1
|
Xu L, He L, Li Y, Cai T, Zhang J, Chu Z, Shen X, Cai R, Shi H, Zhu C. Stimuli-triggered multilayer films in response to temperature and ionic strength changes for controlled favipiravir drug release. Biomed Mater 2024; 19:035004. [PMID: 38364282 DOI: 10.1088/1748-605x/ad2a3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
The block copolymer micelles and natural biopolymers were utilized to form layer-by-layer (LbL) films via electrostatic interaction, which were able to effectively load and controllably release favipiravir, a potential drug for the treatment of coronavirus epidemic. The LbL films demonstrated reversible swelling/shrinking behavior along with the manipulation of temperature, which could also maintain the integrity in the structure and the morphology. Due to dehydration of environmentally responsive building blocks, the drug release rate from the films was decelerated by elevating environmental temperature and ionic strength. In addition, the pulsed release of favipiravir was observed from the multilayer films under the trigger of temperature, which ensured the precise control in the content of the therapeutic reagents at a desired time point. The nanoparticle-based LbL films could be used for on-demandin vitrorelease of chemotherapeutic reagents.
Collapse
Affiliation(s)
- Li Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Lang He
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yinzhao Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Tingwei Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jianhua Zhang
- N.O.D topia (GuangZhou) Biotechnology Co., Ltd, Guangzhou, Guangdong 510599, People's Republic of China
| | - Zihan Chu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaochen Shen
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, Jiangsu 210019, People's Republic of China
| | - Raymond Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chunyin Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
2
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
3
|
Huang YC, Zeng YJ, Lin YW, Tai HC, Don TM. In Situ Encapsulation of Camptothecin by Self-Assembly of Poly(acrylic acid)- b-Poly( N-Isopropylacrylamide) and Chitosan for Controlled Drug Delivery. Polymers (Basel) 2023; 15:polym15112463. [PMID: 37299263 DOI: 10.3390/polym15112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Camptothecin (CPT) has been shown to exhibit anticancer activity against several cancers. Nevertheless, CPT is very hydrophobic with poor stability, and thus its medical application is limited. Therefore, various drug carriers have been exploited for effectively delivering CPT to the targeted cancer site. In this study, a dual pH/thermo-responsive block copolymer of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNP) was synthesized and applied to encapsulate CPT. At temperatures above its cloud point, the block copolymer self-assembled to form nanoparticles (NPs) and in situ encapsulate CPT, owing to their hydrophobic interaction as evidenced by fluorescence spectrometry. Chitosan (CS) was further applied on the surface through the formation of a polyelectrolyte complex with PAA for improving biocompatibility. The average particle size and zeta potential of the developed PAA-b-PNP/CPT/CS NPs in a buffer solution were 168 nm and -30.6 mV, respectively. These NPs were still stable at least for 1 month. The PAA-b-PNP/CS NPs exhibited good biocompatibility toward NIH 3T3 cells. Moreover, they could protect the CPT at pH 2.0 with a very slow-release rate. At pH 6.0, these NPs could be internalized by Caco-2 cells, followed by intracellular release of the CPT. They became highly swollen at pH 7.4, and the released CPT was able to diffuse into the cells at higher intensity. Among several cancer cell lines, the highest cytotoxicity was observed for H460 cells. As a result, these environmentally-responsive NPs have the potential to be applied in oral administration.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yang-Jie Zeng
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yu-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Hung-Chih Tai
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| |
Collapse
|
4
|
Tie BSH, Halligan E, Zhuo S, Keane G, Geever L. Synthesis of NVCL-NIPAM Hydrogels Using PEGDMA as a Chemical Crosslinker for Controlled Swelling Behaviours in Potential Shapeshifting Applications. Gels 2023; 9:gels9030248. [PMID: 36975697 PMCID: PMC10048785 DOI: 10.3390/gels9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Stimuli-responsive hydrogels have recently gained interest within shapeshifting applications due to their capabilities to expand in water and their altering swelling properties when triggered by stimuli, such as pH and heat. While conventional hydrogels lose their mechanical strength during swelling, most shapeshifting applications require materials to have mechanical strength within a satisfactory range to perform specified tasks. Thus, stronger hydrogels are needed for shapeshifting applications. Poly (N-isopropylacrylamide) (PNIPAm) and poly (N-vinyl caprolactam) (PNVCL) are the most popular thermosensitive hydrogels studied. Their close-to-physiological lower critical solution temperature (LCST) makes them superior candidates in biomedicine. In this study, copolymers made of NVCL and NIPAm and chemically crosslinked using poly (ethylene glycol) dimethacrylate (PEGDMA) were fabricated. Successful polymerisation was proven via Fourier transform infrared spectroscopy (FTIR). The effects of incorporating comonomer and crosslinker on the LCST were found minimal using cloud-point measurements, ultraviolet (UV) spectroscopy, and differential scanning calorimetry (DSC). Formulations that completed three cycles of thermo-reversing pulsatile swelling are demonstrated. Lastly, rheological analysis validated the mechanical strength of PNVCL, which was improved due to the incorporation of NIPAm and PEGDMA. This study showcases potential smart thermosensitive NVCL-based copolymers that can be applied in the biomedical shapeshifting area.
