1
|
Shi Y, Peng H, Liao Y, Li J, Yin Y, Peng H, Wang L, Tan Y, Li C, Bai H, Ma C, Tan W, Li X. The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. Probiotics Antimicrob Proteins 2024; 16:2054-2072. [PMID: 37668855 PMCID: PMC11573835 DOI: 10.1007/s12602-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
Collapse
Affiliation(s)
- Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China.
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Yangyan Yin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyan Peng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Fangchenggang Administrative Examination and Approval Service Center, Fangchenggang, 538001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, 530021, China
| | - Wenbao Tan
- Qibainong Chicken Industry Development Center of Dahua Yao Autonomous County, Dahua Guangxi, 530800, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Cuypers L, de Boer L, Wang R, Walboomers XF, Yang F, Zaat SA, Leeuwenburgh SC. Antibacterial Activity of Zinc-Doped Hydroxyapatite and Vancomycin-Loaded Gelatin Nanoparticles against Intracellular Staphylococcus aureus in Human THP-1 Derived Macrophages. ACS APPLIED NANO MATERIALS 2024; 7:21964-21974. [PMID: 39360166 PMCID: PMC11443495 DOI: 10.1021/acsanm.4c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Treating bone infections with common antibiotics is challenging, since pathogens like Staphylococcus aureus can reside inside macrophages. To target these intracellular bacteria, we have proposed nanoparticles (NPs) as drug carriers. This study aims to investigate the efficacy of hydroxyapatite and gelatin NPs, selected in view of their bone mimicry and potential for targeted delivery, as carriers for the antibacterial agents zinc and vancomycin. Therefore, two distinct NPs are fabricated: zinc-doped hydroxyapatite (ZnHA) and vancomycin-loaded gelatin (VGel) NPs. The NPs are characterized based on morphology, size, chemical composition, cellular internalization, and intracellular bactericidal efficacy. Specifically, the intracellular bactericidal efficacy is tested using a validated coculture model of human THP-1 derived macrophages and phagocytosed S. aureus bacteria. Scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FTIR) results show that the spherical NPs are synthesized successfully. These NPs are internalized by THP-1 cells and show >75% colocalization with lysosomes without compromising the viability of the THP-1 cells. Both ZnHA and VGel NPs substantially reduce the intracellular survival of S. aureus compared to the direct addition of dissolved zinc and vancomycin. Concluding, our NPs are highly effective drug delivery vehicles to kill intracellular S. aureus, which stress the potential of these NPs for future clinical translation.
Collapse
Affiliation(s)
- Lizzy
A.B. Cuypers
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - Leonie de Boer
- Department
of Medical Microbiology and Infection Prevention, Amsterdam Institute
for Immunology and Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rong Wang
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - Fang Yang
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - Sebastian A.J. Zaat
- Department
of Medical Microbiology and Infection Prevention, Amsterdam Institute
for Immunology and Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander C.G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
3
|
Joshi AA, Patil RH. Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. INFECTIOUS MEDICINE 2023; 2:294-307. [PMID: 38205183 PMCID: PMC10774769 DOI: 10.1016/j.imj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Staphylococcus aureus is an aerobic Gram-positive spherical bacterium known to cause a broad range of infections worldwide. It is a major cause of infective skin and soft infections and severe and life-threatening conditions, such as pneumonia, bloodstream infections, and endocarditis. The emergence of drug-resistant strains of S aureus, particularly methicillin-resistant S aureus (MRSA), has become a significant concern in the healthcare community. Antibiotic-resistant S aureus is commonly acquired in hospitals and long-term care facilities. It often affects patients with weakened immune systems, those undergoing invasive medical procedures, or those who have been hospitalized for extended periods. In the US, S aureus is known to cause potentially fatal illnesses, such as toxic shock syndrome (TSS) and acute-onset toxic shock syndrome (TSS), which are characterized by fever and hypotension. It develops resistance to antibiotics through several mechanisms, such as the production of enzymes that inactivate antibiotics, target site modification, efflux pumps, and plasmid-mediated resistance. Therefore, preventing the spread of drug-resistant S aureus is needed, and there is an urgent need to explore novel approaches in the development of anti-staphylococcal agents. This article reviews the principal infections caused by S aureus, major virulence factors, mechanisms of resistance development, and nanotechnology-based solutions for the control of drug-resistant S aureus.
Collapse
Affiliation(s)
- Amruta A. Joshi
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| | - Ravindra H. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| |
Collapse
|
4
|
Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosan nanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus infection. Carbohydr Polym 2023; 315:121013. [PMID: 37230629 DOI: 10.1016/j.carbpol.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Staphylococcus aureus (S. aureus) residing in host macrophages is hard to clear because intracellular S. aureus has evolved mechanisms to hijack and subvert the immune response to favor intracellular infection. To overcome this challenge, nitrogen-phosphorous co-doped carbonized chitosan nanoparticles (NPCNs), which possess the polymer/carbon hybrid structures, were fabricated to clear intracellular S. aureus infection through chemotherapy and immunotherapy. Multi-heteroatom NPCNs were fabricated through the hydrothermal method, where chitosan and imidazole were used as the C and N sources and phosphoric acid as the P source. NPCNs can not only be used as a fluorescent probe for bacteria imaging but also kill extracellular and intracellular bacteria with low cytotoxicity. NPCNs could generate ROS and polarize macrophages into classically activated (M1) phenotypes to increase antibacterial immunity. Furthermore, NPCNs could accelerate intracellular S. aureus-infected wound healing in vivo. We envision that these carbonized chitosan nanoparticles may provide a new platform for clearing intracellular bacterial infection through chemotherapy and ROS-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
5
|
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS OMEGA 2023; 8:13492-13508. [PMID: 37091369 PMCID: PMC10116640 DOI: 10.1021/acsomega.3c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The clinical applications of nanotechnology are emerging as widely popular, particularly as a potential treatment approach for infectious diseases. Diseases associated with multiple drug-resistant organisms (MDROs) are a global concern of morbidity and mortality. The prevalence of infections caused by antibiotic-resistant bacterial strains has increased the urgency associated with researching and developing novel bactericidal medicines or unorthodox methods capable of combating antimicrobial resistance. Nanomaterial-based treatments are promising for treating severe bacterial infections because they bypass antibiotic resistance mechanisms. Nanomaterial-based approaches, especially those that do not rely on small-molecule antimicrobials, display potential since they can bypass drug-resistant bacteria systems. Nanoparticles (NPs) are small enough to pass through the cell membranes of pathogenic bacteria and interfere with essential molecular pathways. They can also target biofilms and eliminate infections that have proven difficult to treat. In this review, we described the antibacterial mechanisms of NPs against bacteria and the parameters involved in targeting established antibiotic resistance and biofilms. Finally, yet importantly, we talked about NPs and the various ways they can be utilized, including as delivery methods, intrinsic antimicrobials, or a mixture.
