1
|
Galindo LJ, Mathur V, Frost H, Torruella G, Richards TA, Irwin NAT. Transcriptomics of Diphyllatea (CRuMs) from South Pacific crater lakes confirm new cryptic clades. J Eukaryot Microbiol 2024; 71:e13060. [PMID: 39340224 PMCID: PMC11603278 DOI: 10.1111/jeu.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The Diphyllatea (CRuMs) are heterotrophic protists currently divided into three distinct clades (Diphy I-III). Diphy I are biflagellates in the genus Diphylleia, whereas Diphy II and III represent cryptic clades comprising Collodictyon-type quadriflagellates that were recently distinguished based on rRNA gene phylogenies. Here, we isolated Diphyllatea from freshwater crater lakes on two South Pacific islands and generated high-quality transcriptomes from species representing each clade, including the first transcriptomic data from Diphy III. Phylogenomic analyses support the separation of Diphy II and III, while transcriptome completeness highlights the utility of these data for future studies. Lastly, we discuss the biogeography and ecology of Diphyllatea on these remote islands.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Department of BiologyUniversity of OxfordOxfordUK
- Instituto Universitario de Investigación del AguaUniversidad de GranadaGranadaSpain
- Departamento de Ecología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| | | | | | - Guifré Torruella
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaCataloniaSpain
| | | | - Nicholas A. T. Irwin
- Department of BiologyUniversity of OxfordOxfordUK
- Merton CollegeUniversity of OxfordOxfordUK
- Gregor Mendel Institute (GMI)Austrian Academy of Sciences, Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
2
|
Nef C, Madoui MA, Pelletier É, Bowler C. Whole-genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom Chaetoceros. PLoS Biol 2022; 20:e3001893. [PMID: 36441816 PMCID: PMC9731442 DOI: 10.1371/journal.pbio.3001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/08/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Diatoms form a diverse and abundant group of photosynthetic protists that are essential players in marine ecosystems. However, the microevolutionary structure of their populations remains poorly understood, particularly in polar regions. Exploring how closely related diatoms adapt to different environments is essential given their short generation times, which may allow rapid adaptations, and their prevalence in marine regions dramatically impacted by climate change, such as the Arctic and Southern Oceans. Here, we address genetic diversity patterns in Chaetoceros, the most abundant diatom genus and one of the most diverse, using 11 metagenome-assembled genomes (MAGs) reconstructed from Tara Oceans metagenomes. Genome-resolved metagenomics on these MAGs confirmed a prevalent distribution of Chaetoceros in the Arctic Ocean with lower dispersal in the Pacific and Southern Oceans as well as in the Mediterranean Sea. Single-nucleotide variants identified within the different MAG populations allowed us to draw a landscape of Chaetoceros genetic diversity and revealed an elevated genetic structure in some Arctic Ocean populations. Gene flow patterns of closely related Chaetoceros populations seemed to correlate with distinct abiotic factors rather than with geographic distance. We found clear positive selection of genes involved in nutrient availability responses, in particular for iron (e.g., ISIP2a, flavodoxin), silicate, and phosphate (e.g., polyamine synthase), that were further supported by analysis of Chaetoceros transcriptomes. Altogether, these results highlight the importance of environmental selection in shaping diatom diversity patterns and provide new insights into their metapopulation genomics through the integration of metagenomic and environmental data.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Mohammed-Amin Madoui
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | - Éric Pelletier
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Metabolic Genomics, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Université Evry, Université Paris Saclay, Evry, France
| | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
3
|
Delmont TO, Gaia M, Hinsinger DD, Frémont P, Vanni C, Fernandez-Guerra A, Eren AM, Kourlaiev A, d'Agata L, Clayssen Q, Villar E, Labadie K, Cruaud C, Poulain J, Da Silva C, Wessner M, Noel B, Aury JM, de Vargas C, Bowler C, Karsenti E, Pelletier E, Wincker P, Jaillon O. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. CELL GENOMICS 2022; 2:100123. [PMID: 36778897 PMCID: PMC9903769 DOI: 10.1016/j.xgen.2022.100123] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/10/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
Abstract
Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their poor representation in culture collections limits our understanding of the evolutionary history and genomic underpinnings of planktonic ecosystems. Here, we used 280 billion Tara Oceans metagenomic reads from polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant and widespread eukaryotic environmental genomes ranging from 10 Mbp to 1.3 Gbp. This genomic resource covers a wide range of poorly characterized eukaryotic lineages that complement long-standing contributions from culture collections while better representing plankton in the upper layer of the oceans. We performed the first, to our knowledge, comprehensive genome-wide functional classification of abundant unicellular eukaryotic plankton, revealing four major groups connecting distantly related lineages. Neither trophic modes of plankton nor its vertical evolutionary history could completely explain the functional repertoire convergence of major eukaryotic lineages that coexisted within oceanic currents for millions of years.
