1
|
Jin W, Li L, He W, Wei Z. Application of Silica Nanoparticles Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant Rice Varieties under Saline Irrigation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2452. [PMID: 39273936 PMCID: PMC11397575 DOI: 10.3390/plants13172452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Salt stress significantly reduces rice yield and quality and is a global challenge, especially in arid and semi-arid regions with limited freshwater resources. The present study was therefore conducted to examine the potential of silica nanoparticles (SiO2 NPs) in mitigating the adverse effects of saline irrigation water in salt-tolerant rice. Two salt-tolerant rice varieties, i.e., Y liangyou 957 (YLY957) and Jingliangyou 534 (JLY534), were irrigated with 0.6% salt solution to simulate high-salt stress and two SiO2 NPs were applied, i.e., control (CK) and SiO2 NPs (15 kg hm-2). The results demonstrated that the application of SiO2 NPs increased, by 33.3% and 23.3%, the yield of YLY957 and JLY534, respectively, compared with CK, which was primarily attributed to an increase in the number of grains per panicle and the grain-filling rate. Furthermore, the application of SiO2 NPs resulted in a notable enhancement in the chlorophyll content, leaf area index, and dry matter accumulation, accompanied by a pronounced stimulation of root system growth and development. Additionally, the SiO2 NPs also improved the antioxidant enzyme activities, i.e., superoxide dismutase, peroxidase, and catalase activity and reduced the malondialdehyde content. The SiO2 NPs treatment effectively improved the processing quality, appearance quality, and taste quality of the rice. Furthermore, the SiO2 NPs resulted in improvements to the rapid viscosity analyzer (RVA) pasting profile, including an increase in peak viscosity and breakdown values and a reduction in setback viscosity. The application of SiO2 NPs also resulted in a reduction in crystallinity and pasting temperature owing to a reduction in the proportion of B2 + B3 amylopectin chains. Overall, the application of silica nanoparticles improved the quality of rice yield under high-salt stress.
Collapse
Affiliation(s)
- Wenyu Jin
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572024, China
| | - Lin Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572024, China
| | - Wenli He
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572024, China
| | - Zhongwei Wei
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572024, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
2
|
Thakral V, Sudhakaran S, Jadhav H, Mahakalkar B, Sehra A, Dhar H, Kumar S, Sonah H, Sharma TR, Deshmukh R. Unveiling silicon-mediated cadmium tolerance mechanisms in mungbean (Vigna radiata (L.) Wilczek): Integrative insights from gene expression, antioxidant responses, and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134671. [PMID: 38833953 DOI: 10.1016/j.jhazmat.2024.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Cadmium (Cd), one of the most phytotoxic heavy metals, is a major contributor to yield losses in several crops. Silicon (Si) is recognized for its vital role in mitigating Cd toxicity, however, the specific mechanisms governing this mitigation process are still not fully understood. In the present study, the effect of Si supplementation on mungbean (Vigna radiata (L.) Wilczek) plants grown under Cd stress was investigated to unveil the intricate pathways defining Si derived stress tolerance. Non-invasive leaf imaging technique revealed improved growth, biomass, and photosynthetic efficiency in Si supplemented mungbean plants under Cd stress. Further, physiological and biochemical analysis revealed Si mediated increase in activity of glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) enzymes involved in reactive oxygen species (ROS) metabolism leading to mitigation of cellular damage and oxidative stress. Untargeted metabolomic analysis using liquid chromatography coupled with mass spectrometry (LC-MS/MS) provided insights into Si mediated changes in metabolites and their respective pathways under Cd stress. Alteration in five different metabolic pathways with major changes in flavanols and flavonoids biosynthesis pathway which is essential for controlling plants antioxidant defense system and oxidative stress management were observed. The information reported here about the effects of Si on photosynthetic efficiency, antioxidant responses, and metabolic changes will be helpful in understanding the Si-mediated resistance to Cd stress in plants.
Collapse
Affiliation(s)
- Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India; National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Harish Jadhav
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Badal Mahakalkar
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Anupam Sehra
- Department of Zoology, Government College, Hisar, India
| | - Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| |
Collapse
|
3
|
Alharbi K, Alnusairi GSH, Alnusaire TS, Alghanem SMS, Alsudays IM, Alaklabi A, Soliman MH. Potassium silica nanostructure improved growth and nutrient uptake of sorghum plants subjected to drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1425834. [PMID: 39086913 PMCID: PMC11288930 DOI: 10.3389/fpls.2024.1425834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Introduction Recent advancements in nanotechnology present promising opportunities for enhancing crop resilience in adverse environmental conditions. Methods In this study, we conducted a factorial experiment to investigate the influence of potassium nanosilicate (PNS) on sorghum plants exposed to varying degrees of drought stress A randomized complete block design with three replications was employed to subject the sorghum plants to different drought conditions. The three levels of stress were designated as non-stress (NS at -0.03 MPa), moderate stress (MD at -0.6 MPa), and severe stress (SD at -1.2 MPa). The plants were administered PNS at concentrations of 0 mM (control), 3.6 mM Si, and 7.2 mM Si. Results and discussion As drought stress intensified, we observed significant reductions in multiple plant parameters, including height, fresh weight, dry weight, leaf number, stem diameter, cluster length, seed weight, and nutrient uptake, with the most pronounced effects observed under SD conditions. Interestingly, nitrogen (N) and potassium (K) levels exhibited an increase under drought stress and PNS application, peaking at MD, alongside Si concentrations. Notably, PNS application facilitated enhanced nutrient uptake, particularly evident in the significant increase in nitrogen concentration observed at 3.6 mM PNS. Furthermore, the application of PNS significantly enhanced the fresh weight and nutrient concentrations (notably K and Si) in sorghum seeds under drought stress, despite varying statistical significance for other nutrients. These findings shed light on the mechanisms through which PNS exerts beneficial effects on plant performance under drought stress. By elucidating the complex interactions between PNS application, drought stress, and plant physiology, this study contributes significantly to the development of sustainable agricultural practices aimed at bolstering crop resilience and productivity in water-limited environments.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | | | | | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, Bisha, Saudi Arabia
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, Saudi Arabia
| |
Collapse
|
4
|
Kandhol N, Rai P, Mishra V, Pandey S, Kumar S, Deshmukh R, Sharma S, Singh VP, Tripathi DK. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots. PLANTA 2024; 259:144. [PMID: 38709333 DOI: 10.1007/s00425-024-04364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/11/2024] [Indexed: 05/07/2024]
Abstract
MAIN CONCLUSION Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
5
|
Thakral V, Raturi G, Sudhakaran S, Mandlik R, Sharma Y, Shivaraj SM, Tripathi DK, Sonah H, Deshmukh R. Silicon, a quasi-essential element: Availability in soil, fertilizer regime, optimum dosage, and uptake in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108459. [PMID: 38484684 DOI: 10.1016/j.plaphy.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.
Collapse
Affiliation(s)
- Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - S M Shivaraj
- Department of Science, Alliance University, Bengaluru, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Uttar Pradesh, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India.
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India.
| |
Collapse
|
6
|
Klotz M, Schaller J, Engelbrecht BMJ. Silicon-based anti-herbivore defense in tropical tree seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1250868. [PMID: 37900768 PMCID: PMC10602810 DOI: 10.3389/fpls.2023.1250868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Silicon-based defenses deter insect herbivores in many cultivated and wild grass species. Furthermore, in some of these species, silicon (Si) uptake and defense can be induced by herbivory. Tropical trees also take up Si and leaf Si concentrations vary greatly across and within species. As herbivory is a major driver of seedling mortality and niche differentiation of tropical tree species, understanding anti-herbivore defenses is pivotal. Yet, whether silicon is a constitutive and inducible herbivory defense in tropical forest tree species remains unknown. We grew seedlings of eight tropical tree species in a full factorial experiment, including two levels of plant-available soil Si concentrations (-Si/+Si) and a simulated herbivory treatment (-H/+H). The simulated herbivory treatment was a combination of clipping and application of methyl jasmonate. We then carried out multiple-choice feeding trials, separately for each tree species, in which leaves of each treatment combination were offered to a generalist caterpillar (Spodoptera frugiperda). Leaf damage was assessed. Three species showed a significant decrease in leaf damage under high compared to low Si conditions (by up to 72%), consistent with our expectation of Si-based defenses acting in tropical tree species. In one species, leaf damage was increased by increasing soil Si and in four species, no effect of soil Si on leaf damage was observed. Opposite to our expectation of Si uptake and defense being inducible by herbivory damage, simulated herbivory increased leaf damage in two species. Furthermore, simulated herbivory reduced Si concentrations in one species. Our results showed that tropical tree seedlings can be better defended when growing in Si-rich compared to Si-poor soils, and that the effects of Si on plant defense vary strongly across species. Furthermore, Si-based defenses may not be inducible in tropical tree species. Overall, constitutive Si-based defense should be considered part of the vast array of anti-herbivore defenses of tropical tree species. Our finding that Si-based defenses are highly species-specific combined with the fact that herbivory is a major driver of mortality in tropical tree seedling, suggests that variation in soil Si concentrations may have pervasive consequences for regeneration and performance across tropical tree species.