Collapse
Affiliation(s)
- Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Luke Geever
- Applied Polymer Technologies Gateway, Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
5
|
Folic-Acid-Conjugated Thermoresponsive Polymeric Particles for Targeted Delivery of 5-Fluorouracil to CRC Cells. Int J Mol Sci 2023; 24:ijms24021364. [PMID: 36674883 PMCID: PMC9861804 DOI: 10.3390/ijms24021364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer is the fourth most common cancer worldwide and the third most frequently diagnosed form of cancer associated with high mortality rates. Recently, targeted drug delivery systems have been under increasing attention owing to advantages such as high therapeutic effectiveness with a significant depletion in adverse events. In this report, we describe the biocompatible and thermoresponsive FA-conjugated PHEA-b-PNIPAAm copolymers as nanocarriers for the delivery of 5-FU. The block copolymers were obtained using RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization and were characterized by methods such as SEC (Size Exclusion Chromatography), NMR (Nuclear Magnetic Resonance), UV-Vis (Ultraviolet-Visible), FT-IR (Fourier Transform Infrared) spectroscopy, and TGA (Thermogravimetric Analysis). Nanoparticles were formed from polymers with and without the drug-5-fluorouracil, which was confirmed using DLS (Dynamic Light Scattering), zeta potential measurements, and TEM (Transmission Electron Microscopy) imaging. The cloud points of the polymers were found to be close to the temperature of the human body. Eventually, polymeric carriers were tested as drug delivery systems for the safety, compatibility, and targeting of colorectal cancer cells (CRC). The biological evaluation indicated high compatibility with the representative host cells. Furthermore, it showed that proposed nanosystems might have therapeutic potential as mitigators for 5-FU-induced monocytopenia, cardiotoxicity, and other chemotherapy-associated disorders. Moreover, results show increased cytotoxicity against cancer cells compared to the drug, including a line with a drug resistance phenotype. Additionally, the ability of synthesized carriers to induce apoptosis and necrosis in treated CRC cells has been confirmed. Undoubtedly, the presented aspects of colorectal cancer therapy promise future solutions to overcome the conventional limitations of current treatment regimens for this type of cancer and to improve the quality of life of the patients.
Collapse
|
6
|
Buyana B, Naki T, Alven S, Aderibigbe BA. Nanoparticles Loaded with Platinum Drugs for Colorectal Cancer Therapy. Int J Mol Sci 2022; 23:11261. [PMID: 36232561 PMCID: PMC9569963 DOI: 10.3390/ijms231911261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a common cancer in both men and women. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. Platinum treatments as well as other medications comprising of nanoparticles have been utilized. Drug resistance restricts the use of platinum medicines, despite their considerable efficacy against a variety of cancers. This review reports clinically licensed platinum medicines (cisplatin, carboplatin, and oxaliplatin) combined with various nanoparticles that have been evaluated for their therapeutic efficacy in the treatment of colorectal cancer, including their mechanism of action, resistance, and limitations.
Collapse
Affiliation(s)
| | | | | | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape Province, South Africa
| |
Collapse
|
7
|
Oliveira CBP, Veloso SRS, Castanheira EMS, Figueiredo PR, Carvalho ATP, Hilliou L, Pereira RB, Pereira DM, Martins JA, Ferreira PMT, Jervis PJ. An injectable, naproxen-conjugated, supramolecular hydrogel with ultra-low critical gelation concentration-prepared from a known folate receptor ligand. SOFT MATTER 2022; 18:3955-3966. [PMID: 35551321 DOI: 10.1039/d2sm00121g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels-self-assembled networks of fibrils able to trap water molecules. Typically, these hydrogelators can form stiff gels at concentrations of 0.1 to 1.0 wt%-i.e. they consist of mainly water. The properties of these soft materials mimic those of the extracellular matrix (ECM) of biological tissue and therefore they have found many biomedical uses in tissue engineering, wound healing, drug delivery, biosensing and bioprinting applications. In drug delivery strategies related to cancer therapy, injectable hydrogels can serve as a depot formulation, where a sustained release of the chemotherapeutic from near the tumour site allows reduced doses and, therefore, decreased side effects. To further target cancer cells, folic acid-conjugated hydrogels and nanostructures are often sought, to exploit the overexpression of folate receptors on cancer cells-an approach which can allow the selective cellular uptake of an encapsulated drug. In this present study, two known dipeptide folate receptor ligands (1 and 2) recently identified from a screen of a DNA-encoded compound library, were synthesised and investigated for their hydrogelation ability and cytotoxicity. Compound 1, containing a naproxen capping group, rapidly forms hydrogels at concentrations as low as 0.03 wt%-one of the lowest critical gelation concentrations (CGCs) known for a supramolecular hydrogelator. In contrast, compound 2, which contains a 3-indolepropionic acid capping group, was unable to form hydrogels under a range of conditions and concentrations, instead forming nanospheres with diameters of 0.5 μm. Hydrogels of 1 were characterised by STEM microscopy, rheology, fluorescence spectroscopy and circular dichroism. Both compounds 1 and 2 had no impact on the proliferation of kerotinocytes (HaCaT cells) at concentrations up to 100 μM. Compound 1, containing the NSAID, was tested for anti-inflammatory activity in a human cyclooxygenase-1/2 model. The rate of the release of model drug compounds from within hydrogels of 1 was also investigated.