Collapse
Affiliation(s)
- Tom O. Delmont
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Morgan Gaia
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Damien D. Hinsinger
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Chiara Vanni
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at Oldenburg, Germany
| | - Artem Kourlaiev
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Leo d'Agata
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Quentin Clayssen
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Emilie Villar
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Corinne Cruaud
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Marc Wessner
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Karsenti
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| |
Collapse
|
4
|
Simultaneous Single-Cell Genome and Transcriptome Sequencing of Termite Hindgut Protists Reveals Metabolic and Evolutionary Traits of Their Endosymbionts. mSphere 2022; 7:e0002122. [PMID: 35107338 PMCID: PMC8809381 DOI: 10.1128/msphere.00021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Some of the protist species which colonize the hindguts of wood-feeding Reticulitermes termites are associated with endosymbiotic bacteria belonging to the genus Endomicrobium. In this study, we focused on the endosymbionts of three protist species from Reticulitermes flavipes, as follows: Pyrsonympha vertens, Trichonympha agilis, and Dinenympha species II. Since these protist hosts represented members of different taxa which colonize separate niches within the hindguts of their termite hosts, we investigated if these differences translated to differential gene content and expression in their endosymbionts. Following assembly and comparative genome and transcriptome analyses, we discovered that these endosymbionts differed with respect to some possible niche-specific traits, such as carbon metabolism. Our analyses suggest that species-specific genes related to carbon metabolism were acquired by horizontal gene transfer (HGT) and may have come from taxa which are common in the termite hind gut. In addition, our analyses suggested that these endosymbionts contain and express genes related to natural transformation (competence) and recombination. Taken together, the presence of genes acquired by HGT and a putative competence pathway suggest that these endosymbionts are not cut off from gene flow and that competence may be a mechanism by which members of Endomicrobium can acquire new traits. IMPORTANCE The composition and structure of wood, which contains cellulose, hemicellulose, and lignin, prevent most organisms from using this common food source. Termites are a rare exception among animals, and they rely on a complex microbiota housed in their hindguts to use wood as a source of food. The lower termite, Reticulitermes flavipes, houses a variety of protists and prokaryotes that are the key players in the disassembly of lignocellulose. Here, we describe the genomes and the gene expression profiles of five Endomicrobium endosymbionts living inside three different protist species from R. flavipes. Data from these genomes suggest that these Endomicrobium species have different mechanisms for using carbon. In addition, they harbor genes that may be used to import DNA from their environment. This process of DNA uptake may contribute to the high levels of horizontal gene transfer noted previously in Endomicrobium species.
Collapse
|
5
|
Latorre F, Deutschmann IM, Labarre A, Obiol A, Krabberød AK, Pelletier E, Sieracki ME, Cruaud C, Jaillon O, Massana R, Logares R. Niche adaptation promoted the evolutionary diversification of tiny ocean predators. Proc Natl Acad Sci U S A 2021; 118:e2020955118. [PMID: 34155140 PMCID: PMC8237690 DOI: 10.1073/pnas.2020955118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Unicellular eukaryotic predators play a crucial role in the functioning of the ocean ecosystem by recycling nutrients and energy that are channeled to upper trophic levels. Traditionally, these evolutionarily diverse organisms have been combined into a single functional group (heterotrophic flagellates), overlooking their organismal differences. Here, we investigated four evolutionarily related species belonging to one cosmopolitan group of uncultured marine picoeukaryotic predators: marine stramenopiles (MAST)-4 (species A, B, C, and E). Co-occurrence and distribution analyses in the global surface ocean indicated contrasting patterns in MAST-4A and C, suggesting adaptation to different temperatures. We then investigated whether these spatial distribution patterns were mirrored by MAST-4 genomic content using single-cell genomics. Analyses of 69 single cells recovered 66 to 83% of the MAST-4A/B/C/E genomes, which displayed substantial interspecies divergence. MAST-4 genomes were similar in terms of broad gene functional categories, but they differed in enzymes of ecological relevance, such as glycoside hydrolases (GHs), which are part of the food degradation machinery in MAST-4. Interestingly, MAST-4 species featuring a similar GH composition (A and C) coexcluded each other in the surface global ocean, while species with a different set of GHs (B and C) appeared to be able to coexist, suggesting further niche diversification associated with prey digestion. We propose that differential niche adaptation to temperature and prey type has promoted adaptive evolutionary diversification in MAST-4. We show that minute ocean predators from the same phylogenetic group may have different biogeography and genomic content, which needs to be accounted for to better comprehend marine food webs.