Collapse
Affiliation(s)
- Arun Karnwal
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Road, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Benavides Castillo L, Martinez Y. The concentration and type of emulsifier rules the oil/water and water/oil/water emulsion size distribution. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2169680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Yanina Martinez
- Comisión Nacional de Energía Atómica Centro Atómico Bariloche, Argentina
| |
Collapse
|
7
|
Wang C, Yang Y, Cao Y, Liu K, Shi H, Guo X, Liu W, Hao R, Song H, Zhao R. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection. Biomater Sci 2023; 11:432-444. [PMID: 36503914 DOI: 10.1039/d2bm01489k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The barrier function of host cells enables intracellular bacteria to evade the lethality of the host immune system and antibiotics, thereby causing chronic and recurrent infections that seriously threaten human health. Currently, the main clinical strategy for the treatment of intracellular bacterial infections involves the use of long-term and high-dose antibiotics. However, insufficient intracellular delivery of antibiotics along with various resistance mechanisms not only weakens the efficacy of current therapies but also causes serious adverse drug reactions, further increasing the disease and economic burden. Improving the delivery efficiency, intracellular accumulation, and action time of antibiotics remains the most economical and effective way to treat intracellular bacterial infections. The rapid development of nanotechnology provides a strategy to efficiently deliver antibiotics against intracellular bacterial infections into cells. In this review, we summarize the types of common intracellular pathogens, the difficulties faced by antibiotics in the treatment of intracellular bacterial infections, and the research progress of several types of representative nanocarriers for the delivery of antibiotics against intracellular bacterial infections that have emerged in recent years. This review is expected to provide a reference for further elucidating the intracellular transport mechanism of nanocarrier-drug complexes, designing safer and more effective nanocarriers and establishing new strategies against intracellular bacterial infection.
Collapse
Affiliation(s)
- Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Kaixin Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
8
|
Fan D, Liu X, Ren Y, Bai S, Li Y, Luo Z, Dong J, Chen F, Zeng W. Functional insights to the development of bioactive material for combating bacterial infections. Front Bioeng Biotechnol 2023; 11:1186637. [PMID: 37152653 PMCID: PMC10160456 DOI: 10.3389/fbioe.2023.1186637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The emergence of antibiotic-resistant "superbugs" poses a serious threat to human health. Nanomaterials and cationic polymers have shown unprecedented advantages as effective antimicrobial therapies due to their flexibility and ability to interact with biological macromolecules. They can incorporate a variety of antimicrobial substances, achieving multifunctional effects without easily developing drug resistance. Herein, this article discusses recent advances in cationic polymers and nano-antibacterial materials, including material options, fabrication techniques, structural characteristics, and activity performance, with a focus on their fundamental active elements.
Collapse
Affiliation(s)
- Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yueming Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yanbing Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
- *Correspondence: Fei Chen, ; Wenbin Zeng,
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
- *Correspondence: Fei Chen, ; Wenbin Zeng,
| |
Collapse
|
9
|
Feng W, Chittò M, Moriarty TF, Li G, Wang X. Targeted Drug Delivery Systems for Eliminating Intracellular Bacteria. Macromol Biosci 2023; 23:e2200311. [PMID: 36189899 DOI: 10.1002/mabi.202200311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Indexed: 01/19/2023]
Abstract
The intracellular survival of pathogenic bacteria requires a range of survival strategies and virulence factors. These infections are a significant clinical challenge, wherein treatment frequently fails because of poor antibiotic penetration, stability, and retention in host cells. Drug delivery systems (DDSs) are promising tools to overcome these shortcomings and enhance the efficacy of antibiotic therapy. In this review, the classification and the mechanisms of intracellular bacterial persistence are elaborated. Furthermore, the systematic design strategies applied to DDSs to eliminate intracellular bacteria are also described, and the strategies used for internalization, intracellular activation, bacterial targeting, and immune enhancement are highlighted. Finally, this overview provides guidance for constructing functionalized DDSs to effectively eliminate intracellular bacteria.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,AO Research Institute Davos, Davos, 7270, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, Davos, 7270, Switzerland
| | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
The Potential of Antibiotics and Nanomaterial Combinations as Therapeutic Strategies in the Management of Multidrug-Resistant Infections: A Review. Int J Mol Sci 2022; 23:ijms232315038. [PMID: 36499363 PMCID: PMC9736695 DOI: 10.3390/ijms232315038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance has become a major public health concern around the world. This is exacerbated by the non-discovery of novel drugs, the development of resistance mechanisms in most of the clinical isolates of bacteria, as well as recurring infections, hindering disease treatment efficacy. In vitro data has shown that antibiotic combinations can be effective when microorganisms are resistant to individual drugs. Recently, advances in the direction of combination therapy for the treatment of multidrug-resistant (MDR) bacterial infections have embraced antibiotic combinations and the use of nanoparticles conjugated with antibiotics. Nanoparticles (NPs) can penetrate the cellular membrane of disease-causing organisms and obstruct essential molecular pathways, showing unique antibacterial mechanisms. Combined with the optimal drugs, NPs have established synergy and may assist in regulating the general threat of emergent bacterial resistance. This review comprises a general overview of antibiotic combinations strategies for the treatment of microbial infections. The potential of antibiotic combinations with NPs as new entrants in the antimicrobial therapy domain is discussed.