Collapse
Affiliation(s)
- Carlos B P Oliveira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Pedro R Figueiredo
- CNC - Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Alexandra T P Carvalho
- CNC - Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, Northern Ireland, UK
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Renato B Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José A Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Peter J Jervis
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
8
|
Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives. Eur J Pharmacol 2022; 917:174751. [PMID: 35021110 DOI: 10.1016/j.ejphar.2022.174751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is preventable yet one of the most prevalent cancers among women around the globe. Though regular screening has resulted in the decline in incidence, the disease claims a high number of lives every year, especially in the developing countries. Owing to rather aggressive and non-specific nature of the conventional chemotherapeutics, there is a growing need for newer treatment modalities. The advent of nanotechnology has assisted in this through the use of nanocarriers for targeted drug delivery. A number of nanocarriers are continuously being developed and studied for their application in drug delivery. The present review summarises the different drug delivery approaches and nanocarriers that can be useful, their advantages and limitation.
Collapse
Affiliation(s)
- Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Al-Rahim AM, AlChalabi R, Al-Saffar AZ, Sulaiman GM, Albukhaty S, Belali T, Ahmed EM, Khalil KAA. Folate-methotrexate loaded bovine serum albumin nanoparticles preparation: an in vitro drug targeting cytokines overwhelming expressed immune cells from rheumatoid arthritis patients. Anim Biotechnol 2021; 34:166-182. [PMID: 34319853 DOI: 10.1080/10495398.2021.1951282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The study planned to estimate biological parameters linked to rheumatoid arthritis (RA) patients, detecting the influence of MTX and biotherapy treatments on these parameters and synthesizing methotrexate bovine serum albumin nanoparticles linked to folate (FA-MTX-BSA NPs) to reduce the overwhelming expression of inflammatory cytokines. Inflammatory parameters showed significant increases in newly diagnosed and MTX-receiving groups while no changes were observed in the biotherapy-maintained group. MTX-loaded BSA nanoparticles were fabricated by the desolvation method and further linked to activated folic acid to obtain FA-MTX-BSA NPs. FA-MTX-BSA NPs were successfully characterized within the nanoscale range using different screening techniques. FA-MTX-BSA NPs showed an in vitro release in a sustained manner. The potential of MTX, MTX-BSA NPs, and FA-MTX-BSA NPs in inducing cytokine level reduction was detected. Significant decreases in interleukin- 1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels were obtained in cultures treated with FA-MTX-BSA NPs compared to the untreated culture in a dose-dependent pattern. Furthermore, FA-MTX-BSA NPs comparing with MTX and MTX-BSA NPs exhibited a significant advanced effect in decreasing cytokines levels. Accordingly, the conjunction of BSA NPs and MTX linked to folate potentially reduced cytokines manifestation in RA.
Collapse
Affiliation(s)
- Aya M Al-Rahim
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Rawaa AlChalabi
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | | | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
| | - Tareg Belali
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Elsadig M Ahmed
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia.,Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Khalil A A Khalil
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, University of Hodeidah, Hodeidah, Yemen
| |
Collapse
|
10
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
11
|
Veloso SRS, Silva JFG, Hilliou L, Moura C, Coutinho PJG, Martins JA, Testa-Anta M, Salgueiriño V, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E16. [PMID: 33374786 PMCID: PMC7824179 DOI: 10.3390/nano11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Joana F. G. Silva
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Cacilda Moura
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Paulo J. G. Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - José A. Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Martín Testa-Anta
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | | | - Paula M. T. Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Elisabete M. S. Castanheira
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| |
Collapse
|
12
|
Ilyas S, Ullah NK, Ilyas M, Wennhold K, Iqbal M, Schlößer HA, Hussain MS, Mathur S. Mediating the Fate of Cancer Cell Uptake: Dual-Targeted Magnetic Nanovectors with Biotin and Folate Surface Ligands. ACS Biomater Sci Eng 2020; 6:6138-6147. [DOI: 10.1021/acsbiomaterials.0c00771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Nighat K. Ullah
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Muhammad Ilyas
- Professorship for Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckmann Straße 2, 85354 Freising, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne and Translational Immunology, University Hospital Cologne, 50931 Cologne, Germany
- Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Maria Iqbal
- Institute of Biochemistry I, Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Hans A. Schlößer
- Center for Molecular Medicine Cologne and Translational Immunology, University Hospital Cologne, 50931 Cologne, Germany
- Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Muhammad S. Hussain
- Institute of Biochemistry I, Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
13
|
Rajpoot K, Jain SK. 99mTc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J Microencapsul 2020; 37:609-623. [PMID: 32985297 DOI: 10.1080/02652048.2020.1829141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM This study was aimed to develop Eudragit S100-coated, pH-awakened microbeads (MBs) encapsulating folic acid (FA)-modified tristearin solid lipid nanoparticles (SLNs) loaded with oxaliplatin (OP). Afterward, these formulations were evaluated (in vitro and in vivo) for their potential against colorectal cancer (CRC). METHODS The SLNs were synthesised by employing the solvent diffusion technique and then they were entrapped in the MBs. The prepared uncoupled and coupled SLNs (SLN-OP and FA-SLN-OP, respectively) were examined for in vitro cytotoxicity effect against COLO-205. Gamma-scintigraphy study was used for determining biodistribution (in vivo) of drug in different organs through MBs. RESULTS Outcomes for FA-SLN-OP revealed more cytotoxicity (50% inhibitory concentration [IC50] = 6.8 µg/ml) against COLO-205 cells (in vitro) than OP solution (IC50 = 8.0 µg/ml) and SLN-OP (IC50= 7.5 µg/ml). MBs were also investigated in vivo using Gamma-scintigraphy study. After 48 h study, 99mTc-EuB-FA-SLN-OP confirmed an elevated level of drug in the colonic tumour, which was found significantly (p< 0.0001) higher than that of 99mTc-EuB-SLN-OP. CONCLUSIONS In conclusion, developed MBs formulation (99mTc-EuB-FA-SLN-OP) suggested promising results against therapy of CRC using dual targeting (i.e. ligand-directed and pH-awakened) approach.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sunil K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