Collapse
Affiliation(s)
- Francisco Latorre
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain;
| | - Ina M Deutschmann
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Aurélie Labarre
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Aleix Obiol
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo N-0316, Norway
| | - Eric Pelletier
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology & Evolution, FR2022/Tara Oceans Global Ocean System Ecology & Evolution, 75016 Paris, France
| | - Michael E Sieracki
- Ocean Science Division, National Science Foundation, Alexandria, VA 22314
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, 91000 Evry, France
| | - Olivier Jaillon
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology & Evolution, FR2022/Tara Oceans Global Ocean System Ecology & Evolution, 75016 Paris, France
| | - Ramon Massana
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain;
| |
Collapse
|
6
|
Genome sequencing and de novo assembly of the giant unicellular alga Acetabularia acetabulum using droplet MDA. Sci Rep 2021; 11:12820. [PMID: 34140556 PMCID: PMC8211769 DOI: 10.1038/s41598-021-92092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
The macroscopic single-celled green alga Acetabularia acetabulum has been a model system in cell biology for more than a century. However, no genomic information is available from this species. Since the alga has a long life cycle, is difficult to grow in dense cultures, and has an estimated diploid genome size of almost 2 Gb, obtaining sufficient genomic material for genome sequencing is challenging. Here, we have attempted to overcome these challenges by amplifying genomic DNA using multiple displacement amplification (MDA) combined with microfluidics technology to distribute the amplification reactions across thousands of microscopic droplets. By amplifying and sequencing DNA from five single cells we were able to recover an estimated ~ 7–11% of the total genome, providing the first draft of the A. acetabulum genome. We highlight challenges associated with genome recovery and assembly of MDA data due to biases arising during genome amplification, and hope that our study can serve as a reference for future attempts on sequencing the genome from non-model eukaryotes.
Collapse
|
7
|
Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F, Obiol A, Cruaud C, Sieracki ME, Jaillon O, Wincker P, Vandepoele K, Logares R, Massana R. Comparative genomics reveals new functional insights in uncultured MAST species. THE ISME JOURNAL 2021; 15:1767-1781. [PMID: 33452482 PMCID: PMC8163842 DOI: 10.1038/s41396-020-00885-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.
Collapse
Affiliation(s)
- Aurelie Labarre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| | - David López-Escardó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Francisco Latorre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de biologie François-Jacob, Genoscope, Evry, France
| | | | - Olivier Jaillon
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Patrick Wincker
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Paris, France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Záhonová K, Lax G, Sinha SD, Leonard G, Richards TA, Lukeš J, Wideman JG. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol 2021; 19:103. [PMID: 34001130 PMCID: PMC8130358 DOI: 10.1186/s12915-021-01035-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids, diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial genomes (mtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids. In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing to produce mature transcripts. All known euglenozoan mtDNAs exhibit extremely short mitochondrial small (rns) and large (rnl) subunit rRNA genes, and absence of tRNA genes. How these features evolved from an ancestral bacteria-like circular mitochondrial genome remains unanswered. Results We sequenced and assembled 20 euglenozoan single-cell amplified genomes (SAGs). In our phylogenetic and phylogenomic analyses, three SAGs were placed within kinetoplastids, 14 within diplonemids, one (EU2) within euglenids, and two SAGs with nearly identical small subunit rRNA gene (18S) sequences (EU17/18) branched as either a basal lineage of euglenids, or as a sister to all euglenozoans. Near-complete mitochondrial genomes were identified in EU2 and EU17/18. Surprisingly, both EU2 and EU17/18 mitochondrial contigs contained multiple genes and one tRNA gene. Furthermore, EU17/18 mtDNA possessed several features unique among euglenozoans including full-length rns and rnl genes, six mitoribosomal genes, and nad11, all likely on a single chromosome. Conclusions Our data strongly suggest that EU17/18 is an early-branching euglenozoan with numerous ancestral mitochondrial features. Collectively these data contribute to untangling the early evolution of euglenozoan mitochondria. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01035-y.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Savar D Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
9
|
Nev OA, Lindsay RJ, Jepson A, Butt L, Beardmore RE, Gudelj I. Predicting microbial growth dynamics in response to nutrient availability. PLoS Comput Biol 2021; 17:e1008817. [PMID: 33735173 PMCID: PMC8009381 DOI: 10.1371/journal.pcbi.1008817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/30/2021] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker's yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.