Collapse
|
11
|
Brar A, Majumder S, Navarro MZ, Benoit-Biancamano MO, Ronholm J, George S. Nanoparticle-Enabled Combination Therapy Showed Superior Activity against Multi-Drug Resistant Bacterial Pathogens in Comparison to Free Drugs. NANOMATERIALS 2022; 12:nano12132179. [PMID: 35808015 PMCID: PMC9268018 DOI: 10.3390/nano12132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
The emergence of multidrug-resistant (MDR) bacterial pathogens in farm animals and their zoonotic spread is a concern to both animal agriculture and public health. Apart from antimicrobial resistance (AMR), bacterial pathogens from the genera of Salmonella and Staphylococcus take refuge inside host cells, thereby demanding intervention strategies that can eliminate intracellular MDR pathogens. In this study, seven clinical isolates of Salmonella and Staphylococcus from swine farms were characterized for antibiotic (n = 24) resistance, resistance mechanisms, and virulence characteristics. All isolates showed resistance to one or more antibiotics and S. enterica ser. Typhimurium isolate had the highest resistance to the panel of antibiotics tested. Major resistance mechanisms identified were efflux pump and beta-lactamase enzyme activities. Staphylococcus isolates showed complete hemolysis and strong biofilm formation, while Salmonella isolates caused partial hemolysis, but showed no or weak biofilm formation. MDR isolates of S. aureus M12 and S. enterica ser. Typhimurium bacteria were subsequently tested against combinations of antibiotics and potentiating adjuvants for improved antibacterial efficacy using a checkerboard assay, and their fractional inhibitory concentration index (FICI) was calculated. A combination of chitosan and silica nanoparticles containing tetracycline (TET) and efflux pump inhibitor chlorpromazine (CPZ), respectively, was characterized for physicochemical properties and effectiveness against MDR Salmonella enterica ser. Typhimurium isolate. This combination of nano-encapsulated drugs improved the antibacterial efficacy by inhibiting AMR mechanisms (efflux activity, beta-lactamase enzyme activity, and hydrogen sulfide (H2S) production) and reducing intracellular pathogen load by 83.02 ± 14.35%. In conclusion, this study sheds light on the promising applicability of nanoparticle-enabled combination therapy to combat multidrug-resistant pathogens encountered in animal agriculture.
Collapse
Affiliation(s)
- Amarpreet Brar
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
| | - Satwik Majumder
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
| | - Maria Zardon Navarro
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Department of Animal Science, Macdonald Campus, McGill University, 2111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Correspondence: ; Tel.: +1-514-398-7920; Fax: +1-514-398-7990
| |
Collapse
|
12
|
Mitra K, Chadha A, Muthuvijayan V, Doble M. Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:708-721. [DOI: 10.1021/acsbiomaterials.1c01357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kartik Mitra
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences& National Center for Catalysis Research (NCCR), Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences& National Center for Catalysis Research (NCCR), Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
14
|
Paudel S, Peña-Bahamonde J, Shakiba S, Astete CE, Louie SM, Sabliov CM, Rodrigues DF. Prevention of infection caused by enteropathogenic E. coli O157:H7 in intestinal cells using enrofloxacin entrapped in polymer based nanocarriers. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125454. [PMID: 33677317 DOI: 10.1016/j.jhazmat.2021.125454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Poor bioavailability of antibiotics, toxicity, and development of antibiotic-resistant bacteria jeopardize antibiotic treatments. To circumvent these issues, drug delivery using nanocarriers are highlighted to secure the future of antibiotic treatments. This work investigated application of nanocarriers, to prevent and treat bacterial infection, presenting minimal toxicity to the IPEC-J2 cell line. To accomplish this, polymer-based nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and lignin-graft-PLGA (LNP) loaded with enrofloxacin (ENFLX) were synthesized, yielding spherical particles with average sizes of 111.8 ± 0.6 nm (PLGA) and 117.4 ± 0.9 nm (LNP). The releases of ENFLX from PLGA and LNP were modeled by a theoretical diffusion model considering both the NP and dialysis diffusion barriers for drug release. Biocompatible concentrations of ENFLX, enrofloxacin loaded PLGA(Enflx) and LNP(Enflx) were determined based on examination of bacterial inhibition, toxicity, and ROS generation. Biocompatible concentrations were used for treatment of higher- and lower-level infections in IPEC-J2 cells. Prevention of bacterial infection by LNP(Enflx) was enhanced more than 50% compared to ENFLX at lower-level infection. At higher-level infection, PLGA(Enflx) and LNP(Enflx) demonstrated 25% higher prevention of bacteria growth compared to ENFLX alone. The superior treatment achieved by the nanocarried drug is accredited to particle uptake by endocytosis and slow release of the drug intracellularly, preventing rapid bacterial growth inside the cells.
Collapse
Affiliation(s)
- Sachin Paudel
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Sheyda Shakiba
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Carlos E Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Stacey M Louie
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Cristina M Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA.