Collapse
Affiliation(s)
- Marius Klotz
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Bettina M. J. Engelbrecht
- Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Smithsonian Tropical Research Institute (STRI), Balboa, Panama
| |
Collapse
|
7
|
Dutra AF, Leite MRL, Melo CCDF, Amaral DS, da Silva JLF, Prado RDM, Piccolo MDC, Miranda RDS, da Silva Júnior GB, Sousa TKDSA, Mendes LW, Araújo ASF, Zuffo AM, de Alcântara Neto F. Soil and foliar Si fertilization alters elemental stoichiometry and increases yield of sugarcane cultivars. Sci Rep 2023; 13:16040. [PMID: 37749306 PMCID: PMC10519947 DOI: 10.1038/s41598-023-43351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.
Collapse
Affiliation(s)
| | | | | | - Danilo Silva Amaral
- Postgraduate Program in Agronomy, São Paulo State University, Jaboticabal, 14884-900, Brazil
| | | | - Renato de Mello Prado
- Laboratory of Plant Nutrition, São Paulo State University, Jaboticabal, 14884-900, Brazil
| | - Marisa de Cássia Piccolo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| | - Rafael de Souza Miranda
- Plant Science Department, Federal University of Piauí, Teresina, 64049-550, Brazil
- Postgraduate Program in Agricultural Sciences, Federal University of Piauí, Bom Jesus, 64900-000, Brazil
| | - Gabriel Barbosa da Silva Júnior
- Plant Science Department, Federal University of Piauí, Teresina, 64049-550, Brazil
- Postgraduate Program in Agricultural Sciences, Federal University of Piauí, Bom Jesus, 64900-000, Brazil
| | | | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| | | | - Alan Mario Zuffo
- Department of Agronomy, State University of Maranhão, Balsas, MA, 65800-000, Brazil
| | | |
Collapse
|
8
|
Liu X, Tang X, Compson ZG, Huang D, Zou G, Luan F, Song Q, Fang X, Yang Q, Liu J. Silicon supply promotes differences in growth and C:N:P stoichiometry between bamboo and tree saplings. BMC PLANT BIOLOGY 2023; 23:443. [PMID: 37730551 PMCID: PMC10512617 DOI: 10.1186/s12870-023-04443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Si can be important for the growth, functioning, and stoichiometric regulation of nutrients for high-Si-accumulating bamboo. However, other trees do not actively take up dissolved silicic acid [Si(OH)4] from the soil, likely because they have fewer or no specific Si transporters in their roots. It is unclear what causes differential growth and C:N:P stoichiometry between bamboo and other trees across levels of Si supply. RESULTS Si supply increased the relative growth rate of height and basal diameter of bamboo saplings, likely by increasing its net photosynthetic rate and ratios of N:P. Moreover, a high concentration of Si supply decreased the ratio of C:Si in bamboo leaves due to a partial substitution of C with Si in organic compounds. We also found that there was a positive correlation between leaf Si concentration and its transpiration rate in tree saplings. CONCLUSIONS We demonstrated that Si supply can decrease the ratio of C:Si in bamboo leaves and increase the ratio of N:P without altering nutrient status or the N:P ratio of tree saplings. Our findings provide experimental data to assess the different responses between bamboo and other trees in terms of growth, photosynthesis, and C:N:P stoichiometry. These results have implications for assessing the growth and competition between high-Si-accumulating bamboo and other plants when Si availability is altered in ecosystems during bamboo expansion.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinghao Tang
- Fujian Academy of Forestry, Fuzhou, 350002, China
| | - Zacchaeus G Compson
- Department of Biological Sciences Advanced Environmental Research Institute, University of North Texas Denton, Denton, Texas, USA
| | - Dongmei Huang
- School of Humanities and Public Administration, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guiwu Zou
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fenggang Luan
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingni Song
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiong Fang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingpei Yang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
9
|
Kostic I, Nikolic N, Milanovic S, Milenkovic I, Pavlovic J, Paravinja A, Nikolic M. Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1265782. [PMID: 37705706 PMCID: PMC10495579 DOI: 10.3389/fpls.2023.1265782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.
Collapse
Affiliation(s)
- Igor Kostic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Slobodan Milanovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Ivan Milenkovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Jelena Pavlovic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ana Paravinja
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Costa MG, Prado RDM, Santos Sarah MM, Souza Júnior JP, de Souza AES. Silicon, by promoting a homeostatic balance of C:N:P and nutrient use efficiency, attenuates K deficiency, favoring sustainable bean cultivation. BMC PLANT BIOLOGY 2023; 23:213. [PMID: 37095435 PMCID: PMC10124036 DOI: 10.1186/s12870-023-04236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In many regions of the world, K is being depleted from soils due to agricultural intensification a lack of accessibility, and the high cost of K. Thus, there is an urgent need for a sustainable strategy for crops in this environment. Si is an option for mitigating stress due to nutritional deficiency. However, the underlying effects of Si in mitigating K deficiency C:N:P homeostasis still remains unknown for bean plants. This is a species of great worldwide importance. Thus, this study aims to evaluate whether i) K deficiency modifies the homeostatic balance of C, N and P, and, if so, ii) Si supply can reduce damage caused to nutritional stoichiometry, nutrient use efficiency, and production of dry mass in bean plants. RESULTS K deficiency caused a reduction in the stoichiometric ratios C:N, C:P, and P:Si in shoots and C:N, C:P, C:Si, N:Si, and P:Si in roots, resulting in a decrease in K content and use efficiency and reducing biomass production. The application of Si in K-deficient plants modified the ratios C:N, C:Si, N:P, N:Si, and P:Si in shoots and C:N, C:P, C:Si, N:Si, N:P, and P:Si in roots, increasing the K content and efficiency, reducing the loss of biomass. In bean plants with K sufficiency, Si also changed the stoichiometric ratios C:N, C:P, C:Si, N:P, N:Si, and P:Si in shoots and C:N, C:Si, N:Si, and P:Si in roots, increasing K content only in roots and the use efficiency of C and P in shoots and C, N, and P in roots, increasing the biomass production only in roots. CONCLUSION K deficiency causes damage to the C:N:P homeostatic balance, reducing the efficiency of nutrient use and biomass production. However, Si is a viable alternative to attenuate these nutritional damages, favoring bean growth. The future perspective is that the use of Si in agriculture in underdeveloped economies with restrictions on the use of K will constitute a sustainable strategy to increase food security.
Collapse
Affiliation(s)
- Milton G Costa
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil.
| | - Renato de M Prado
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Marcilene M Santos Sarah
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Jonas P Souza Júnior
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Antonia Erica S de Souza
- Faculty of Agricultural and Veterinarian Sciences. Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| |
Collapse
|
11
|
de Tombeur F, Raven JA, Toussaint A, Lambers H, Cooke J, Hartley SE, Johnson SN, Coq S, Katz O, Schaller J, Violle C. Why do plants silicify? Trends Ecol Evol 2023; 38:275-288. [PMID: 36428125 DOI: 10.1016/j.tree.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
Despite seminal papers that stress the significance of silicon (Si) in plant biology and ecology, most studies focus on manipulations of Si supply and mitigation of stresses. The ecological significance of Si varies with different levels of biological organization, and remains hard to capture. We show that the costs of Si accumulation are greater than is currently acknowledged, and discuss potential links between Si and fitness components (growth, survival, reproduction), environment, and ecosystem functioning. We suggest that Si is more important in trait-based ecology than is currently recognized. Si potentially plays a significant role in many aspects of plant ecology, but knowledge gaps prevent us from understanding its possible contribution to the success of some clades and the expansion of specific biomes.
Collapse
Affiliation(s)
- Félix de Tombeur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia.