14
|
Anticancer Effects of Plasma-Activated Medium Produced by a Microwave-Excited Atmospheric Pressure Argon Plasma Jet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4205640. [PMID: 32802265 PMCID: PMC7415084 DOI: 10.1155/2020/4205640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Cold atmospheric plasma (CAP) has been reported to have strong anticancer effects in vitro and in vivo. CAP has been known to induce apoptosis in most cancer cells by treatment to cells using direct and indirect treatment methods. There are many reports of apoptosis pathways induced by CAP, but for indirect treatment, there is still a lack of fundamental research on how CAP can cause apoptosis in cancer cells. In this study, we applied an indirect treatment method to determine how CAP can induce cancer cell death. First, plasma-activated medium (PAM) was produced by a 2.45 GHz microwave-excited atmospheric pressure plasma jet (ME-APPJ). Next, the amounts of various reactive species in the PAM were estimated using colorimetric methods. The concentration of NO2– and H2O2 in PAM cultured with cancer cells was measured, and intracellular reactive oxidative stress (ROS) changes were observed using flow cytometry. When PAM was incubated with A549 lung cancer cells, there was little change in NO2– concentration, but the concentration of H2O2 gradually decreased after 30 min. While the intracellular ROS of A549 cells was rapidly increased at 2 hours, there was no significant change in that of PAM-treated normal cells. Furthermore, PAM had a significant cytotoxic effect on A549 cells but had little effect on normal cell viability. In addition, using flow cytometry, we confirmed that apoptosis of A549 cells occurred following flow cytometry and western blot analysis. These results suggest that among various reactive species produced by PAM, hydrogen peroxide plays a key role in inducing cancer cell apoptosis.
Collapse
|
15
|
Garcia-Pinel B, Ortega-Rodríguez A, Porras-Alcalá C, Cabeza L, Contreras-Cáceres R, Ortiz R, Díaz A, Moscoso A, Sarabia F, Prados J, López-Romero JM, Melguizo C. Magnetically active pNIPAM nanosystems as temperature-sensitive biocompatible structures for controlled drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1022-1035. [PMID: 32663040 DOI: 10.1080/21691401.2020.1773488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, temperature-sensitive hybrid poly(N-isopropylacrylamide) (pNIPAM) nanosystems with magnetic response are synthesised and investigated for controlled release of 5-fluorouracil (5FU) and oxaliplatin (OXA). Initially, magnetic nanoparticles (@Fe3O4) are synthesised by co-precipitation approach and functionalised with acrylic acid (AA), 3-butenoic acid (3BA) or allylamine (AL) as comonomers. The thermo-responsive polymer is grown by free radical polymerisation using N-isopropylacrylamide (NIPAM) as monomer, N,N'-methylenbisacrylamide (BIS) as cross-linker, and 2,2'-azobis(2-methylpropionamidene) (V50) as initiator. We evaluate particle morphology by transmission electron microscopy (TEM) and particle size and surface charge by dynamic light scattering (DLS) and Z-potential (ZP) measurements. These magnetically active pNIPAM@ nanoformulations are loaded with 5-fluorouracil (5FU) and oxaliplatin (OXA) to determine loading efficiency, drug content and release as well as the cytotoxicity against T-84 colon cancer cells. Our results show high biocompatibility of pNIPAM nanoformulations using human blood cells and cultured cells. Interestingly, the pNIPAM@Fe3O4-3BA + 5FU nanoformulation significantly reduces the growth of T-84 cells (57% relative inhibition of proliferation). Indeed, pNIPAM-co-AL@Fe3O4-AA nanosystems produce a slight migration of HCT15 cells in suspension in the presence of an external magnetic field. Therefore, the obtained hybrid nanoparticles can be applied as a promising biocompatible nanoplatform for the delivery of 5FU and OXA in the improvement of colon cancer treatments.
Collapse
Affiliation(s)
- Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rafael Contreras-Cáceres
- Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Amelia Díaz
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Ana Moscoso
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
16
|
Dendrimer-like AB2-type star polymers as nanocarriers for doxorubicin delivery to breast cancer cells: synthesis, characterization, in-vitro release and cytotoxicity studies. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02089-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int J Biol Macromol 2020; 151:830-844. [DOI: 10.1016/j.ijbiomac.2020.02.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
|
18
|
Mun SG, Choi HW, Lee JM, Lim JH, Ha JH, Kang MJ, Kim EJ, Kang L, Chung BG. rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. NANO CONVERGENCE 2020; 7:10. [PMID: 32180051 PMCID: PMC7076105 DOI: 10.1186/s40580-020-0220-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
We developed the microfluidic co-culture platform to study photothermal therapy applications. We conjugated folic acid (FA) to target breast cancer cells using reduced graphene oxide (rGO)-based functional nanomaterials. To characterize the structure of rGO-based nanomaterials, we analyzed the molecular spectrum using UV-visible and Fourier-transform infrared spectroscopy (FT-IR). We demonstrated the effect of rGO-FA-based nanomaterials on photothermal therapy of breast cancer cells in the microfluidic co-culture platform. From the microfluidic co-culture platform with breast cancer cells and human umbilical vein endothelial cells (HUVECs), we observed that the viability of breast cancer cells treated with rGO-FA-based functional nanomaterials was significantly decreased after near-infrared (NIR) laser irradiation. Therefore, this microfluidic co-culture platform could be a potentially powerful tool for studying cancer cell targeting and photothermal therapy.
