. Int J Mol Sci 2020; 21:ijms21144870. [PMID: 32660160 PMCID: PMC7402289 DOI: 10.3390/ijms21144870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Unlike orthodox species, seed recalcitrance is poorly understood, especially at the molecular level. In this regard, seed maturation and germination were studied in the non-orthodox Quercus ilex by using a proteomics strategy based on two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization/time of flight (2-DE-MALDI-TOF).Cotyledons and embryo/radicle were sampled at different developmental stages, including early (M1–M3), middle (M4–M7), and late (M8–M9) seed maturation, and early (G1–G3) and late (G4–G5) germination. Samples corresponding to non-germinating, inviable, seeds were also included. Protein extracts were subjected to 2-dimensional gel electrophoresis (2-DE) and changes in the protein profiles were analyzed. Identified variable proteins were grouped according to their function, being the energy, carbohydrate, lipid, and amino acid metabolisms, together with protein fate, redox homeostasis, and response to stress are the most represented groups. Beyond the visual aspect, morphometry, weight, and water content, each stage had a specific protein signature. Clear tendencies for the different protein groups throughout the maturation and germination stages were observed for, respectively, cotyledon and the embryo axis. Proteins related to metabolism, translation, legumins, proteases, proteasome, and those stress related were less abundant in non-germinating seeds, it related to the loss of viability. Cotyledons were enriched with reserve proteins and protein-degrading enzymes, while the embryo axis was enriched with proteins of cell defense and rescue, including heat-shock proteins (HSPs) and antioxidants. The peaks of enzyme proteins occurred at the middle stages (M6–M7) in cotyledons and at late ones (M8–M9) in the embryo axis. Unlike orthodox seeds, proteins associated with glycolysis, tricarboxylic acid cycle, carbohydrate, amino acid and lipid metabolism are present at high levels in the mature seed and were maintained throughout the germination stages. The lack of desiccation tolerance in Q. ilex seeds may be associated with the repression of some genes, late embryogenesis abundant proteins being one of the candidates.
Collapse
|
16
|
Yan H, Jia S, Mao P. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-oxidation, Protein Translation, and Antioxidant Metabolism in Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2020; 21:ijms21051898. [PMID: 32164355 PMCID: PMC7084597 DOI: 10.3390/ijms21051898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although melatonin has been reported to play an important role in regulating metabolic events under adverse stresses, its underlying mechanisms on germination in aged seeds remain unclear. This study was conducted to investigate the effect of melatonin priming (MP) on embryos of aged oat seeds in relation to germination, ultrastructural changes, antioxidant responses, and protein profiles. Proteomic analysis revealed, in total, 402 differentially expressed proteins (DEPs) in normal, aged, and aged + MP embryos. The downregulated DEPs in aged embryos were enriched in sucrose metabolism, glycolysis, β-oxidation of lipid, and protein synthesis. MP (200 μM) turned four downregulated DEPs into upregulated DEPs, among which, especially 3-ketoacyl-CoA thiolase-like protein (KATLP) involved in the β-oxidation pathway played a key role in maintaining TCA cycle stability and providing more energy for protein translation. Furthermore, it was found that MP enhanced antioxidant capacity in the ascorbate-glutathione (AsA-GSH) system, declined reactive oxygen species (ROS), and improved cell ultrastructure. These results indicated that the impaired germination and seedling growth of aged seeds could be rescued to a certain level by melatonin, predominantly depending on β-oxidation, protein translation, and antioxidant protection of AsA-GSH. This work reveals new insights into melatonin-mediated mechanisms from protein profiles that occur in embryos of oat seeds processed by both aging and priming.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Shangang Jia
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
17
|
Gianella M, Balestrazzi A, Pagano A, Müller JV, Kyratzis AC, Kikodze D, Canella M, Mondoni A, Rossi G, Guzzon F. Heteromorphic seeds of wheat wild relatives show germination niche differentiation. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:191-202. [PMID: 31639249 DOI: 10.1111/plb.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/12/2019] [Indexed: 05/12/2023]
Abstract
Crop wild relatives are fundamental genetic resources for crop improvement. Wheat wild relatives often produce heteromorphic seeds that differ in morphological and physiological traits. Several Aegilops and Triticum species possess, within the same spikelet, a dimorphic seed pair, with one seed being larger than the other. A comprehensive analysis is needed to understand which traits are involved in seed dimorphism and if these aspects of variation in dimorphic pairs are functionally related. To this end, dispersal units of Triticum urartu and five Aegilops species were X-rayed and the different seed morphs weighed. Germination tests were carried out on seeds, both dehulled and left in their dispersal units. Controlled ageing tests were performed to detect differences in seed longevity among seed morphs, and the antioxidant profile was assessed in terms of antioxidant compounds equipment and expression of selected antioxidant genes. We used PCA to group seed morphs sharing similar patterns of germination traits, longevity estimates and antioxidant profile. Different seed morphs differed significantly in terms of mass, final germination, germination timing, longevity estimates and antioxidant profile in most of the tested species. Small seeds germinated slower, had lower germination when left in their dispersal units, a higher antioxidant potential and were longer-lived than large seeds. The antioxidant gene expression varied between morphs, with different patterns across species but not clearly reflecting the phenotypic observations. The results highlight different trait trade-offs in dimorphic seeds of Aegilops and T. urartu, affecting their germination phenology and longevity, thereby resulting in recruitment niche differentiation.