| |
Collapse
|
15
|
Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11051251. [PMID: 34068834 PMCID: PMC8151913 DOI: 10.3390/nano11051251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitateko Ibilbidea, 7, 01006 Vitoria-Gasteiz, Spain
- Correspondence:
| | - Lucia Gallego
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, 48940 Leioa, Bizkaia, Spain;
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, 48940 Leioa, Bizkaia, Spain;
| |
Collapse
|
16
|
Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J, Zhang Q. Isolation and Identification of Antibacterial Bioactive Compounds From Bacillus megaterium L2. Front Microbiol 2021; 12:645484. [PMID: 33841370 PMCID: PMC8024468 DOI: 10.3389/fmicb.2021.645484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial metabolites exhibit a variety of biologically active compounds including antibacterial and antifungal activities. It is well known that Bacillus is considered to be a promising source of bioactive secondary metabolites. Most plant pathogens have an incredible ability to mutate and acquire resistance, causing major economic losses in the agricultural field. Therefore, it is necessary to use the natural antibacterial compounds in microbes to control plant pathogens. This study was conducted to investigate the bio-active compounds of Bacillus megaterium L2. According to the activity guidance of Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2, five monomeric compounds, including erucamide (1), behenic acid (2), palmitic acid (3), phenylacetic acid (4), and β-sitosterol (5), were fractionated and purified from the crude ethyl acetate extract of B. megaterium. To our knowledge, all compounds were isolated from the bacterium for the first time. To understand the antimicrobial activity of these compounds, and their minimum inhibitory concentrations (MICs) (range: 0.98∼500 μg/mL) were determined by the broth microdilution method. For the three tested pathogens, palmitic acid exhibited almost no antibacterial activity (>500 μg/mL), while erucamide had moderate antibacterial activity (MIC = 500 μg/mL). Behenic acid showed MICs of 250 μg/mL against T-37 and RS-2 strains with an antibacterial activity. β-sitosterol showed significant antimicrobial activity against RS-2. β-sitosterol showed remarkable antimicrobial activity against RS-2 with an MIC of 15.6 μg/mL. In addition, with the antimicrobial activity, against T-37 (62.5 μg/mL) and against EC-1 (125 μg/mL) and RS-2 (15.6 μg/mL) strains notably, phenylacetic acid may be interesting for the prevention and control of phytopathogenic bacteria. Our findings suggest that isolated compounds such as behenic acid, β-sitosterol, and phenylacetic acid may be promising candidates for natural antimicrobial agents.
Collapse
Affiliation(s)
- Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yuyu Ji
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ailin Xie
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Long Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Jinyi Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Qinyu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
CuFe2O4@Ag Nanocomposite Synthesized in the Presence of Spirulina platensis Decreases the Expression of norB Gene in Staphylococcus aureus. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Meena M, Swapnil P, Yadav G, Sonigra P. Role of fungi in bio-production of nanomaterials at megascale. FUNGI BIO-PROSPECTS IN SUSTAINABLE AGRICULTURE, ENVIRONMENT AND NANO-TECHNOLOGY 2021:453-474. [DOI: 10.1016/b978-0-12-821734-4.00006-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
20
|
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021; 19:23-36. [PMID: 32814862 PMCID: PMC8559572 DOI: 10.1038/s41579-020-0420-1] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections. In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms. We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency. Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzannah Schmidt-Malan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
21
|
Yu J, Wang M, Ahmed R, Zhao H, Cohen Stuart MA, Wang J. Facile Preparation of Tilmicosin-Loaded Polymeric Nanoparticle with Controlled Properties and Functions. ACS OMEGA 2020; 5:32366-32372. [PMID: 33376873 PMCID: PMC7758884 DOI: 10.1021/acsomega.0c04314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 05/08/2023]
Abstract
As one of the effective broad-spectrum antimicrobial and anti-inflammatory drugs, tilmicosin (TIM) is applied extensively in a wide range of veterinary treatments. However, the low bioavailability typically leads to overuse of TIM in practical applications, which can cause residual accumulation in the environment and contamination of foodstuffs. Here, we report a precipitation method that allows us to prepare TIM-loaded poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) nanoparticles. Specifically, TIM and biocompatible P(MMA-co-MAA) are dissolved in methanol and then water is introduced as an antisolvent, which triggers the co-precipitation and leads to well-controlled nanoparticles. Depending on the drug/polymer mass ratio and the total concentration of drug and polymer, the formed nanoparticles display a tunable radius from 27 to 80 nm with a narrow size distribution, a high drug loading content, and a controlled release of TIM. The encapsulation does not interrupt the antibacterial function of TIM while reducing its cytotoxicity enormously. Moreover, the formed nanoparticles could be dried to powder through freeze-drying, and the redispersion of the particles hardly disturbs the particle size, size distribution, and drug loading content. Our study developed a facile and robust precipitation method for the controlled construction of TIM-loaded polymeric nanoparticles with tunable properties and functions, as well as improved biocompatibility, which shall improve the bioavailability of TIM and enhance the practical applications.
Collapse
|
22
|
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020; 27:292-308. [PMID: 32036717 PMCID: PMC7034104 DOI: 10.1080/10717544.2020.1724209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most important zoonotic bacterial pathogens, infecting human beings and a wide range of animals, in particular, dairy cattle. Globally. S. aureus causing bovine mastitis is one of the biggest problems and an economic burden facing the dairy industry with a strong negative impact on animal welfare, productivity, and food safety. Furthermore, its smart pathogenesis, including facultative intracellular parasitism, increasingly serious antimicrobial resistance, and biofilm formation, make it challenging to be treated by conventional therapy. Therefore, the development of nanoparticles, especially liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanogels, and inorganic nanoparticles, are gaining traction and excellent tools for overcoming the therapeutic difficulty accompanied by S. aureus mastitis. Therefore, in this review, the current progress and challenges of nanoparticles in enhancing the S. aureus mastitis therapy are focused stepwise. Firstly, the S. aureus treatment difficulties by the antimicrobial drugs are analyzed. Secondly, the advantages of nanoparticles in the treatment of S. aureus mastitis, including improving the penetration and accumulation of their payload drugs intracellular, decreasing the antimicrobial resistance, and preventing the biofilm formation, are also summarized. Thirdly, the progression of different types from the nanoparticles for controlling the S. aureus mastitis are provided. Finally, the difficulties that need to be solved, and future prospects of nanoparticles for S. aureus mastitis treatment are highlighted. This review will provide the readers with enough information about the challenges of the nanosystem to help them to design and fabricate more efficient nanoformulations against S. aureus infections.