Collapse
Affiliation(s)
- Seok Gyu Mun
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | | | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | - Lifeng Kang
- School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
19
|
Iqbal Z, Dilnawaz F. Nanocarriers For Vaginal Drug Delivery. ACTA ACUST UNITED AC 2020; 13:3-15. [PMID: 30767755 DOI: 10.2174/1872211313666190215141507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Vaginal drug delivery approach represents one of the imperative strategies for local and systemic delivery of drugs. The peculiar dense vascular networks, mucus permeability, and range of physiological characteristics of the vaginal cavity have been exploited for therapeutic benefit. Furthermore, the vaginal drug delivery has been curtailed due to the influence of different physiological factors like acidic pH, constant cervical secretion, microflora, cyclic changes during periods along with turnover of mucus of varying thickness. OBJECTIVE This review highlights advancement of nanomedicine and its prospective progress towards the clinic. METHODS Relevant literature reports and patents related to topics are retrieved and used. RESULT The extensive literature search and patent revealed that nanocarriers are efficacious over conventional treatment approaches. CONCLUSION Recently, nanotechnology based drug delivery approach has promised better therapeutic outcomes by providing enhanced permeation and sustained drug release activity. Different nanoplatforms based on drugs, peptides, proteins, antigens, hormones, nucleic material, and microbicides are gaining momentum for vaginal therapeutics.
Collapse
Affiliation(s)
- Zeenat Iqbal
- Nanomedicine Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Bhubaneswar -751023, Odisha, India
| |
Collapse
|
20
|
Rajpoot K, Jain SK. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J Microencapsul 2019; 36:659-676. [PMID: 31495238 DOI: 10.1080/02652048.2019.1665723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: The aim of this investigation was to evaluate the potential of folic acid-tailored solid lipid nanoparticles (SLNs) for encapsulation as well as for in vitro cytotoxicity study of irinotecan hydrochloride trihydrate (IHT) against colorectal cancer (CRC) by using HT-29 cells. Methods: Solvent diffusion technique was employed for the preparation of SLNs. Further, the formulations were optimised via three-level, three-factor Box-Behnken design (BBD). Results: The uncoupled SLNs (IRSLNs) and folic acid-coupled SLNs (IRSLNFs) formulations revealed not only high %entrapment efficiency but also small particle size. Moreover, in vitro drug release results from IRSLNs and IRSLNFs confirmed that they followed sustained-release effect for up to 144 h. Whereas, in vitro cell viability study against HT-29 cell line suggested significantly (p < 0.05) higher cytotoxicity (IC50 = 15 µg/ml) of IRSLNFs over IRSLNs and IHT solution. Conclusions: Outcomes suggested that the engineered IRSLNFs hold great potential for targeting CRC for an extended period of time.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , India
| | - Sunil K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , India
| |
Collapse
|
21
|
Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules 2019; 9:biom9090418. [PMID: 31461995 PMCID: PMC6770649 DOI: 10.3390/biom9090418] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma is one of the utmost diagnosed cancer with a steep increase in mortality rate. The incidence has been increasing in developing countries like India due to a westernization life style. Flavonoids have been explored widely for its various pharmacological activity including antitumor activity. Orientin, an analogue of luteolin (citrus flavonoid) isolated from rooibos and tulsi leaves is also expected to deliver significant antitumor activity similar to that of luteolin. The present study anticipates exploring the antitumor activity of orientin against colorectal carcinoma cells (HT29). Orientin exhibited remarkable cytotoxicity and antiproliferative activity against HT29 cells, which is clearly evident from tetrazolium based cytotoxicity and lactate dehydrogenase release assays. Orientin induce G0/G1 cell cycle arrest and regulates cyclin and cyclin-dependent protein kinases in order to prevent the entry of the cell cycle to the S phase. Annexin V-FITC (V-Fluorescein Isothiocyanate) dual staining reveals the apoptotic induction ability of orientin. The Bcl-2 family proteins along with the inhibitor of apoptotic proteins were regulated and the tumor suppressor p-53 expression have been decreased. In conclusion, our results proposed that orientin could be a potent chemotherapeutic agent against colorectal cancer after ascertaining their molecular mechanisms.
Collapse
Affiliation(s)
- Kalaiyarasu Thangaraj
- Department of Microbiology and Biotechnology, Bharath Institute of Higher Education and Research, Tamilnadu 600045, India
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Tamilnadu 636011, India
| | | | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea
| | - Karthi Natesan
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Tamilnadu 636011, India
- Genomic Division, National Academy of Agricultural Science, RDA, Jeollabuk 560500, Korea
| | - Wenchao Liu
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Guangdong 524088, China
| | - Vaiyapuri Manju
- Molecular Oncology Lab, Department of Biochemistry, Periyar University, Tamilnadu 636011, India.