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, UK; School of Biological Sciences, The University of Western Australia, Perth, Australia; Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Aurèle Toussaint
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Julia Cooke
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Sue E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Sylvain Coq
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Ofir Katz
- Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
12
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
13
|
Costa MG, de M Prado R, Sarah MMS, Palaretti LF, de C Piccolo M, Souza Júnior JP. New approaches to the effects of Si on sugarcane ratoon under irrigation in Quartzipsamments, Eutrophic Red Oxisol, and Dystrophic Red Oxisol. BMC PLANT BIOLOGY 2023; 23:51. [PMID: 36694112 PMCID: PMC9872329 DOI: 10.1186/s12870-023-04077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/19/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND C:N:P homeostasis in plants guarantees optimal levels of these nutrients in plant metabolism. H However, one of the causes to the effects of deficit irrigation is the loss of C:N:P homeostasis in leaves and stems that causes reduction in the growth of sugarcane. Being able to measure the impact of water deficit on C:N:P homeostasis in plants from the stoichiometric ratios of the concentrations of these nutrients in leaves and stems. This loss causes a decrease in nutritional efficiency, but can be mitigated with the use of silicon. Silicon favors the homeostasis of these nutrients and crop productivity. The magnitude of this benefit depends on the absorption of Si by the plant and Si availability in the soil, which varies with the type of soil used. Thus, this study aims to evaluate whether the application of Si via fertigation is efficient in increasing the absorption of Si and whether it is capable of modifying the homeostatic balance of C:N:P of the plant, causing an increase in nutritional efficiency and consequently in the production of biomass in leaves and stems of sugarcane ratoon cultivated with deficient and adequate irrigations in different tropical soils. RESULTS Water deficit caused biological losses in concentrations and accumulation of C, N, and P, and reduced the nutrient use efficiency and biomass production of sugarcane plants cultivated in three tropical soils due to disturbances in the stoichiometric homeostasis of C:N:P. The application of Si increased the concentration and accumulation of Si, C, N, and P and their use efficiency and reduced the biological damage caused by water deficit due to the modification of homeostatic balance of C:N:P by ensuring sustainability of the production of sugarcane biomass in tropical soils. However, the intensity of attenuation of such deleterious effects stood out in plants cultivated in Eutrophic Red Oxisols. Si contributed biologically by improving the performance of sugarcane ratoon with an adequate irrigation due to the optimization of stoichiometric ratios of C:N:P; increased the accumulation and the use efficiency of C, N, and P, and promoted production gains in biomass of sugarcane in three tropical soils. CONCLUSION Our study shows that fertigation with Si can mitigate the deleterious effects of deficient irrigation or potentiate the beneficial effects using an adequate irrigation system due to the induction of a new stoichiometric homeostasis of C:N:P, which in turn improves the nutritional efficiency of sugarcane cultivated in tropical soils.
Collapse
Affiliation(s)
- Milton G Costa
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil.
| | - Renato de M Prado
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Marcilene M Santos Sarah
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Luiz F Palaretti
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| | - Marisa de C Piccolo
- Nuclear Energy Center in Agriculture, University of São Paulo (USP), Av. Centenário, 303, Piracicaba, São Paulo, 13400-970, Brazil
| | - Jonas P Souza Júnior
- Faculty of Agricultural and Veterinarian Sciences, Department of Agricultural Production Sciences, São Paulo State University (UNESP), Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, São Paulo, 14884900, Brazil
| |
Collapse
|
14
|
Jalal A, da Silva Oliveira CE, Galindo FS, Rosa PAL, Gato IMB, de Lima BH, Teixeira Filho MCM. Regulatory Mechanisms of Plant Growth-Promoting Rhizobacteria and Plant Nutrition against Abiotic Stresses in Brassicaceae Family. Life (Basel) 2023; 13:211. [PMID: 36676160 PMCID: PMC9860783 DOI: 10.3390/life13010211] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Extreme environmental conditions, such as abiotic stresses (drought, salinity, heat, chilling and intense light), offer great opportunities to study how different microorganisms and plant nutrition can influence plant growth and development. The intervention of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species. Brassicaceae (Cruciferae) belongs to the monophyletic taxon and consists of around 338 genera and 3709 species worldwide. Brassicaceae is composed of several important species of economical, ornamental and food crops (vegetables, cooking oils, forage, condiments and industrial species). Sustainable production of Brassicas plants has been compromised over the years due to several abiotic stresses and the unbalanced utilization of chemical fertilizers and uncertified chemicals that ultimately affect the environment and human health. This chapter summarized the influence of PGPRs and nutrient management in the Brassicaceae family against abiotic stresses. The use of PGPRs contributed to combating climate-induced change/abiotic factors such as drought, soil and water salinization and heavy metal contamination that limits the general performance of plants. Brassica is widely utilized as an oil and vegetable crop and is harshly affected by abiotic stresses. Therefore, the use of PGPRs along with proper mineral nutrients management is a possible strategy to cope with abiotic stresses by improving biochemical, physiological and growth attributes and the production of brassica in an eco-friendly environment.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Faculty of Agricultural and Technological Sciences, Campus of Dracena, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Poliana Aparecida Leonel Rosa
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Isabela Martins Bueno Gato
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| |
Collapse
|
15
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
16
|
Silicon modifies C:N:P stoichiometry and improves the physiological efficiency and dry matter mass production of sorghum grown under nutritional sufficiency. Sci Rep 2022; 12:16082. [PMID: 36167895 PMCID: PMC9515215 DOI: 10.1038/s41598-022-20662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Silicon (Si) may be involved in the modification of C:N:P stoichiometry and in physiological processes, increasing sorghum growth and grain production. The objective was to evaluate the effect of Si supply on C:N:P:Si stoichiometry, physiological response, growth, and grain production of sorghum. The experiment was carried out in pots with four concentrations of Si: 0; 1.2; 2.4; and 3.6 mmol L−1 in a completely randomized design, with six replicates. Physiological attributes and dark green color index were measured and grain and biomass production were determined. Posteriorly, the plant material was ground to determine silicon (Si), carbon (C), nitrogen (N), and phosphorus (P) contents in order to analyze C:N:P:Si stoichiometry. C:Si and C:N ratios decreased at all Si concentrations applied (1.2, 2.4, and 3.6 mmol L−1) and in all plant parts studied, being lower at 3.6 mmol L−1. The lowest C:P ratios of leaves and roots were observed at 3.6 mmol L−1 Si and the lowest C:P ratio of stems was observed at 1.2 mmol L−1 Si. Si concentrations were not significant for the N:P ratio of leaves. The highest N:P ratio of stems was observed at 3.6 mmol L−1, while the lowest N:P ratio of roots was observed at 2.4 and 3.6 mmol L−1. Regardless of photosynthetic parameters, the application of 1.2 mmol L−1 Si enhanced photosynthetic rate. The application of 2.4 and 3.6 mmol L−1 enhanced stomatal conductance and dark green color index. The mass of 1000 grains was not influenced by Si applications, while Si applications at all concentrations studied (1.2, 2.4, and 3.6 mmol L−1) enhanced shoot and total dry matter, not affecting root dry matter and grain production. In conclusion, Si supply modifies C:N:P:Si stoichiometry and increases physiologic parameters, growth, development, and grain production in sorghum.
Collapse
|
17
|
Rivai RR, Miyamoto T, Awano T, Yoshinaga A, Chen S, Sugiyama J, Tobimatsu Y, Umezawa T, Kobayashi M. Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111325. [PMID: 35696925 DOI: 10.1016/j.plantsci.2022.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Sorghum has been recognized as a promising energy crop. The composition and structure of lignin in the cell wall are important factors that affect the quality of plant biomass as a bioenergy feedstock. Silicon (Si) supply may affect the lignin content and structure, as both Si and lignin are possibly involved in plant mechanical strength. However, our understanding regarding the interaction between Si and lignin in sorghum is limited. Therefore, in this study, we analyzed the lignin in the cell walls of sorghum seedlings cultured hydroponically with or without Si supplementation. Limiting the Si supply significantly increased the thioglycolic acid lignin content and thioacidolysis-derived syringyl/guaiacyl monomer ratio. At least part of the modification may be attributable to the change in gene expression, as suggested by the upregulation of phenylpropanoid biosynthesis-related genes under -Si conditions. The cell walls of the -Si plants had a higher mechanical strength and calorific value than those of the +Si plants. These results provide some insights into the enhancement of the value of sorghum biomass as a feedstock for energy production by limiting Si uptake.