Collapse
Affiliation(s)
- Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Elnaggar MG, Jiang K, Eldesouky HE, Pei Y, Park J, Yuk SA, Meng F, Dieterly AM, Mohammad HT, Hegazy YA, Tawfeek HM, Abdel-Rahman AA, Aboutaleb AE, Seleem MN, Yeo Y. Antibacterial nanotruffles for treatment of intracellular bacterial infection. Biomaterials 2020; 262:120344. [PMID: 32905902 DOI: 10.1016/j.biomaterials.2020.120344] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023]
Abstract
Bacterial pathogens residing in host macrophages in intracellular infections are hard to eradicate because traditional antibiotics do not readily enter the cells or get eliminated via efflux pumps. To overcome this challenge, we developed a new particle formulation with a size amenable to selective macrophage uptake, loaded with two antibacterial agents - pexiganan and silver (Ag) nanoparticles. Here, pexiganan was loaded in 600 nm poly(lactic-co-glycolic acid) (PLGA) particles (NP), and the particle surface was modified with an iron-tannic acid supramolecular complex (pTA) that help attach Ag nanoparticles. PLGA particles coated with Ag (NP-pTA-Ag) were taken up by macrophages, but not by non-phagocytic cells, such as fibroblasts, reducing non-specific toxicity associated with Ag nanoparticles. NP-pTA-Ag loaded with pexiganan (Pex@NP-pTA-Ag) showed more potent antibacterial activity against various intracellular pathogens than NP-pTA-Ag or Pex@NP (pexiganan-loaded NP with no Ag), suggesting a collaborative function between pexiganan and Ag nanoparticles. Mouse whole-body imaging demonstrated that, upon intravenous injection, NP-pTA-Ag quickly accumulated in the liver and spleen, where intracellular bacteria tend to reside. These results support that Pex@NP-pTA-Ag is a promising strategy for the treatment of intracellular bacterial infection.
Collapse
Affiliation(s)
- Marwa G Elnaggar
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Kunyu Jiang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Department of Pharmaceutics, School of Pharmacy, China Medical University, 77 Puhe Road Shenyang, Liaoning, 110122, China
| | - Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Yihua Pei
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Simseok A Yuk
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Alexandra M Dieterly
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Haroon T Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Youssef A Hegazy
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Aly A Abdel-Rahman
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Ahmed E Aboutaleb
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Designing, structural determination and biological effects of rifaximin loaded chitosan- carboxymethyl chitosan nanogel. Carbohydr Polym 2020; 248:116782. [PMID: 32919570 DOI: 10.1016/j.carbpol.2020.116782] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Due to the poor solubility and permeability of rifaximin (RFX), it is not effective against intracellular pathogens although it shows strong activity against most bacteria. To develop an effective mucoadhesive drug delivery system with a targeted release in bacterial infection site, RFX-loaded chitosan (CS)/carboxymethyl-chitosan (CMCS) nanogel was designed and systematically evaluated. FTIR, DSC, and XRD demonstrated that the nanogel was formed by interactions between the positively charged NH3+ on CS and CMCS, and the negatively charged COO on CMCS. RFX was encapsulated into the optimized nanogel in amorphous form. The nanogel was a uniform spherical shape with a mean diameter of 171.07 nm. It had excellent sustained release, strong mucin binding ability, and pH-responsive properties of quicker swelling and release at acidic pH. It showed low hemolytic ratio and high antioxidant activity. The present investigation indicated that the CS-nanogel could be potentially used as a promising bacterial responsiveness drug delivery system.
Collapse
|
25
|
Riaz A, Hendricks S, Elbrink K, Guy C, Maes L, Ahmed N, Kiekens F, Khan GM. Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech 2020; 21:185. [PMID: 32632542 DOI: 10.1208/s12249-020-01717-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to develop, characterize and evaluate the amphotericin B-loaded nanostructured lipid carriers (AmB-NLCs) for topical treatment of cutaneous leishmaniasis (CL) and vulvovaginal candidiasis (VVC). AmB-NLCs were characterized for particle size, zeta potential, encapsulation efficiency and surface morphology. Prepared NLCs were also characterized for in vitro drug release, ex vivo skin permeation and deposition before evaluating their in vitro and in vivo efficacy. Cytotoxicity of NLCs was assessed on MRC-5 cells, whereas skin irritation potential was evaluated in vivo using rats. Significant accumulation of drug in to the skin supported the topical application potential of drug-loaded NLCs. Encapsulation of AmB in NLCs resulted in enhanced in vitro potency against promastigotes and intracellular amastigotes of L. major JISH 118 (IC50 ± SEM = 0.02 ± 0.1 μM for both) compared with free drug (IC50 ± SEM = 0.15 ± 0.2 & 0.14 ± 0.0, respectively). Similar improved potency of AmB-NLCs was also observed for other Leishmania and fungal strains compared with drug solution. Topical application of AmB-NLCs on L. major-infected BALB/c mice caused a significant reduction in parasite burden per mg of lesion (65 × 108 ± 13) compared with the control group (> 167.8 × 108 ± 11). Topical AmB-NLCs gel demonstrated superior efficacy in the vaginal C. albicans rat model for VVC as compared with plain AmB gel. Moreover, results of in vitro cytotoxicity assay and in vivo skin irritation test confirmed AmB-NLCs to be non-toxic and safe for topical use. In conclusion, NLCs may have promising potential as carrier for topical treatment of various conditions of skin and mucosa.
Collapse
Affiliation(s)
- Amina Riaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sarah Hendricks
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Kimberley Elbrink
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Caljon Guy
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Louis Maes
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Filip Kiekens
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
26
|
Meng K, Chen D, Yang F, Zhang A, Tao Y, Qu W, Pan Y, Hao H, Xie S. Intracellular delivery, accumulation, and discrepancy in antibacterial activity of four enrofloxacin-loaded fatty acid solid lipid nanoparticles. Colloids Surf B Biointerfaces 2020; 194:111196. [PMID: 32599504 DOI: 10.1016/j.colsurfb.2020.111196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 01/09/2023]
Abstract
Four fatty acid-solid lipid nanoparticles (SLNs) were formulated and evaluated for intracellular delivery, accumulation, as well as discrepancy in antimicrobial efficacy of their loaded enrofloxacin by using RAW 264.7 cells. The delivery efficacy of enrofloxacin into the macrophages by docosanoic acid SLNs (DAS), octadecanoic acid SLNs (OAS), hexadecanoic acid SLNs (HAS), and tetradecanoic acid SLNs (TAS) were 26.1-29.0, 9.3-10.3, 4.7-5.3 and 4.5-5.0 folds, respectively, compared to free drug when co-incubation for 0.25-4 h. The longer fatty acid prepared nanoparticles loaded enrofloxacin eliminated more slowly and accumulated in the cells for a longer time.The confocal microscopy also demonstrated that higher amount of fatty acid SLNs entered the cells with stronger accumulation performance and less amount SLNs absorbed on the cytomembrane as the carbon chain of fatty acids increased. The bactericidal activity of the four fatty acid SLNs against intracellular Salmonella CVCC541 significantly enhanced compared to the free enrofloxacin. These results revealed that fatty acid SLNs, especially docosanoic acid nanoparticles, might be effective nanocarriers to ferry enrofloxacin or other lipid soluble drugs into cells for intracellular bacterial infection treatment.