| |
Collapse
|
22
|
Nosrati H, Charmi J, Salehiabar M, Abhari F, Danafar H. Tumor Targeted Albumin Coated Bismuth Sulfide Nanoparticles (Bi 2S 3) as Radiosensitizers and Carriers of Curcumin for Enhanced Chemoradiation Therapy. ACS Biomater Sci Eng 2019; 5:4416-4424. [PMID: 33438407 DOI: 10.1021/acsbiomaterials.9b00489] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combination therapy such as radiotherapy combined with chemotherapy has attracted excessive interest in the new cancer research area. Therefore, developing nanobiomaterials for combination of radiotherapy and chemotherapy is required for more powerful and successful cures. Because of the amazing X-ray sensitization proficiency of Bi based nanoparticles, in this work, we synthesized and used Bi2S3 as an enhancer of X-ray radiation therapy, and furthermore, Bi2S3 served as carrier of curcumin (CUR), a chemotherapy drug, for the goal of combination therapy. Additionally, we selected and conjugated folic acid (FA) as a targeting molecule for the direction of the designed system to the tumor site. After characterization of drug loaded FA conjugated Bi2S3@BSA nanoparticles (Bi2S3@BSA-FA-CUR) and in vitro and in vivo safety assessment, we applied it for enhanced chemotherapy and X-ray radiation therapy in cancer cells and a tumor bearing mice model. Moreover, the CT contrast ability of synthesized nanoparticles was examined. Here, we (1) for the first time developed the novel and targeted CUR loaded Bi2S3@BSA (Bi2S3@BSA-FA-CUR) to promote chemoradiation therapy in 4T1 cells and breast tumor in mice; (2) found the synthesized nanoparticles to have good stability; (3) injected a single dose of the designed radiosensitizer for cancer therapy; and (4) used a conventional X-ray dose, 2Gy, for X-ray radiation therapy. The result of in vivo X-ray radiotherapy shows that the mice tumors vanished near 3 weeks after radiation. Interestingly, these results show that Bi2S3@BSA-FA-CUR with the aid of X-ray can clearly promote the efficacy of chemoradiation therapy.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of pharmaceutical biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran
| | - Jalil Charmi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Marziyeh Salehiabar
- Department of pharmaceutical biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran.,Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Fatemeh Abhari
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Danafar
- Department of pharmaceutical biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran
| |
Collapse
|
23
|
Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 2019; 14:1633-1657. [PMID: 30880970 PMCID: PMC6417854 DOI: 10.2147/ijn.s184723] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,
| | - Katayoon Kalantari
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahra Izadiyan
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,
| | - Kamyar Shameli
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,
| |
Collapse
|
24
|
Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019; 24:molecules24030603. [PMID: 30744011 PMCID: PMC6384686 DOI: 10.3390/molecules24030603] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 11/16/2022] Open
Abstract
Conventional drug delivery approaches are plagued by issues pertaining to systemic toxicity and repeated dosing. Hydrogels offer convenient drug delivery vehicles to ensure these disadvantages are minimized and the therapeutic benefits from the drug are optimized. With exquisitely tunable physical properties that confer them great controlled drug release features and the merits they offer for labile drug protection from degradation, hydrogels emerge as very efficient drug delivery systems. The versatility and diversity of the hydrogels extend their applications beyond targeted drug delivery also to wound dressings, contact lenses and tissue engineering to name but a few. They are 90% water, and highly porous to accommodate drugs for delivery and facilitate controlled release. Herein we discuss hydrogels and how they could be manipulated for targeted drug delivery applications. Suitable examples from the literature are provided that support the recent advancements of hydrogels in targeted drug delivery in diverse disease areas and how they could be suitably modified in very different ways for achieving significant impact in targeted drug delivery. With their enormous amenability to modification, hydrogels serve as promising delivery vehicles of therapeutic molecules in several disease conditions, including cancer and diabetes.
Collapse
|
25
|
Zhao J, Yan C, Chen Z, Liu J, Song H, Wang W, Liu J, Yang N, Zhao Y, Chen L. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J Colloid Interface Sci 2019; 540:66-77. [PMID: 30634060 DOI: 10.1016/j.jcis.2019.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/14/2023]
Abstract
Multifunctional nanoparticles (NPs) with high blood-stability, tumor-targeting ability, and stimuli-bioresponsive drug release behaviors are urgently demanded. Herein, folic acid (FA) and galactose (GAL) functionalized, core-crosslinked NPs (CC NPs) with dual-targeting and pH/redox-bioresponsive properties were developed based on amphiphilic FA-poly(6-O-methacryloyl-d-galactopyranose)-b-poly[2-(diisopropylamino) ethyl methacrylate-co-pyridyl disulfide methylacrylate] [FA-PMAgGP-b-P(DPA-co-PDEMA), termed as FA-PMgDP] block copolymers, and then investigated for facilitated hepatoma-targeting delivery of doxorubicin (DOX). A series of PMgDP copolymers were synthesized though two-step RAFT copolymerization followed by acid-induced acetal deprotection reaction. Their well-defined chemical structures and compositions were characterized by 1H NMR and gel permeation chromatography. Nano-sized, non-crosslinked PMgDP NPs (PMgDP NC NPs) with sizes of less than 25 nm in aqueous solution were self-assembled via the solvent exchange method, and PMgDP CC NPs were readily prepared in the presence of dithiothreitol. The drug-loading content of PMgDP CC NPs was up to 15.8% and its entrapment efficiency was 89.0%. In normal physiological conditions, 11.6% of DOX was released from DOX-loaded PMgDP CC NPs at 25 h, whereas in analogous intracellular microenvironment, 95.5% was released at 11 h owing to the acid-induced protonation of tertiary amine and reductive cleavage of disulfide bond in the hydrophobic core. In a cellular uptake study, FA and GAL-mediated, active, dual-targeted DOX-loaded FA-PMgDP CC NPs showed a 3.54-fold increase in cellular uptake efficiency to HepG2 cells compared to that of shown by single GAL-targeted, DOX-loaded PMgDP NC NPs. Results of in vitro cytotoxicity study showed that blank FA-PMgDP CC NPs exhibited good biocompatibility, whereas dual-targeting DOX-loaded FA-PMgDP CC NPs increased cell apoptosis. Therefore, the above results indicated that the well-constructed FA-PMgDP CC NPs with multi-synergistic effect may serve as new nanocarriers in the field of precise hepatoma-targeting drug delivery.