Collapse
Affiliation(s)
- Reza Ramdan Rivai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; National Research and Innovation Agency of the Republic of Indonesia, Bogor, Indonesia
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Tatsuya Awano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Arata Yoshinaga
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuoye Chen
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junji Sugiyama
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Lindner GG, Drexel CP, Sälzer K, Schuster TB, Krueger N. Comparison of Biogenic Amorphous Silicas Found in Common Horsetail and Oat Husk With Synthetic Amorphous Silicas. Front Public Health 2022; 10:909196. [PMID: 35812489 PMCID: PMC9257020 DOI: 10.3389/fpubh.2022.909196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
The present study summarizes the current literature on the presence and the structure of biogenic amorphous silica (BAS) in nature. Based on this review, it is shown that BAS is ubiquitous in nature and exhibits a structure that cannot be differentiated from the structure of synthetic amorphous silica (SAS). The structural similarity of BAS and SAS is further supported by our investigations—in particular, specific surface area (BET) and electron microscope techniques—on oat husk and common horsetail. Many food products containing BAS are considered to be beneficial to health. In the context of the use of SAS in specific applications (e.g., food, feed, and cosmetics), this is of particular interest for discussions of the safety of these uses.
Collapse
Affiliation(s)
| | | | - Katrin Sälzer
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| | | | - Nils Krueger
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| |
Collapse
|
19
|
Mavrič Čermelj A, Fideršek E, Golob A, Kacjan Maršić N, Vogel Mikuš K, Germ M. Different Concentrations of Potassium Silicate in Nutrient Solution Affects Selected Growth Characteristics and Mineral Composition of Barley (Hordeum vulgare L.). PLANTS 2022; 11:plants11111405. [PMID: 35684178 PMCID: PMC9182727 DOI: 10.3390/plants11111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
This study was undertaken to determine the effect of potassium silicate (K2SiO3) on the physiological and growth characteristics and elemental composition of barley plants. Hydroponically grown barley (Hordeum vulgare L.) var. Wilma was exposed to four different levels of Si in the form of K2SiO3 at concentrations of 0 (Si0), 0.5 (Si0.5), 1 (Si1) or 1.5 (Si1.5) mM Si. Plants were analyzed for root length, number of dry leaves, number of trichomes, electron transport system activity in mitochondria (ETS), leaf pigment content and elemental composition of roots and leaves. Treatment with Si0.5 significantly increased the concentration of total chlorophylls, root length and ETS activity in barley. Plants with no Si added to the nutrient solution had significantly more dry leaves than plants from all Si-treated groups. Necrosis was observed in Si0 plants, while leaf damage was not visible in treated plants. According to the results of the study, we evidenced that plants were stressed due to Si deficiency. The addition of K2SiO3 significantly affected the concentration of Si, K, Ca, Cl, S, Mn, Fe and Zn in roots and leaves of barley. In barley treated with Si0.5, plants showed the best performance in terms of their physiological characteristics and growth.
Collapse
Affiliation(s)
- Anja Mavrič Čermelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
- Correspondence:
| | - Eva Fideršek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Nina Kacjan Maršić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Katarina Vogel Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| |
Collapse
|
20
|
Arbuscular Mycorrhiza Extraradical Mycelium Promotes Si and Mn Subcellular Redistribution in Wheat Grown under Mn Toxicity. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Manganese (Mn) and aluminum (Al) toxicities are serious edaphic limitations to crop production in acidic soils. Excess Mn can be countered using a stress-adapted soil microbiota that establish symbiotic relationships with native plants. The arbuscular mycorrhizal fungi (AMF) associated with Lolium rigidum L. develop extraradical mycelia (ERM) that quickly colonize wheat and lead to greater shoot growth by promoting stress-evading mechanisms that are not yet completely explained. In the present study, wheat growth was assessed after 3 weeks on disturbed and undisturbed (intact ERM) acidic soil where the native non-mycotrophic Silene gallica L. or strongly mycotrophic L. rigidum were previously developed. The physiological and biochemical mechanisms responsible for increased growth were analyzed by assessing wheat leaf chlorophyll content, photosystem II quantum yield and performance index, enzymatic activity of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase (GPX), superoxide dismutase (SOD) and contents and subcellular localization of Mn, Mg, Si and K. The soil from native plants had a beneficial effect on shoot weight and chlorophyll levels. The highest benefits were obtained for wheat grown in soil with intact ERM associated with L. rigidum. In this condition, where earlier mycorrhization was favored, the Mn content decreased, alongside the content of Si, while the Mg/Mn ratio increased. Mn was redirected to the apoplast, while Si was redirected to the symplast. The activity of APX, GPX and SOD increased, probably due to increased metabolic growth (higher shoot weight and chlorophyll content). Understanding the mechanisms induced by native AMF responsible for increasing wheat performance can contribute to the establishment of sustainable approaches for crop production in acidic soils with Mn toxicity. The use of native plant AMF developers can improve the sustainable use of natural resources in the scope of greener agricultural practices.
Collapse
|
21
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
22
|
Silicon mitigates nutritional stress of nitrogen, phosphorus, and calcium deficiency in two forages plants. Sci Rep 2022; 12:6611. [PMID: 35459764 PMCID: PMC9033876 DOI: 10.1038/s41598-022-10615-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Forages are one of the most cultivated crops in the world. However, nutritional deficiency is common, specifically in N, P, and Ca in many forage-growing regions. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on Si supply's effects on forage plants are still scarce. This research was carried out to evaluate whether the Si supply can mitigate the effects of N, P, and Ca deficiencies of two forages and the physiological and nutritional mechanisms involved. Two experiments were carried out with two forage species (Urochloa brizantha cv. Marandu and Megathyrsus maximum cv. Massai). We used nutrient solution under balanced nutrition conditions and nutritional stress due to the lack of N, P, and Ca combined with the -Si and +Si. The deficiencies of N, P, and Ca in both forages' cultivation caused damage to physiological and nutritional variables, decreasing the plant dry matter. However, in both forage species, the Si addition to the nutrient solution decreased the extravasation of cellular electrolytes and increased the content of phenolic compounds, the green colour index, the quantum efficiency of photosystem II, the efficiencies of use of N, P and Ca and the production of shoot dry matter. The beneficial effects of Si were evidenced in stressed and non-stressed plants. The research emphasised the advantage of using Si to grow U. brizantha and M. maximum under N, P, and Ca deficiency, contributing to their sustainable cultivation.
Collapse
|
23
|
Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Silicon Application: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14084525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants take up silicon (Si) from the soil which impacts their growth and nutrient accumulation. It increases plant resistance to abiotic and biotic stresses such as drought, salinity, and heavy metal, diseases, and pest infestation. However, until recently, research of Si application on the crop is limited. This article reviews the recent progress of research on Si application on crop growth and yield, nutrient availability in soil and accumulation, and drought tolerance of crop plants. The review’s findings show that Si improves crop development and output under stressful environmental conditions. Silicon increases the availability and accumulation of both macronutrients (nitrogen, potassium, calcium, and sulphur) and micronutrients (iron and manganese). It improves drought resistance by increasing plant water usage efficiency and reducing water loss during transportation. Silicon application is a crucial aspect of crop productivity because of all of these favorable attributes. The gaps in current understandings are identified. Based on the outcome of the present research, future scopes of research on this field are proposed.
Collapse
|
24
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
25
|
Tripathi P, Tayade R, Mun BG, Yun BW, Kim Y. Silicon Application Differentially Modulates Root Morphology and Expression of PIN and YUCCA Family Genes in Soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2022; 13:842832. [PMID: 35371163 PMCID: PMC8975267 DOI: 10.3389/fpls.2022.842832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Silicon (Si) is absorbed and accumulated by some plant species; it has been shown to improve plant growth and performance. The beneficial role of Si in plants is based on the fundamental assumptions, and the biological function of Si is still being researched due to its complex nature, distinctiveness, and interaction. The present study included two distinct experiment sets: a screening test and an advanced test. In the initial examination, we used 21 soybean (Glycine max L.) cultivars. Following the evaluation, we chose four cultivars to investigate further. In particular, the positive response cultivars, Taeseon and Geomjeongsaeol, showed a 14% increase in net photosynthesis (P N ), and a 19-26% increase in transpiration in Si-treated plants when compared to the control plants. Si-treated Taeseon, Geomjeongsaeol, and Somyongkong, Mallikong cultivars showed significant differences in root morphological traits (RMTs) and root system architecture (RSA) when compared to the control plants. Taeseon and Geomjeongsaeol showed a 26 and 46% increase in total root length (TRL) after Si application, respectively, compared to the control, whereas Mallikong and Somyongkong showed 26 and 20% decrease in TRL after Si treatment, respectively, compared to the control. The Si application enhanced the overall RMTs and RSA traits in Taeseon and Geomjeongsaeol; however, the other two cultivars, Somyongkong and Mallikong, showed a decrease in such RMTs and RATs. Furthermore, to understand the underlying molecular mechanism and the response of various cultivars, we measured the Si content and analyzed the gene expression of genes involved in auxin transport and root formation and development. We showed that the Si content significantly increased in the Si-treated Somyongkong (28%) and Taeseon (30%) compared to the control cultivars. Overall, our results suggested that Si affects root development as well as the genes involved in the auxin synthesis, transport pathway, and modulates root growth leading to cultivar-dependent variation in soybeans.