Collapse
Affiliation(s)
- Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fei Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
27
|
Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. ACTA ACUST UNITED AC 2020; 28:319-332. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.
Collapse
|
28
|
Borzenkov M, Pallavicini P, Taglietti A, D’Alfonso L, Collini M, Chirico G. Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1134-1146. [PMID: 32802716 PMCID: PMC7404213 DOI: 10.3762/bjnano.11.98] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 05/11/2023]
Abstract
Bacterial contamination is a severe issue that affects medical devices, hospital tools and surfaces. When microorganisms adhere to a surface (e.g., medical devices or implants) they can develop into a biofilm, thereby becoming more resistant to conventional biocides and disinfectants. Nanoparticles can be used as an antibacterial agent in medical instruments or as a protective coating in implantable devices. In particular, attention is being drawn to photothermally active nanoparticles that are capable of converting absorbed light into heat. These nanoparticles can efficiently eradicate bacteria and biofilms upon light activation (predominantly near the infrared to near-infrared spectral region) due a rapid and pronounced local temperature increase. By using this approach new, protective, antibacterial surfaces and materials can be developed that can be remotely activated on demand. In this review, we summarize the state-of-the art regarding the application of various photothermally active nanoparticles and their corresponding nanocomposites for the light-triggered eradication of bacteria and biofilms.
Collapse
Affiliation(s)
- Mykola Borzenkov
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | | | - Angelo Taglietti
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Laura D’Alfonso
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Maddalena Collini
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Giuseppe Chirico
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| |
Collapse
|
29
|
Rajak BL, Kumar R, Gogoi M, Patra S. Antimicrobial Activity of Nanomaterials. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-29207-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
30
|
Li H, Wang M, Shen X, Liu S, Wang Y, Li Y, Wang Q, Che G. Rapid and sensitive detection of enrofloxacin hydrochloride based on surface enhanced Raman scattering-active flexible membrane assemblies of Ag nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109387. [PMID: 31466041 DOI: 10.1016/j.jenvman.2019.109387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The abuse of antibiotics resulted in the pollution of river is more and more serious and it was necessary to exploit a sensitive detection method to improve the traditional analysis measurement. In this test, it is reported an Ag-based SERS sensing membrane synthesized by the technique of SERS detection and membrane separation. SERS analysis technique presented sensitive detection property, which could be applied into trace analysis. Membrane separation could effectively enrich the analytes to improve the sensitivity. The SERS membrane was synthesized by filtrating Ag nanoparticles (NPs) on the surface and investigating the amount of PVP and Ag NPs to the sensitivity. Meanwhile, the addition of Ag NPs effectively improved the hydrophilia to promote the detection effectivity in the water. By the investigations of optical analysis, the SERS membrane presented high sensitivity in the detection of antibiotics. Under the optimal condition, the SERS intensity presented good linear relationship with the concentration of antibiotics between 1.0 nmol L-1 and 200 nmol L-1. This method provided a sensitive detection approach and broadened the investigation field of antibiotics detection.
Collapse
Affiliation(s)
- Hongji Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Mingchao Wang
- College of Physics, Jilin Normal University, Siping, 136000, PR China
| | - Xiaoxue Shen
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, PR China
| | - Sui Liu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, PR China
| | - Yan Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, PR China
| | - Yue Li
- College of Chemistry, Jilin Normal University, Siping, 136000, PR China
| | - Qingwei Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| |
Collapse
|
31
|
Zhou K, Wang X, Chen D, Yuan Y, Wang S, Li C, Yan Y, Liu Q, Shao L, Huang L, Yuan Z, Xie S. Enhanced Treatment Effects of Tilmicosin Against Staphylococcus aureus Cow Mastitis by Self-Assembly Sodium Alginate-Chitosan Nanogel. Pharmaceutics 2019; 11:pharmaceutics11100524. [PMID: 31614726 PMCID: PMC6836059 DOI: 10.3390/pharmaceutics11100524] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
The Staphylococcus aureus (S. aureus) cow mastitis causes great losses to the cow industry. In order to improve the treatment effect of tilmicosin against cow mastitis, the combination of solid lipid nanoparticle (SLN) technology with in situ hydrogel technology was used to prepare the self-assembly tilmicosin nanogel (TIL-nanogel). The physicochemical characteristics, in vitro release, antibacterial activity and in vivo treatment efficacy of TIL-SLNs and TIL-nanogel were studied, respectively. The results showed the loading capacity (LC), encapsulation efficiency (EE), size, zeta potential and poly dispersion index (PDI) of TIL-nanogel were 23.33 ± 0.77%, 67.89 ± 3.01%, 431.57 ± 12.87 nm, 8.3 ± 0.06 mv and, 0.424 ± 0.032, respectively. The TIL-nanogel showed stronger sustained release in vitro than TIL-SLNs and commercial injection. The cure rate of half dosage and normal dosage of TIL-nanogel was 58.3% and 75.0%, which was higher than that of commercial injection (50.0%) at normal dosage. The results suggest that the treatment dosage of tilmicosin for cow mastitis could be reduced by TIL-nanogel. The novel TIL-nanogel will be beneficial by decreasing the usage of tilmicosin and the treatment costs of cow mastitis.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, Hubei, China.
| | - Xiaofang Wang
- Animal husbandry and veterinary institute of Hebei Province, Dongguan Street 428, Baoding 071000, Hebei, China.
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yuanyuan Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, Hubei, China.
| | - Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, Hubei, China.
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, Hubei, China.
| | - Yuanyuan Yan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, Hubei, China.