Collapse
Affiliation(s)
- Olga A. Nev
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Richard J. Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Robert E. Beardmore
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Farnelid H, Turk‐Kubo K, Zehr JP. Cell sorting reveals few novel prokaryote and photosynthetic picoeukaryote associations in the oligotrophic ocean. Environ Microbiol 2021; 23:1469-1480. [PMID: 33295132 PMCID: PMC8048811 DOI: 10.1111/1462-2920.15351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022]
Abstract
Close associations between single-celled marine organisms can have a central role in biogeochemical processes and are of great interest for understanding the evolution of organisms. The global significance of such associations raises the question of whether unidentified associations are yet to be discovered. In this study, fluorescence-activated cell sorted photosynthetic picoeukayote (PPE) populations and single cells were analysed by sequencing of 16S rRNA genes in the oligotrophic North Pacific Subtropical Gyre. Samples were collected during two cruises, spanning depths near the deep chlorophyll maximum, where the abundance of PPEs was highest. The association between the widespread and significant nitrogen (N2 )-fixing cyanobacterium, UCYN-A and its prymnesiophyte host was prevalent in both population and single-cell sorts. Several bacterial sequences, affiliating with previously described symbiotic taxa were detected but their detection was rare and not well replicated, precluding identification of novel tightly linked species-specific associations. Similarly, no enrichment of dominant seawater taxa such as Prochlorococcus, SAR11 or Synechococcus was observed suggesting that these were not systematically ingested by the PPE in this study. The results indicate that apart from the UCYN-A symbiosis, similar tight species-specific associations with PPEs are unusual in the oligotrophic ocean.
Collapse
Affiliation(s)
- Hanna Farnelid
- Ocean Sciences DepartmentUniversity of CaliforniaSanta CruzCAUSA
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS)Linnaeus UniversityKalmarSweden
| | - Kendra Turk‐Kubo
- Ocean Sciences DepartmentUniversity of CaliforniaSanta CruzCAUSA
| | - Jonathan P. Zehr
- Ocean Sciences DepartmentUniversity of CaliforniaSanta CruzCAUSA
| |
Collapse
|
11
|
Garcia-Heredia I, Bhattacharjee AS, Fornas O, Gomez ML, Martínez JM, Martinez-Garcia M. Benchmarking of single-virus genomics: a new tool for uncovering the virosphere. Environ Microbiol 2021; 23:1584-1593. [PMID: 33368907 DOI: 10.1111/1462-2920.15375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 01/03/2023]
Abstract
Metagenomics and single-cell genomics have enabled the discovery of relevant uncultured microbes. Recently, single-virus genomics (SVG), although still in an incipient stage, has opened new avenues in viral ecology by allowing the sequencing of one single virus at a time. The investigation of methodological alternatives and optimization of existing procedures for SVG is paramount to deliver high-quality genomic data. We report a sequencing dataset of viral single-amplified genomes (vSAGs) from cultured and uncultured viruses obtained by applying different conditions in each SVG step, from viral preservation and novel whole-genome amplification (WGA) to sequencing platforms and genome assembly. Sequencing data showed that cryopreservation and mild fixation were compatible with WGA, although fresh samples delivered better genome quality data. The novel TruPrime WGA, based on primase-polymerase features, and WGA-X employing a thermostable phi29 polymerase, were proven to be with sufficient sensitivity in SVG. The Oxford Nanopore (ON) sequencing platform did not provide a significant improvement of vSAG assembly compared to Illumina alone. Finally, the SPAdes assembler performed the best. Overall, our results represent a valuable genomic dataset that will help to standardized and advance new tools in viral ecology.
Collapse
Affiliation(s)
| | | | - Oscar Fornas
- Flow Cytometry Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.,Flow Cytometry Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Monica L Gomez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | | | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
12
|
Abstract
Viruses are extremely diverse and modulate important biological and ecological processes globally. However, much of viral diversity remains uncultured and yet to be discovered. Several powerful culture-independent tools, in particular metagenomics, have substantially advanced virus discovery. Among those tools is single-virus genomics, which yields sequenced reference genomes from individual sorted virus particles without the need for cultivation. This new method complements virus culturing and metagenomic approaches and its advantages include targeted investigation of specific virus groups and investigation of genomic microdiversity within viral populations. In this Review, we provide a brief history of single-virus genomics, outline how this emergent method has facilitated advances in virus ecology and discuss its current limitations and future potential. Finally, we address how this method may synergistically intersect with other single-virus and single-cell approaches.