Collapse
Affiliation(s)
- Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Caixia Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Ze Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
26
|
Kubo T, Tachibana K, Naito T, Mukai S, Akiyoshi K, Balachandran J, Otsuka K. Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomater Sci Eng 2018; 5:759-767. [DOI: 10.1021/acsbiomaterials.8b01401] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaname Tachibana
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toyohiro Naito
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sadaatsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jeyadevan Balachandran
- Department of Material Science, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone City, 522-8533 Shiga Prefecture, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
27
|
Yogev S, Shabtay-Orbach A, Nyska A, Mizrahi B. Local Toxicity of Topically Administrated Thermoresponsive Systems: In Vitro Studies with In Vivo Correlation. Toxicol Pathol 2018; 47:426-432. [PMID: 30407122 DOI: 10.1177/0192623318810199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thermoresponsive materials have the ability to respond to a small change in temperature-a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.
Collapse
Affiliation(s)
- Sivan Yogev
- 1 Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | | | | | - Boaz Mizrahi
- 1 Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| |
Collapse
|
28
|
Dramou P, Fizir M, Taleb A, Itatahine A, Dahiru NS, Mehdi YA, Wei L, Zhang J, He H. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydr Polym 2018; 197:117-127. [DOI: 10.1016/j.carbpol.2018.05.071] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
|
29
|
Veloso SRS, Ferreira PMT, Martins JA, Coutinho PJG, Castanheira EMS. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018; 10:E145. [PMID: 30181472 PMCID: PMC6161300 DOI: 10.3390/pharmaceutics10030145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
Drug delivery nanosystems have been thriving in recent years as a promising application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy targeting and add further features such as enhanced magnetic resonance imaging, biosensing and hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new generation of nanosystems, the magnetogels, which combine the advantages of both nanomaterials, apart from showing interesting properties unobtainable when both systems are separated. The presence of magnetic nanoparticles allows the control and targeting of the nanosystem to a specific location by an externally applied magnetic field gradient. Moreover, the application of an alternating magnetic field (AMF) not only allows therapy through hyperthermia, but also enhances drug delivery and chemotherapeutic desired effects, which combined with the hydrogel specificity, confer a high therapeutic efficiency. Therefore, the present review summarizes the magnetogels properties and critically discusses their current and recent biomedical applications, apart from an outlook on future goals and perspectives.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
30
|
Li Y, Zhang X, Luo W, Wang D, Yang L, Wang J, Zhang L, Zhang S, Luo S, Wang Y. Dual-functionalized nanoparticles loaded microbubbles for enhancement of drug uptake. ULTRASONICS 2018; 87:82-90. [PMID: 29475016 DOI: 10.1016/j.ultras.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/19/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The application of microbubble (MB)-assisted ultrasound (US) can combine the advantages of real-time imaging and targeted drug delivery. However, the drug loading capacity of MB is limited restricting its application in antitumor procedure. In contrast, nanoparticles (NPs) can carry drugs more efficiently, but adverse side effect induced by unspecific accumulation can not be ignored. Herein, we developed a dual-functionalized NP loaded MB to investigate its potential feasibility for tumor-targeted drug delivery. Firstly, we prepared NPs using heparin as backbone. Targeting ligand folate and cell-penetrating ligand Tat peptide were conjugated to the backbone to deliver paclitaxel (H-F-Tat-P NPs). Subsequently, the dual-functionalized NPs were incorporated with MBs via avidin-biotin linkage to fabricate H-F-Tat-P NPs loaded MBs (NPs-loaded MBs). The combined strategy can take profit of dual functionalities from NPs and sonoporation effect from MBs triggered by US. The prepared NPs have been characterized. The excellent cellular uptake of NPs were qualitative and quantitative analysis by flow cytometry and confocal microscope, the results indicated that it was attributed to not only dual functionalities but also US effect. Foremost, the NPs-loaded MBs combined with US exhibited significant cytotoxicity on both folate receptor (FR) overexpressing and deficiency cells. The combination of dual-functionalized NPs and MBs with US is expected to be a promising strategy for targeted anticancer drug delivery and ultrasound imaging simultaneously.
Collapse
Affiliation(s)
- Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xia Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Dongxiao Wang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Li Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguo Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shiyu Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyi Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Zhang X, Zhao G, Cao Y, Haider Z, Wang M, Fu J. Magnetothermal heating facilitates the cryogenic recovery of stem cell–laden alginate–Fe3O4 nanocomposite hydrogels. Biomater Sci 2018; 6:3139-3151. [DOI: 10.1039/c8bm01004h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A report on the self-heating enabled cryopreservation of stem cell–laden magnetic nanocomposite hydrogels.