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, Hubei, China.
| | - Liwei Shao
- Animal husbandry and veterinary institute of Hebei Province, Dongguan Street 428, Baoding 071000, Hebei, China.
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
32
|
Naskar A, Kim KS. Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms 2019; 7:E356. [PMID: 31527443 PMCID: PMC6780078 DOI: 10.3390/microorganisms7090356] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Life-threatening bacterial infections have been well-controlled by antibiotic therapies and this approach has greatly improved the health and lifespan of human beings. However, the rapid and worldwide emergence of multidrug resistant (MDR) bacteria has forced researchers to find alternative treatments for MDR infections as MDR bacteria can sometimes resist all the present day antibiotic therapies. In this respect, nanomaterials have emerged as innovative antimicrobial agents that can be a potential solution against MDR bacteria. The present review discusses the advantages of nanomaterials as potential medical means and carriers of antibacterial activity, the types of nanomaterials used for antibacterial agents, strategies to tackle toxicity of nanomaterials for clinical applications, and limitations which need extensive studies to overcome. The current progress of using different types of nanomaterials, including new emerging strategies for the single purpose of combating bacterial infections, is also discussed in detail.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
33
|
Tao Y, Yang F, Meng K, Chen D, Yang Y, Zhou K, Luo W, Qu W, Pan Y, Yuan Z, Xie S. Exploitation of enrofloxacin-loaded docosanoic acid solid lipid nanoparticle suspension as oral and intramuscular sustained release formulations for pig. Drug Deliv 2019; 26:273-280. [PMID: 30880494 PMCID: PMC6427631 DOI: 10.1080/10717544.2019.1580798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In our previous study, enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) could be effectively delivered to cells in vitro. In this study, its properties and exploitation as possible oral and intramuscular sustained release formulations for pigs were studied after being made into suspension. The re-dispersed time and sedimentation rate of the nanosuspension were 55 s and 1, respectively. It showed good stability when stored away from light and sustained release in pH = 7.4 PBS buffer. The suspension exhibited no irritation at the injection site and good palatability. Compared with commercial injection and soluble powder, the nanosuspension increased the bioavailability of enrofloxacin by 1.63 and 2.38 folds, and extended the mean residence time (MRT) of the drug from 11.27 and 12.33 to 37.76 and 35.15 h after intragastric and intramuscular administration, respectively. These results suggest that docosanoic acid SLN suspension (DAS) might be a promising oral and intramuscular sustained release formulation to enhance the pharmacological activity of enrofloxacin.
Collapse
Affiliation(s)
- Yanfei Tao
- a MAO Key Laboratory for Detection of Veterinary Drug Residues , Huazhong Agricultural University , Wuhan , China
| | - Fei Yang
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Kuiyu Meng
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Dongmei Chen
- a MAO Key Laboratory for Detection of Veterinary Drug Residues , Huazhong Agricultural University , Wuhan , China
| | - Yujuan Yang
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Kaixiang Zhou
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Wanhe Luo
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Wei Qu
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Yuanhu Pan
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Zonghui Yuan
- a MAO Key Laboratory for Detection of Veterinary Drug Residues , Huazhong Agricultural University , Wuhan , China.,b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| | - Shuyu Xie
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
34
|
Li C, Zhou K, Chen D, Xu W, Tao Y, Pan Y, Meng K, Shabbir MAB, Liu Q, Huang L, Xie S. Solid lipid nanoparticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin. Int J Nanomedicine 2019; 14:1619-1631. [PMID: 30880969 PMCID: PMC6402439 DOI: 10.2147/ijn.s183479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The poor palatability, variable oral bioavailability, stimulation to gastric mucosa, and light instability limited the application of enrofloxacin (ENR). The enteric granules combining solid lipid nanoparticles (SLNs) with enteric coating were explored to overcome these disadvantages. Materials and methods ENR-loaded SLNs were produced by a hot homogenization and ultrasonic emulsification method and the enteric granules with SLNs as inner core were prepared by wet granulation followed by coating using polyacrylic resin II (PRII). The formulation was optimized by using orthogonal or single factor test screening. Results The optimal SLNs with loading capacity (LC) and price as inspection indexes were consisted of 10 mL 3% polyvinyl alcohol per 0.8 g ENR and 2.4 g octadecanoic acid. The sizes, LC, polydispersion index, and zeta potential of the SLNs were 308.5±6.3 nm, 15.73%±0.31%, 0.352±0.015, and −22.3 mv, respectively. The best enteric granules were used 15% PRII as coating materials. The release of the enteric granules in simulated intestine fluid (SIF, pH=8) was significantly faster than in simulated gastric fluid (SGF, pH=2) and simultaneously slower than those of SLNs and native ENR. The granules showed good stability in influencing factor experiment. The granules displayed a similar daily feed intake as the control group and higher daily feed intake than ENR powder and single-coating granules. Compared to the ENR soluble powder, the area under the plasma concentration–time curve and mean retention time of the enteric granules after intragastric administration were increased from 4.26±0.85 µg h/mL and 6.80±2.28 hours to 11.24±3.33 µg h/mL and 17.97±4.01 hours, respectively. Conclusion The enteric granules combination SLNs with enteric coating significantly improved the stability, palatability, sustained-release performance and oral bioavailability of ENR. The novel technology will be a potential measure to overcome the similar disadvantages of other drugs.
Collapse
Affiliation(s)
- Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China,
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China,
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China, .,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Wuhan Hubei, China
| | - Wei Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China,
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China,
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Wuhan Hubei, China
| | - Kuiyu Meng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Wuhan Hubei, China
| | - Muhammad Abu Bakr Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Wuhan Hubei, China
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China,
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Wuhan Hubei, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan Hubei, China,
| |
Collapse
|
35
|
Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Wang X, Xie S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine 2018; 13:7333-7347. [PMID: 30519018 PMCID: PMC6233487 DOI: 10.2147/ijn.s169935] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic bacteria and hazardous for the health of human beings and livestock globally. The characteristics like biofilm forming, facultative intracellular survival, and growing resistance of S. aureus pose a great challenge to its use in therapy. Nanoparticles are considered as a promising way to overcome the infections’ therapeutic problems caused by S. aureus. In this paper, the present progress and challenges of nanoparticles in the treatment of S. aureus infection are focused on stepwise. First, the survival and infection mechanism of S. aureus are analyzed. Second, the treatment challenges posed by S. aureus are provided, which is followed by the third step including the advantages of nanoparticles in improving the penetration and accumulation ability of their payload antibiotics into cell, inhibiting S. aureus biofilm formation, and enhancing the antibacterial activity against resistant isolates. Finally, the challenges and future perspective of nanoparticles for S. aureus infection therapy are introduced. This review will help the readers to realize that the nanosystems can effectively fight against the S. aureus infection by inhibiting biofilm formation, enhancing intracellular delivery, and improving activity against methicillin-resistant S. aureus and small colony variant phenotypes as well as aim to help researchers looking for more efficient nano-systems to combat the S. aureus infections.