Collapse
|
26
|
Yacano MR, Foster SQ, Ray NE, Oczkowski A, Raven JA, Fulweiler RW. Marine macroalgae are an overlooked sink of silicon in coastal systems. THE NEW PHYTOLOGIST 2022; 233:2330-2336. [PMID: 34854088 PMCID: PMC8971952 DOI: 10.1111/nph.17889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Mollie R. Yacano
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
- Department of Marine Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah Q. Foster
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
- Division of Math and Science, Babson College, Wellesley, MA 02457, USA
| | - Nicholas E. Ray
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - John A. Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Robinson W. Fulweiler
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
27
|
Liu L, Song Z, Li Q, Ellam RM, Tang J, Wang Y, Sarkar B, Wang H. Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118645. [PMID: 34883150 DOI: 10.1016/j.envpol.2021.118645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Cropland contamination by toxic trace metal (loid)s (TTMs) has attracted increasing attention due to the serious consequential threat to crop quality and human health. Mitigation of plant TTM stress by silica amendment has been proposed recently. However, the relationship between the siliceous structure of phytoliths and TTMs in plants, and the environmental implications of phytolith-occluded trace metal (loid)s (PhytTMs) remain unclear. This study assessed the accumulation of five metal (loid)s, including lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and arsenic (As), in the organic tissues and phytoliths of wheat grown in a mixed-TTM contaminated soil under both lightly and heavily contaminated conditions. The results show that the concentrations of plant TTMs and PhytTMs were significantly (p < 0.05) positively correlated, and higher in heavily contaminated wheats than those in lightly contaminated ones. The bio-enrichment factors between phytoliths and organic tissues were higher for As (1.83), Pb (0.27) and Zn (0.30) than for Cd (0.03) and Cu (0.14), implying that As, Pb and Zn were more readily co-precipitated with silicon (Si) in phytolith structures than Cd and Cu. Network analysis of the relationship between soil and plant elements with PhytTMs showed that severe contamination could impact the homeostasis of elements in plants by altering the translocation of TTMs between soils, plants, and phytoliths. The accumulation of TTMs in phytoliths was affected by the capacity of Si deposition in tissues and chelation of TTMs with silica, which could impact the role of PhytTMs in global biogeochemical TTM cycles.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rob M Ellam
- Scottish Universities Environmental Research Centre, East Kilbride, G750QF, Scotland, United Kingdom
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
28
|
Vicca S, Goll DS, Hagens M, Hartmann J, Janssens IA, Neubeck A, Peñuelas J, Poblador S, Rijnders J, Sardans J, Struyf E, Swoboda P, van Groenigen JW, Vienne A, Verbruggen E. Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes? GLOBAL CHANGE BIOLOGY 2022; 28:711-726. [PMID: 34773318 DOI: 10.1111/gcb.15993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
A number of negative emission technologies (NETs) have been proposed to actively remove CO2 from the atmosphere, with enhanced silicate weathering (ESW) as a relatively new NET with considerable climate change mitigation potential. Models calibrated to ESW rates in lab experiments estimate the global potential for inorganic carbon sequestration by ESW at about 0.5-5 Gt CO2 year-1 , suggesting ESW could be an important component of the future NETs mix. In real soils, however, weathering rates may differ strongly from lab conditions. Research on natural weathering has shown that biota such as plants, microbes, and macro-invertebrates can strongly affect weathering rates, but biotic effects were excluded from most ESW lab assessments. Moreover, ESW may alter soil organic carbon sequestration and greenhouse gas emissions by influencing physicochemical and biological processes, which holds the potential to perpetuate even larger negative emissions. Here, we argue that it is likely that the climate change mitigation effect of ESW will be governed by biological processes, emphasizing the need to put these processes on the agenda of this emerging research field.
Collapse
Affiliation(s)
- Sara Vicca
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Daniel S Goll
- CEA-CNRS-UVSQ, LSCE/IPSL, Université Paris Saclay, Gif sur Yvette, France
| | - Mathilde Hagens
- Soil Chemistry and Chemical Soil Quality, Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Jens Hartmann
- Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
| | - Ivan A Janssens
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Anna Neubeck
- Department of Earth sciences, Uppsala University, Uppsala, Sweden
| | - Josep Peñuelas
- CSIC, Global Ecology CREAF- CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Sílvia Poblador
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Jet Rijnders
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Jordi Sardans
- CSIC, Global Ecology CREAF- CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Eric Struyf
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Philipp Swoboda
- International Centre for Sustainable Development, Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | | | - Arthur Vienne
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
29
|
Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:173. [PMID: 35010126 PMCID: PMC8746782 DOI: 10.3390/nano12010173] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022]
Abstract
Nano-fertilizers (NFs) significantly improve soil quality and plant growth performance and enhance crop production with quality fruits/grains. The management of macro-micronutrients is a big task globally, as it relies predominantly on synthetic chemical fertilizers which may not be environmentally friendly for human beings and may be expensive for farmers. NFs may enhance nutrient uptake and plant production by regulating the availability of fertilizers in the rhizosphere; extend stress resistance by improving nutritional capacity; and increase plant defense mechanisms. They may also substitute for synthetic fertilizers for sustainable agriculture, being found more suitable for stimulation of plant development. They are associated with mitigating environmental stresses and enhancing tolerance abilities under adverse atmospheric eco-variables. Recent trends in NFs explored relevant agri-technology to fill the gaps and assure long-term beneficial agriculture strategies to safeguard food security globally. Accordingly, nanoparticles are emerging as a cutting-edge agri-technology for agri-improvement in the near future. Interestingly, they do confer stress resistance capabilities to crop plants. The effective and appropriate mechanisms are revealed in this article to update researchers widely.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India;
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
30
|
Teixeira GCM, de Mello Prado R, Rocha AMS, de Cássia Piccolo M. Silicon as a Sustainable Option to Increase Biomass With Less Water by Inducing Carbon:Nitrogen:Phosphorus Stoichiometric Homeostasis in Sugarcane and Energy Cane. FRONTIERS IN PLANT SCIENCE 2022; 13:826512. [PMID: 35498639 PMCID: PMC9040072 DOI: 10.3389/fpls.2022.826512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Climate change has prolonged periods of water deficit in sugarcane and energy cane crops. This condition induces an imbalance of the carbon (C): nitrogen (N): phosphorus (P) stoichiometric homeostasis, impairing accumulated nutrients from being converted into biomass. Silicon (Si) supplementation can mitigate the damage caused by water deficit in plants by improving the C:N:P balance, increasing C, N, and P use efficiencies and the biomass conversion, and reducing climate change effects on crops. This study assesses the beneficial effects of Si applied through fertigation associated with foliar spraying on the alleviation of damage caused by severe water deficit in sugarcane and energy cane for intermediate and long periods. In addition, the effects in maintenance of nutritional homeostasis we assessed and C, N, and P use efficiencies on sugarcane and energy cane under those conditions were increased. Four experiments were conducted during the first growth cycle of each species. The effect of fertigation associated with Si foliar spraying was evaluated by applying Si only during the seedling formation phase in sugarcane and energy cane grown under severe water deficit for 60 days after transplanting (intermediate period). Then, the effect of Si applied during seedling formation and supplemented after transplanting was evaluated in sugarcane and energy cane grown under severe water deficit for 160 days after transplanting (long period). The Si supply decreased C contents, modified the C:N:P ratio, and increased C, N, and P use efficiencies in plants of both species under water deficit at the intermediate and long periods after transplanting. The effects of applying Si through fertigation associated with foliar spraying during seedling formation mitigated the damage caused by severe water deficit in the intermediate period, which was mainly observed in sugarcane. When supplemented with Si after transplanting, the mitigating effects occurred in both species under severe long period water deficit. Therefore, the Si supply through fertigation associated with foliar spraying is a viable alternative to provide Si to the plant. It also comes with beneficial effects that partially reverse the damage to nutritional homeostasis and increase nutritional efficiency in plants under severe water deficit.