Collapse
Affiliation(s)
- M Gianella
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - J V Müller
- Millennium Seed Bank, Conservation Science Department, Royal Botanic Gardens Kew, Wakehurst Place, UK
| | - A C Kyratzis
- Vegetable Crops Sector, Agricultural Research Institute of Cyprus, Nicosia, Cyprus
| | - D Kikodze
- Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - M Canella
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - G Rossi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - F Guzzon
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado de Mexico, Mexico
| |
Collapse
|
18
|
Méndez AAE, Pena LB, Curto LM, Fernández MM, Malchiodi EL, Garza-Aguilar SM, Vázquez-Ramos JM, Gallego SM. Oxidation of proline from the cyclin-binding motif in maize CDKA;1 results in lower affinity with its cyclin regulatory subunit. PHYTOCHEMISTRY 2020; 169:112165. [PMID: 31610323 DOI: 10.1016/j.phytochem.2019.112165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Cyclin dependent kinase A; 1 (CDKA; 1) is essential in G1/S transition of cell cycle and its oxidation has been implicated in cell cycle arrest during plant abiotic stress. In the present study, an evaluation at the molecular level was performed to find possible sites of protein oxidative modifications. In vivo studies demonstrated that carbonylation of maize CDKA,1 is associated with a decrease in complex formation with maize cyclin D (CycD). Control and in vitro oxidized recombinant CDKA; 1 were sequenced by mass spectrometry. Proline at the PSTAIRE cyclin-binding motif was identified as the most susceptible oxidation site by comparative analysis of the resulted peptides. The specific interaction between CDKA; 1 and CycD6; 1, measured by surface plasmon resonance (SPR), demonstrated that the affinity and the kinetic of the interaction depended on the reduced-oxidized state of the CDKA; 1. CDKA; 1 protein oxidative modification would be in part responsible for affecting cell cycle progression, and thus producing plant growth inhibition under oxidative stress.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Liliana B Pena
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Lucrecia M Curto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Marisa M Fernández
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Profesor Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Profesor Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Sara M Garza-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Jorge M Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Susana M Gallego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Li L, Wang F, Li X, Peng Y, Zhang H, Hey S, Wang G, Wang J, Gu R. Comparative analysis of the accelerated aged seed transcriptome profiles of two maize chromosome segment substitution lines. PLoS One 2019; 14:e0216977. [PMID: 31710606 PMCID: PMC6844465 DOI: 10.1371/journal.pone.0216977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Seed longevity is one of the most essential characteristics of seed quality. Two chromosome segment substitution lines, I178 and X178, which show significant differences in seed longevity, were subjected to transcriptome sequencing before and after five days of accelerated aging (AA) treatments. Compared to the non-aging treatment, 286 and 220 differentially expressed genes (DEGs) were identified after 5 days of aging treatment in I178 and X178, respectively. Of these DEGs, 98 were detected in both I178 and X178, which were enriched in Gene Ontology (GO) terms of the cellular component of the nuclear part, intracellular part, organelle and membrane. Only 86 commonly downregulated genes were enriched in GO terms of the carbohydrate derivative catabolic process. Additionally, transcriptome analysis of alternative splicing (AS) events in I178 and X178 showed that 63.6% of transcript isoforms occurred AS in all samples, and only 1.6% of transcript isoforms contained 169 genes that exhibited aging-specific AS arising after aging treatment. Combined with the reported QTL mapping result, 7 DEGs exhibited AS after aging treatment, and 13 DEGs in mapping interval were potential candidates that were directly or indirectly related to seed longevity.