Collapse
Affiliation(s)
- Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Chao Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Xiaofang Wang
- Animal Husbandry and Veterinary Institute of Hebei Province, Baoding, Hebei, China,
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| |
Collapse
|
36
|
Birhanu BT, Park NH, Lee SJ, Hossain MA, Park SC. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet Res 2018; 49:101. [PMID: 30286813 PMCID: PMC6389159 DOI: 10.1186/s13567-018-0597-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium infects intestinal epithelia and macrophages, which is prevented by inhibiting adhesion and cell invasion. This study aimed to investigate the role of methyl gallate (MG) in adhesion, invasion, and intracellular survival of Salmonella Typhimurium in Caco-2 and RAW 264.7 cells via a gentamicin protection assay, confocal microscopy, and quantitative reverse-transcription polymerase chain reaction. MG (30 µg/mL) inhibited adhesion and invasion of Salmonella Typhimurium by 54.01% and 60.5% in RAW 264.7 cells, respectively. The combination of MG with sub-minimum inhibitory concentration (MIC) of marbofloxacin (MRB) inhibited the adhesion, invasion, and intracellular survival by 70.49%, 67.36%, and 74%, respectively. Confocal microscopy further revealed reductions in bacterial count in Caco-2 cells treated with MG alone or with sub-MIC of MRB. Furthermore, MG alone or in combination with sub-MIC of MRB decreased the motility of Salmonella Typhimurium. Quorum sensing genes including sdiA, srgE, and rck were downregulated by 52.8%, 61.7%, and 22.2%, respectively. Moreover, rac-1 was downregulated by 56.9% and 71.9% for MG alone and combined with sub-MIC of MRB, respectively, in mammalian cells. Furthermore, MG downregulated virulence genes of Salmonella Typhimurium including cheY, ompD, sipB, lexA, and ompF by 59.6%, 60.2%, 20.5%, 31.4%, and 16.2%, respectively. Together, the present results indicate that MG alone or in combination with a sub-MIC of MRB effectively inhibited the adhesion, invasion, and intracellular survival of Salmonella Typhimurium in vitro by downregulating quorum sensing and virulence genes.
Collapse
Affiliation(s)
- Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Na-Hye Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Seung-Jin Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Md Akil Hossain
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea.
| |
Collapse
|
37
|
Mi G, Shi D, Wang M, Webster TJ. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv Healthc Mater 2018; 7:e1800103. [PMID: 29790304 DOI: 10.1002/adhm.201800103] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Indexed: 02/02/2023]
Abstract
With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic-resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles, have been increasingly exploited as both efficient antimicrobials themselves or as delivery platforms to enhance the effectiveness of existing antibiotics. In addition to the emergence of widespread antibiotic resistance, of equal concern are implantable device-associated infections, which result from bacterial adhesion and subsequent biofilm formation at the site of implantation. The ineffectiveness of conventional antibiotics against these biofilms often leads to revision surgery, which is both debilitating to the patient and expensive. Toward this end, micro- and nanotopographies, especially those that resemble natural surfaces, and nonfouling chemistries represent a promising combination for long-term antibacterial activity. Collectively, the use of nanoparticles and nanostructured surfaces to combat bacterial growth and infections is a promising solution to the growing problem of antibiotic resistance and biofilm-related device infections.
Collapse
Affiliation(s)
- Gujie Mi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Di Shi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Mian Wang
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Thomas J. Webster
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| |
Collapse
|
38
|
S. E, T.R. N, V.K. R, Baranwal G, Biswas R, R. J, S. S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces 2017; 160:40-47. [DOI: 10.1016/j.colsurfb.2017.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
|
39
|
Pan M, Li S, Wang J, Sheng W, Wang S. Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. SENSORS 2017; 17:s17091984. [PMID: 28867795 PMCID: PMC5621032 DOI: 10.3390/s17091984] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
This study describes the development of a reproducible and label-free surface plasmon resonance (SPR) immunosensor and its application in the detection of harmful enrofloxacin (ENRO) in animal-derived foods. The experimental parameters for the immunosensor construction and regeneration, including the pH value (4.5), concentration for coating ENRO-ovalbumin conjugate (ENRO-OVA) (100 μg·mL−1), concentration of anti-ENRO antibody (80 nM) and regeneration solution (0.1 mol·L−1 HCl) were evaluated in detail. With the optimized parameters, the proposed SPR immunosensor obtained a good linear response to ENRO with high sensitivity (IC50: 3.8 ng·mL−1) and low detection limit (IC15: 1.2 ng·mL−1). The proposed SPR immunosensor was further validated to have favorable performances for ENRO residue detection in typical animal-derived foods after a simple matrix pretreatment procedure, as well as acceptable accuracy (recovery: 84.3–96.6%), precision (relative standard deviation (n = 3): 1.8–4.6%), and sensitivity (IC15 ≤ 8.4 ng·mL−1). Each SPR chip for analysis can be reused at least 100 times with good stability and the analysis cycle containing the steps of sample uploading/chip regeneration/baseline recovery can be completed within 6 min (one cycle) and auto-operated by a predetermined program. These results demonstrated that the proposed SPR immunosensor provided an effective strategy for accurate, sensitive, and rapid detection for ENRO residue, which has great potential for routine analysis of large numbers of samples for measuring different types of compounds.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shijie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|