Collapse
Affiliation(s)
- Gelza Carliane Marques Teixeira
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University, São Paulo, Brazil
- *Correspondence: Gelza Carliane Marques Teixeira,
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Ulloa M, Nunes-Nesi A, da Fonseca-Pereira P, Poblete-Grant P, Reyes-Díaz M, Cartes P. The effect of silicon supply on photosynthesis and carbohydrate metabolism in two wheat (Triticum aestivum L.) cultivars contrasting in response to phosphorus nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:236-248. [PMID: 34808466 DOI: 10.1016/j.plaphy.2021.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency affects agricultural systems by limiting crop quality and yield. Studies have suggested that silicon (Si) improves P uptake in plants grown under P deficiency. However, the effects of Si on photosynthesis and carbohydrate metabolism under P stress remain unclear. We performed a hydroponic study using two wheat cultivars with contrasting sensitivity to P deficiency (Púrpura, sensitive; Fritz, semi-tolerant) that were exposed to P (0, 0.01, or 0.1 mM) and Si (0 or 2 mM), and we evaluated the photosynthetic performance and metabolic alterations. In plants from the sensitive cultivar undergoing P deficiency, Si application increased sucrose levels, starch breakdown and length of shoots, and also improved plant dry weight. In Fritz (the semi-tolerant cultivar), Si exposure reduced P concentration, and increased shoot length and P use efficiency (PUE) under P shortage. Interestingly, Si application altered cell wall composition, which was associated with higher mesophyll conductance and net CO2 assimilation in Fritz plants grown under P stress. Together, our results indicate that under P deficiency, Si nutrition positively affects photosynthesis and carbohydrate levels in a genotype-dependent manner. Furthermore, these results suggest that Si plays an important role in maintaining high photosynthetic rates in wheat plants undergoing P deficiency.
Collapse
Affiliation(s)
- Marlys Ulloa
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, 4780000, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | | - Patricia Poblete-Grant
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile
| | - Paula Cartes
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile.
| |
Collapse
|
32
|
de Oliveira Filho ASB, de Mello Prado R, Teixeira GCM, de Cássia Piccolo M, Rocha AMS. Water deficit modifies C:N:P stoichiometry affecting sugarcane and energy cane yield and its relationships with silicon supply. Sci Rep 2021; 11:20916. [PMID: 34686731 PMCID: PMC8536714 DOI: 10.1038/s41598-021-00441-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Climate change has increased the occurrence of water deficit in regions where sugarcane and energy cane are cultivated, jeopardizing dry matter production of stems. It was hypothesized that the reasons behind this fact relate to C:N:P stoichiometric modifications in these species that impair the conversion rates of accumulated nutrients in the stems, which could be attenuated by supplying silicon (Si) to the crops. Thus, the aims of this study were to evaluate the effects of water deficit in sugarcane and energy cane ratoons in the presence and absence of Si, in the C:N:P stoichiometry of stems, in the use efficiency of these nutrients and in the accumulation of dry matter in stems. Two experiments were carried out, using sugarcane (Saccharum officinarum) and energy cane (S. spontaneum), cultivated in pots filled with a Typic Quartzipisamment. The treatments for both experiments were arranged in a factorial scheme 2 × 2, without (70% of the soil’s water retention capacity) and with (30% of the capacity) water deficit, without and with the application of Si via fertirrigation, associated with foliar pulverization, both at a concentration of 2.5 mmol L−1, arranged in randomized blocks. The reduction in dry matter production of stems in both species caused by water deficit was due to modifications of the C, N and P stoichiometric homeostasis, but the benefit of Si in these plants when increasing dry matter production was not a reflection of the change in homeostasis, thus it may be involved in other mechanisms that remain unknown and should be further studied.
Collapse
Affiliation(s)
- Antonio Santana Batista de Oliveira Filho
- Department of Agricultural Production Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil.
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| | - Gelza Carliane Marques Teixeira
- Department of Agricultural Production Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| | - Marisa de Cássia Piccolo
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
33
|
Schaller J, Scherwietes E, Gerber L, Vaidya S, Kaczorek D, Pausch J, Barkusky D, Sommer M, Hoffmann M. Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale. Sci Rep 2021; 11:20852. [PMID: 34675299 PMCID: PMC8531131 DOI: 10.1038/s41598-021-00464-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2021] [Indexed: 12/03/2022] Open
Abstract
Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.
Collapse
Affiliation(s)
- Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | | | - Lukas Gerber
- University of Bayreuth, 95440, Bayreuth, Germany
| | - Shrijana Vaidya
- "Isotope Biogeochemistry and Gas Fluxes" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Danuta Kaczorek
- "Landscape Pedology" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | | | - Dietmar Barkusky
- "Experimental Infrastructure Platform", Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Michael Sommer
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.,Institute of Geography and Environmental Science, University of Potsdam, 14476, Potsdam, Germany
| | - Mathias Hoffmann
- "Isotope Biogeochemistry and Gas Fluxes" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| |
Collapse
|
34
|
Silicon Application Induced Alleviation of Aluminum Toxicity in Xaraés Palisadegrass. AGRONOMY 2021. [DOI: 10.3390/agronomy11101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aluminum (Al) toxicity is a major abiotic constraint for agricultural production in acidic soils that needs a sustainable solution to deal with plant tolerance. Silicon (Si) plays important roles in alleviating the harmful effects of Al in plants. The genus Urochloa includes most important grasses and hybrids, and it is currently used as pastures in the tropical regions. Xaraés palisadegrass (Urochloa brizantha cv. Xaraés) is a forage that is relatively tolerant to Al toxicity under field-grown conditions, which might be explained by the great uptake and accumulation of Si. However, studies are needed to access the benefits of Si application to alleviate Al toxicity on Xaraés palisadegrass nutritional status, production, and chemical–bromatological composition. The study was conducted under greenhouse conditions with the effect of five Si concentrations evaluated (0, 0.3, 0.6, 1.2, and 2.4 mM) as well as with nutrient solutions containing 1 mM Al in two sampling dates (two forage cuts). The following evaluations were performed: number of tillers and leaves, shoot biomass, N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, Al, and Si concentration in leaf tissue, Al and Si concentration in root tissue, neutral detergent fiber (NDF), and acid detergent fiber (ADF) content in Xaraés palisadegrass shoot. Silicon supply affected the relation between Si and Al uptake by increasing root Al concentration in detriment to Al transport to the leaves, thereby alleviating Al toxicity in Xaraés palisadegrass. The concentrations between 1.4 and 1.6 mM Si in solution decreased roots to shoots Al translocation by 259% (from 3.26 to 1.26%), which contributed to a higher number of leaves per plot and led to a greater shoot dry mass without affecting tillering. Xaraés palisadegrass could be considered one of the greatest Si accumulator plants with Si content in leaves above 4.7% of dry mass. In addition, Si supply may benefit nutrient-use efficiency with enhanced plant growth and without compromising the chemical–bromatological content of Xaraés palisadegrass.
Collapse
|
35
|
Galindo FS, Pagliari PH, Buzetti S, Rodrigues WL, Fernandes GC, Biagini ALC, Tavanti RFR, Teixeira Filho MCM. Nutrient availability affected by silicate and
Azospirillum brasilense
application in corn–wheat rotation. AGRONOMY JOURNAL 2021. [DOI: 10.1002/agj2.20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Paulo Humberto Pagliari
- Dep. of Soil, Water, and Climate Univ. of Minnesota, Southwest Research and Outreach Center Lamberton MN USA
| | - Salatiér Buzetti
- Dep. of Plant Health, Rural Engineering, and Soils São Paulo State Univ. Ilha Solteira São Paulo Brazil
| | - Willian Lima Rodrigues
- Dep. of Plant Health, Rural Engineering, and Soils São Paulo State Univ. Ilha Solteira São Paulo Brazil
| | | | | | | | | |
Collapse
|
36
|
Liang Y, Liao M, Fang Z, Guo J, Xie X, Xu C. How silicon fertilizer improves nitrogen and phosphorus nutrient availability in paddy soil? J Zhejiang Univ Sci B 2021; 22:521-532. [PMID: 34269006 DOI: 10.1631/jzus.b2000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to reveal the mechanism of silicon (Si) fertilizer in improving nitrogen (N) and phosphorus (P) nutrient availability in paddy soil, we designed a series of soil culture experiments by combining application of varying Si fertilizer concentrations with fixed N and P fertilizer concentrations. Following the recommendations of fertilizer manufacturers and local farmers, we applied Si in concentrations of 0, 5.2, 10.4, 15.6, and 20.8 μg/kg. At each concentration of added Si, the availability of soil N and P nutrients, soil microbial activity, numbers of ammonia-oxidizing bacteria and P-decomposing bacteria which means that the organic P is decomposed into inorganic nutrients which can be absorbed and utilized by plants, and urease and phosphatase activity first increased, and then decreased, as Si was added to the soil. These indicators reached their highest levels with a Si application rate of 15.6 μg/kg, showing values respectively 19.78%, 105.09%, 8.34%, 73.12%, 130.36%, 28.12%, and 20.15% higher than those of the controls. Appropriate Si application (10.4 to 15.6 µg/kg) could significantly increase the richness of the soil microbial community involved in cycling of N and P nutrients in the soil. When the Si application rate was 15.6 μg/kg, parameters for characterizing microbial abundance such as sequence numbers, operational taxonomic unit (OTU) number, and correlation indices of microbial community richness such as Chao1 index, the adaptive coherence estimator (ACE) index, Shannon index, and Simpson index all reached maximum values, with amounts increased by 14.46%, 10.01%, 23.80%, 30.54%, 0.18%, and 2.64%, respectively, compared with the control group. There is also a good correlation between N and P mineralization and addition of Si fertilizer. The correlation coefficients between the ratio of available P/total P (AP/TP) and the number of ammonia-oxidizing bacteria, AP/TP and acid phosphatase activity (AcPA), AP/TP and the Shannon index, the ratio of available N/total amount of N (AN/TN) and the number of ammoniated bacteria, and AN/TN and AcPA were 0.9290, 0.9508, 0.9202, 0.9140, and 0.9366, respectively. In summary, these results revealed that enhancement of soil microbial community structure diversity and soil microbial activity by appropriate application of Si is the key ecological mechanism by which application of Si fertilizer improves N and P nutrient availability.