Collapse
Affiliation(s)
- Li Li
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Wang
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuhui Li
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yixuan Peng
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (JW); (RG)
| | - Riliang Gu
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (JW); (RG)
| |
Collapse
|
20
|
Chen B, Yin G, Whelan J, Zhang Z, Xin X, He J, Chen X, Zhang J, Zhou Y, Lu X. Composition of Mitochondrial Complex I during the Critical Node of Seed Aging in Oryza sativa. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:7-14. [PMID: 30840921 DOI: 10.1016/j.jplph.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 05/10/2023]
Abstract
Previous studies have documented mitochondrial dysfunction during the critical node (CN) of rice (Oryza sativa) seed aging, including a decrease in the capacity of NADH dependent O2 consumption. This raises the hypothesis that changes in the activity of NADH:ubiquinone oxidoreductase (complex I) may play a role in seed aging. The composition and activity of complex I was investigated at the CN of aged rice seeds. Using BN-PAGE and SWATH-MS 52 complex I subunits were identified, nineteen for the first time to be experimentally detected in rice. The subunits of the matrix arm (N and Q modules) were reduced in abundance at the CN, in accordance with a reduction in the capacity to oxidise NADH, reducing substrate oxidation and increase ROS accumulation. In contrast, subunits in the P module increased in abundance that contains many mitochondrial encoded subunits. It is proposed that the changes in complex I abundance subunits may indicate a premature re-activation of mitochondrial biogenesis, as evidenced by the increase in mitochondrial encoded subunits. This premature activation of mitochondrial biogenesis may under-pin the decreased viability of aged seeds, as mitochondrial biogenesis is a crucial event in germination to drive growth before autotrophic growth of the seedling is established.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Zesen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Mamontova T, Lukasheva E, Mavropolo-Stolyarenko G, Proksch C, Bilova T, Kim A, Babakov V, Grishina T, Hoehenwarter W, Medvedev S, Smolikova G, Frolov A. Proteome Map of Pea ( Pisum sativum L.) Embryos Containing Different Amounts of Residual Chlorophylls. Int J Mol Sci 2018; 19:E4066. [PMID: 30558315 PMCID: PMC6320946 DOI: 10.3390/ijms19124066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.
Collapse
Affiliation(s)
- Tatiana Mamontova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | | | - Carsten Proksch
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology, and Human Ecology, Federal Medicobiological Agency, 188663 Kapitolovo, Russia.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| |
Collapse
|
22
|
Wang W, He A, Peng S, Huang J, Cui K, Nie L. The Effect of Storage Condition and Duration on the Deterioration of Primed Rice Seeds. FRONTIERS IN PLANT SCIENCE 2018; 9:172. [PMID: 29487612 PMCID: PMC5816925 DOI: 10.3389/fpls.2018.00172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 05/24/2023]
Abstract
Seed priming is a successful practice to improve crop establishment under adverse environment. However, reduced longevity of primed rice (Oryza sativa L.) seeds during storage limited the adoption of this technique. Present study investigated the effect of temperature, relative air humidity (RH) and oxygen on the longevity of primed rice seeds in a range of 60 days storage. In addition, the biochemical and morphological mechanisms associated with deterioration of primed seeds during storage were explored. Three types of priming treated rice seeds and one non-primed control were stored under (1) low temperature-vacuum (LT-V), (2) room temperature-vacuum (RT-V), (3) room temperature-aerobic-low RH (RT-A-LH) and (4) room temperature-aerobic- high RH (RT-A-HH) for 0, 15, 30, 45, and 60 days. The results showed that storage of seeds under different conditions for 15-60 days did not influence the longevity of non-primed rice seeds. Meanwhile, the viability of primed rice seeds did not reduce when stored under LT-V, RT-V, and RT-A-LH, but was significantly reduced under RT-A-HH. Under vacuum condition, the increases of storage temperature (30°C) did not reduce the longevity of primed seeds. Likewise, the oxygen did not influence the longevity of primed rice seeds stored under low RH. Nevertheless, increase of RH significantly reduced the viability of primed seeds stored for 15-60 days. Reduced starch metabolism, the consumption of starch reserves in rice endosperms, the accumulation of malondialdehyde and the decreases of antioxidant enzyme activities might be associated with the deterioration of primed rice seeds during storage. In conclusion, storage of primed seeds under high RH condition beyond 15 days is deteriorative for germination and growth of rice. The primed rice seeds are recommended to store at vacuum or low RH or low temperature condition to ensure good crop establishment.
Collapse
Affiliation(s)
- Weiqin Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aibin He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaobing Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehui Cui
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixiao Nie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|