Collapse
Affiliation(s)
- Xiaozhang Zhang
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Gang Zhao
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Yuan Cao
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Zeeshan Haider
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Meng Wang
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Jianping Fu
- Department of Mechanical Engineering
- University of Michigan
- Ann Arbor
- USA
- Department of Biomedical Engineering
| |
Collapse
|
32
|
Imanifard S, Zarrabi A, Zarepour A, Jafari M, Khosravi A, Razmjou A. Nanoengineered Thermoresponsive Magnetic Nanoparticles for Drug Controlled Release. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saeedeh Imanifard
- Department of Biotechnology; Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan 81746-73441 Iran
| | - Ali Zarrabi
- Department of Biotechnology; Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan 81746-73441 Iran
| | - Atefeh Zarepour
- Department of Biotechnology; Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan 81746-73441 Iran
| | - Milad Jafari
- Department of Biotechnology; Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan 81746-73441 Iran
| | - Arezoo Khosravi
- Department of Mechanical Engineering; Khomeinishahr Branch; Islamic Azad University; Khomeinishahr/Isfahan 84181-48499 Iran
| | - Amir Razmjou
- Department of Biotechnology; Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan 81746-73441 Iran
| |
Collapse
|
33
|
Tang H, Chen H, Jia Y, Liu X, Han Z, Wang A, Liu Q, Li X, Feng X. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int J Nanomedicine 2017; 12:6937-6947. [PMID: 29075112 PMCID: PMC5609780 DOI: 10.2147/ijn.s141407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The regular accumulation of nanoparticles in the liver makes them hepatotoxic and decreases the circulation time, thus reducing their therapeutic effect. Resolving this problem will be significant in improving bioavailability and reducing side effects. In this study, we reduced the phagocytosis of epirubicin (EPI)-loaded folic acid-conjugated pullulan acetate (FPA/EPI) nanoparticles by Kupffer cells (KCs) through internalization and nuclear factor kappa B (NF-kB) signal pathway inhibitors, thus allowing development of FPA/EPI nanoparticles as a nanodrug delivery system (NDDS) based on our previous study. FPA/EPI nanoparticles were prepared by the dialysis method. Rat KCs were preincubated with the following individual or compound inhibitors: chlorpromazine (CPZ), nystatin (NY), colchicine (Col), amiloride (AMR), and pyrrolidine dithiocarbamate (PDTC). Dose- and time-dependent cellular uptake effects of inhibitors on FPA/EPI nanoparticles were determined through fluorometry. The cytokine levels of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 were tested in culture supernatants by bead-based multiplex flow cytometry. The uptake study demonstrated that inhibitors had an obvious inhibitory effect (P<0.05 or P<0.01), with NY, AMR and Col all showing time-dependent inhibitory effects. PDTC + NY had the strongest inhibitory effect, with an uptake rate of 14.62%. The levels of the three proinflammatory cytokines were changed significantly by the compound inhibitors. TNF-α was significantly inhibited (P<0.05 or P<0.01), but IL-1β and IL-6 showed smaller decreases. These results suggested that clathrin- and caveolae-mediated endocytosis were the main routes via which nanoparticles entered KCs and that the NF-kB signal pathway was very important too. In summary, multiple mechanisms, including clathrin- and caveolae-mediated endocytosis, contribute to cytokine production in macrophages following exposure to folic acid-conjugated pullulan acetate nanoparticles. Thus, the endocytosis inhibition strategy has great potential for improving therapy and reducing toxicity of an NDDS in the treatment of cancer.
Collapse
Affiliation(s)
- Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Yajing Jia
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Xiaoyan Liu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Zhaohong Han
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Aihua Wang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Qi Liu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Xinlei Li
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| |
Collapse
|
34
|
Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1236-1247. [PMID: 28849671 DOI: 10.1080/21691401.2017.1366338] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) ranked second in females and third in males among all type of cancers diagnosed. About 1.4 million cases took place with 693,900 deaths in 2012. It can occur either in colon or rectum. Thus, we aimed to develop and optimize oxaliplatin (OP) loaded solid lipid nanoparticles (SLNs). MATERIALS AND METHODS SLNs containing tristearin, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), Lipoid S75, and Tween 80 was developed. Box-Behnken design was applied for optimization of SLNs and optimized formulation was selected for conjugation with folic acid (FA). Optimized formulations were evaluated for various physiochemical parameters viz., particle size (PS), zeta potential, %entrapment efficiency (EE), morphology, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). RESULTS AND DISCUSSION OP loaded uncoupled SLNs (OPSLNs) and OP loaded FA coupled SLNs (OPSLNFs) formulations revealed good EE, 49.2 ± 0.38% and 43.5 ± 0.59%, respectively and small PS, 146.2 ± 4.4 nm, and 158.8 ± 5.6 nm, respectively. XRD pattern and DSC results confirmed that OP was uniformly distributed in amorphous form within SLNs. In vitro drug release study of OPSLNs and OPSLNFs formulation revealed sustained drug release pattern of OP for up to 6 d. Anticancer activity on HT-29 cell line indicated the highest potency of OPSLNFs as compared to OPSLNs and OP solution. CONCLUSION The present work illustrated the higher sensitivity of HT-29 cells to the drug entrapped in OPSLNFs as compared to OPSLNs and OP solution. Hence, this novel strategy might be a promising approach for the management of CRC.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur (C.G.) , India
| | - Sunil K Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur (C.G.) , India
| |
Collapse
|