Collapse
Affiliation(s)
- Yuqi Liang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhiping Fang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiawen Guo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China
| | - Changxu Xu
- Institute of Soil & Fertilizer and Resource & Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
37
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
38
|
Galindo FS, Pagliari PH, Rodrigues WL, Fernandes GC, Boleta EHM, Santini JMK, Jalal A, Buzetti S, Lavres J, Teixeira Filho MCM. Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions. PLANTS 2021; 10:plants10071329. [PMID: 34209953 PMCID: PMC8309197 DOI: 10.3390/plants10071329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/05/2023]
Abstract
Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha−1). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO3−, N-NH4+ and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185–180 to 100 kg N ha−1 while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195–200 to 100 kg N ha−1. Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions.
Collapse
Affiliation(s)
- Fernando Shintate Galindo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba 13416-000, Brazil
- Correspondence:
| | - Paulo Humberto Pagliari
- Department of Soil, Water, and Climate, Southwest Research and Outreach Center (SWROC), University of Minnesota (UMN), Lamberton, MN 56152, USA;
| | - Willian Lima Rodrigues
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Guilherme Carlos Fernandes
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Eduardo Henrique Marcandalli Boleta
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - José Mateus Kondo Santini
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Salatiér Buzetti
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - José Lavres
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| |
Collapse
|
39
|
Galindo FS, Pagliari PH, Buzetti S, Rodrigues WL, Fernandes GC, Biagini ALC, Marega EMR, Tavanti RFR, Jalal A, Teixeira Filho MCM. Corn shoot and grain nutrient uptake affected by silicon application combined with Azospirillum brasilense inoculation and nitrogen rates. JOURNAL OF PLANT NUTRITION 2021. [DOI: 10.1080/01904167.2021.1943436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fernando Shintate Galindo
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, Brazil
| | - Paulo Humberto Pagliari
- Department of Soil, Water, and Climate, University of Minnesota, Southwest Research and Outreach Center, Lamberton, MN, USA
| | - Salatiér Buzetti
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, Brazil
| | - Willian Lima Rodrigues
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, Brazil
| | - Guilherme Carlos Fernandes
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, Brazil
| | | | - Evelyn Maria Rocha Marega
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, Brazil
| | | | - Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, Brazil
| | | |
Collapse
|
40
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
41
|
Lata-Tenesaca LF, de Mello Prado R, de Cássia Piccolo M, da Silva DL, da Silva JLF. Silicon modifies C:N:P stoichiometry, and increases nutrient use efficiency and productivity of quinoa. Sci Rep 2021; 11:9893. [PMID: 33972664 PMCID: PMC8110966 DOI: 10.1038/s41598-021-89416-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Recognizably, silicon has a beneficial effect on plant growth and productivity. In this respect, it is also known that the C, N and, P stoichiometric ratios and nutrient conversion efficiency allow identifying the interactions between elements while helping to understand the role Si plays in plant growth. This study aims to investigate whether increasing Si concentrations (0, 1, 2, and 3 mmol L−1) supplied in the nutrient solution is uptaken by quinoa, modifies the C:N:P stoichiometry while increasing nutritional efficiency and crop productivity as well. Our results revealed that the Si supply by promoting a decline in the C levels, associated with greater uptake of N and P, especially decreased the C:N and C:P ratios, favoring the C metabolism efficiency, and modulated the N and P use efficiency for biomass accumulation. This improved nutritional performance and greater use efficiency of C directly favored quinoa productivity. The future perspective is to encourage new field studies with this species to adjust silicon fertilization management to different soils aiming at enhancing quinoa productivity on a sustainable basis.
Collapse
Affiliation(s)
- Luis Felipe Lata-Tenesaca
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Renato de Mello Prado
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Marisa de Cássia Piccolo
- Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13400-970, Brazil
| | - Dalila Lopes da Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - José Lucas Farias da Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| |
Collapse
|
42
|
Liao M, Fang ZP, Liang YQ, Huang XH, Yang X, Chen SS, Xie XM, Xu CX, Guo JW. Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system. J Zhejiang Univ Sci B 2021; 21:474-484. [PMID: 32478493 DOI: 10.1631/jzus.b1900516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to reveal the effects of silicon (Si) application on nutrient utilization efficiency by rice and on soil nutrient availability and soil microorganisms in a hybrid rice double-cropping planting system. A series of field experiments were conducted during 2017 and 2018. The results showed that Si nutrient supply improved grain yield and the utilization rates of nitrogen (N) and phosphorus (P) to an appropriate level for both early and late plantings, reaching a maximum at 23.4 kg/ha Si. The same trends were found for the ratios of available N (AN) to total N (TN) and available P (AP) to total P (TP), the soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), and the ratios of MBN to TN and MBP to TP, at different levels of Si. Statistical analysis further revealed that Si application enhanced rice growth and increased the utilization rate of fertilizer due to an ecological mechanism, i.e., Si supply significantly increased the total amount of soil microorganisms in paddy soil compared to the control. This promoted the mineralization of soil nutrients and improved the availability and reserves of easily mineralized organic nutrients.
Collapse
Affiliation(s)
- Min Liao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Zhi-Ping Fang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Yu-Qi Liang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Xiao-Hui Huang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Xu Yang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Experimental Teaching Center, College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sen Chen
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Xiao-Mei Xie
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China.,Experimental Teaching Center, College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Chang-Xu Xu
- Institute of Soil & Fertilizer and Resource & Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jia-Wen Guo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| |
Collapse
|
43
|
Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. PLANTS (BASEL, SWITZERLAND) 2021; 10:652. [PMID: 33808069 PMCID: PMC8066056 DOI: 10.3390/plants10040652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Plants' ability to take up silicon from the soil, accumulate it within their tissues and then reincorporate it into the soil through litter creates an intricate network of feedback mechanisms in ecosystems. Here, we provide a concise review of silicon's roles in soil chemistry and physics and in plant physiology and ecology, focusing on the processes that form these feedback mechanisms. Through this review and analysis, we demonstrate how this feedback network drives ecosystem processes and affects ecosystem functioning. Consequently, we show that Si uptake and accumulation by plants is involved in several ecosystem services like soil appropriation, biomass supply, and carbon sequestration. Considering the demand for food of an increasing global population and the challenges of climate change, a detailed understanding of the underlying processes of these ecosystem services is of prime importance. Silicon and its role in ecosystem functioning and services thus should be the main focus of future research.
Collapse
Affiliation(s)
- Ofir Katz
- Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, 86910 Tamar, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, 8855630 Eilat, Israel
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Nagabovanalli B. Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India;
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| |
Collapse
|
44
|
Hömberg A, Knorr KH, Schaller J. Methane Production Rate during Anoxic Litter Decomposition Depends on Si Mass Fractions, Nutrient Stoichiometry, and Carbon Quality. PLANTS 2021; 10:plants10040618. [PMID: 33805021 PMCID: PMC8063934 DOI: 10.3390/plants10040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
While Si influences nutrient stoichiometry and decomposition of graminoid litter, it is still unclear how Si influences anoxic litter decomposition and CH4 formation in graminoid dominated fen peatlands. First, Eriophorum vaginatum plants were grown under different Si and P availabilities, then shoots and roots were characterized regarding their proportions of C, Si, N and P and regarding C quality. Subsequently the Eriophorum shoots were subjected to anoxic decomposition. We hypothesized; that (I) litter grown under high Si availability would show a higher Si but lower nutrient mass fractions and a lower share of recalcitrant carbon moieties; (II) high-Si litter would show higher CH4 and CO2 production rates during anoxic decomposition; (III) methanogenesis would occur earlier in less recalcitrant high-Si litter, compared to low-Si litter. We found a higher Si mass fraction that coincides with a general decrease in C and N mass fractions and decreased share of recalcitrant organic moieties. For high-Si litter, the CH4 production rate was higher, but there was no long-term influence on the CO2 production rate. More labile high-Si litter and a differential response in nutrient stoichiometry led to faster onset of methanogenesis. This may have important implications for our understanding of anaerobic carbon turnover in graminoid-rich fens.
Collapse
Affiliation(s)
- Annkathrin Hömberg
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
- Correspondence:
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
| | - Jörg Schaller
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany;
| |
Collapse
|
45
|
Tombeur F, Laliberté E, Lambers H, Faucon M, Zemunik G, Turner BL, Cornelis J, Mahy G. A shift from phenol to silica‐based leaf defences during long‐term soil and ecosystem development. Ecol Lett 2021; 24:984-995. [DOI: 10.1111/ele.13713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Felix Tombeur
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
| | - Etienne Laliberté
- Institut de Recherche en Biologie Végétale Université de Montréal 4101 Sherbrooke Est Montréal QC H1X 2B2 Canada
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Hans Lambers
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Michel‐Pierre Faucon
- AGHYLE SFR Condorcet FR CNRS 3417 UniLaSalle 19 rue Pierre Waguet Beauvais 60026 France
| | - Graham Zemunik
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Benjamin L. Turner
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa Ancon Panama
- Soil and Water Science Department University of Florida Gainesville FL 32611 USA
| | - Jean‐Thomas Cornelis
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
- Faculty of Land and Food Systems The University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Grégory Mahy
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
| |
Collapse
|
46
|
Schaller J, Puppe D, Kaczorek D, Ellerbrock R, Sommer M. Silicon Cycling in Soils Revisited. PLANTS (BASEL, SWITZERLAND) 2021; 10:295. [PMID: 33557192 PMCID: PMC7913996 DOI: 10.3390/plants10020295] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance.
Collapse
Affiliation(s)
- Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (R.E.); (M.S.)
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (R.E.); (M.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (R.E.); (M.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Ruth Ellerbrock
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (R.E.); (M.S.)
| | - Michael Sommer
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (R.E.); (M.S.)
- Institute of Environmental Science and Geography, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
47
|
Sun Y, Xu J, Miao X, Lin X, Liu W, Ren H. Effects of exogenous silicon on maize seed germination and seedling growth. Sci Rep 2021; 11:1014. [PMID: 33441695 PMCID: PMC7806671 DOI: 10.1038/s41598-020-79723-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/10/2020] [Indexed: 01/20/2023] Open
Abstract
As the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L-1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L-1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L-1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.
Collapse
Affiliation(s)
- Yankun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaqi Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyang Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuesong Lin
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wanzhen Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Ren
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
48
|
Hu AY, Xu SN, Qin DN, Li W, Zhao XQ. Role of Silicon in Mediating Phosphorus Imbalance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 10:E51. [PMID: 33383611 PMCID: PMC7824163 DOI: 10.3390/plants10010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
The soil bioavailability of phosphorus (P) is often low because of its poor solubility, strong sorption and slow diffusion in most soils; however, stress due to excess soil P can occur in greenhouse production systems subjected to high levels of P fertilizer. Silicon (Si) is a beneficial element that can alleviate multiple biotic and abiotic stresses. Although numerous studies have investigated the effects of Si on P nutrition, a comprehensive review has not been published. Accordingly, here we review: (1) the Si uptake, transport and accumulation in various plant species; (2) the roles of phosphate transporters in P acquisition, mobilization, re-utilization and homeostasis; (3) the beneficial role of Si in improving P nutrition under P deficiency; and (4) the regulatory function of Si in decreasing P uptake under excess P. The results of the reviewed studies suggest the important role of Si in mediating P imbalance in plants. We also present a schematic model to explain underlying mechanisms responsible for the beneficial impact of Si on plant adaption to P-imbalance stress. Finally, we highlight the importance of future investigations aimed at revealing the role of Si in regulating P imbalance in plants, both at deeper molecular and broader field levels.
Collapse
Affiliation(s)
- An Yong Hu
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Shu Nan Xu
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Dong Ni Qin
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Wen Li
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses. PLANTS 2020; 9:plants9121779. [PMID: 33333938 PMCID: PMC7765459 DOI: 10.3390/plants9121779] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as ‘quasi–essential’, the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk. To this end, we discuss the gap in Si nutrition and propose a working model to explain the responses of individual MaN or MiN disorders and their mutual responses to Si supplementation.
Collapse
|
50
|
Calero Hurtado A, Chiconato DA, Prado RDM, Sousa Junior GDS, Olivera Viciedo D, Piccolo MDC. Silicon application induces changes C:N:P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J Biol Sci 2020; 27:3711-3719. [PMID: 33304182 PMCID: PMC7714968 DOI: 10.1016/j.sjbs.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 12/04/2022] Open
Abstract
Beneficial effects of silicon (Si) on growth have been observed in some plant species, reportedly due to stoichiometric changes of C, N, and P. However, little is known about the effects on the stoichiometric relationships between C, N, and P when silicon is supplied via different modes in sorghum and sunflower plants under salt stress conditions. Therefore, the current study was performed to investigate the impact of differing modes of Si supply on shoot biomass production and C:N:P stoichiometry in sorghum and sunflower plants under salt stress. Two experiments were performed in a glass greenhouse using the strong Si-accumulator plant sorghum, as well as the intermediate type Si-accumulator sunflower, both of which were grown in pots filled with washed sand. Plant species were cultivated for 30 days in the absence or presence of salt stress (0 or 100 mM) and supplemented with one of four Si treatments: control plants (without Si), 28.6 mmol Si L-1 via foliar application, 2.0 mmol Si L-1 via nutrient solution, and combined application of foliar and nutrient solution, each group with five replications. The results revealed that supplied Si modified the C, N, and P concentrations, thereby enhancing the C:N:P stoichiometry and shoot dry matter of sorghum and sunflower plants under salt stress. Both application of Si via nutrient solution, as well as combined application via foliar and nutrient solution, increased the C:N ratio in both plant species under salt stress, but in sorghum plants decreased the C:P and N:P ratios and increased the shoot biomass production by 39%, while in sunflower plants increased the C:P and N:P ratios and increased the shoot biomass production by 24%. Our findings suggest that salt stress alleviation by Si impacts C:N:P stoichiometric relationships in a variable manner depending on the ability of the species to accumulate Si, as well as the route of Si administration.
Collapse
Key Words
- Carbon
- Ecological stoichiometry
- F +Na, foliar Si treatment under NaCl stress
- F −Na, foliar Si treatment under non-NaCl stress
- F, foliar application of Si
- HCl, Hydrochloric acid
- Helianthus annuus
- LDM, leaves dry matter
- Macronutrients
- Na+, sodium
- R +Na, root Si treatment under NaCl stress
- R −Na, root Si treatment under non-NaCl stress
- R, root application of Si
- RF +Na, combined Si treatment under NaCl stress
- RF −Na, combined Si treatment under non-NaCl stress
- RF, and combined foliar and root applications of Si
- S, Scheffe
- SDM, shoot dry matter
- SDM, stem dry matter
- Salinity
- Si × NaCl, Si–NaCl interaction
- Si, Silicon
- SiNaKE, Stabilized sodium and potassium silicate
- Sorghum bicolor
- −Si +Na, non-Si treatment under NaCl stress
- −Si −Na, non-Si treatment under non-NaCl stress
- −Si, Control no added Si
Collapse
Affiliation(s)
- Alexander Calero Hurtado
- Department of Agricultural Production Sciences - Soil and Fertilizer Sector, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue s/n, P. C. 14884900, Jaboticabal, São Paulo, Brazil
| | - Denise Aparecida Chiconato
- Department of Biology Applied to Agriculture, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue s/n, P. C. 14884900, Jaboticabal, São Paulo, Brazil
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences - Soil and Fertilizer Sector, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue s/n, P. C. 14884900, Jaboticabal, São Paulo, Brazil
| | - Gilmar da Silveira Sousa Junior
- Department of Biology Applied to Agriculture, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue s/n, P. C. 14884900, Jaboticabal, São Paulo, Brazil
| | - Dilier Olivera Viciedo
- Department of Agricultural Production Sciences - Soil and Fertilizer Sector, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue s/n, P. C. 14884900, Jaboticabal, São Paulo, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), Centenário Avenue 303, cep 13400-970, Piracicaba, SãoPaulo, Brazil
| |
Collapse
|