Collapse
|
13
|
Onsbring H, Tice AK, Barton BT, Brown MW, Ettema TJG. An efficient single-cell transcriptomics workflow for microbial eukaryotes benchmarked on Giardia intestinalis cells. BMC Genomics 2020; 21:448. [PMID: 32600266 PMCID: PMC7325058 DOI: 10.1186/s12864-020-06858-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Background Most diversity in the eukaryotic tree of life is represented by microbial eukaryotes, which is a polyphyletic group also referred to as protists. Among the protists, currently sequenced genomes and transcriptomes give a biased view of the actual diversity. This biased view is partly caused by the scientific community, which has prioritized certain microbes of biomedical and agricultural importance. Additionally, some protists remain difficult to maintain in cultures, which further influences what has been studied. It is now possible to bypass the time-consuming process of cultivation and directly analyze the gene content of single protist cells. Single-cell genomics was used in the first experiments where individual protists cells were genomically explored. Unfortunately, single-cell genomics for protists is often associated with low genome recovery and the assembly process can be complicated because of repetitive intergenic regions. Sequencing repetitive sequences can be avoided if single-cell transcriptomics is used, which only targets the part of the genome that is transcribed. Results In this study we test different modifications of Smart-seq2, a single-cell RNA sequencing protocol originally developed for mammalian cells, to establish a robust and more cost-efficient workflow for protists. The diplomonad Giardia intestinalis was used in all experiments and the available genome for this species allowed us to benchmark our results. We could observe increased transcript recovery when freeze-thaw cycles were added as an extra step to the Smart-seq2 protocol. Further we reduced the reaction volume and purified the amplified cDNA with alternative beads to test different cost-reducing changes of Smart-seq2. Neither improved the procedure, and reducing the volumes by half led to significantly fewer genes detected. We also added a 5′ biotin modification to our primers and reduced the concentration of oligo-dT, to potentially reduce generation of artifacts. Except adding freeze-thaw cycles and reducing the volume, no other modifications lead to a significant change in gene detection. Therefore, we suggest adding freeze-thaw cycles to Smart-seq2 when working with protists and further consider our other modification described to improve cost and time-efficiency. Conclusions The presented single-cell RNA sequencing workflow represents an efficient method to explore the diversity and cell biology of individual protist cells.
Collapse
Affiliation(s)
- Henning Onsbring
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123, Uppsala, Sweden
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, USA
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123, Uppsala, Sweden. .,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Leconte J, Benites LF, Vannier T, Wincker P, Piganeau G, Jaillon O. Genome Resolved Biogeography of Mamiellales. Genes (Basel) 2020; 11:E66. [PMID: 31936086 PMCID: PMC7016971 DOI: 10.3390/genes11010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Among marine phytoplankton, Mamiellales encompass several species from the genera Micromonas, Ostreococcus and Bathycoccus, which are important contributors to primary production. Previous studies based on single gene markers described their wide geographical distribution but led to discussion because of the uneven taxonomic resolution of the method. Here, we leverage genome sequences for six Mamiellales species, two from each genus Micromonas, Ostreococcus and Bathycoccus, to investigate their distribution across 133 stations sampled during the Tara Oceans expedition. Our study confirms the cosmopolitan distribution of Mamiellales and further suggests non-random distribution of species, with two triplets of co-occurring genomes associated with different temperatures: Ostreococcuslucimarinus, Bathycoccusprasinos and Micromonaspusilla were found in colder waters, whereas Ostreococcus spp. RCC809, Bathycoccus spp. TOSAG39-1 and Micromonascommoda were more abundant in warmer conditions. We also report the distribution of the two candidate mating-types of Ostreococcus for which the frequency of sexual reproduction was previously assumed to be very low. Indeed, both mating types were systematically detected together in agreement with either frequent sexual reproduction or the high prevalence of a diploid stage. Altogether, these analyses provide novel insights into Mamiellales' biogeography and raise novel testable hypotheses about their life cycle and ecology.
Collapse
Affiliation(s)
- Jade Leconte
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - L. Felipe Benites
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Thomas Vannier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Gwenael Piganeau
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
15
|
Wideman JG, Monier A, Rodríguez-Martínez R, Leonard G, Cook E, Poirier C, Maguire F, Milner DS, Irwin NAT, Moore K, Santoro AE, Keeling PJ, Worden AZ, Richards TA. Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat Microbiol 2019; 5:154-165. [PMID: 31768028 DOI: 10.1038/s41564-019-0605-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Abstract
Most eukaryotic microbial diversity is uncultivated, under-studied and lacks nuclear genome data. Mitochondrial genome sampling is more comprehensive, but many phylogenetically important groups remain unsampled. Here, using a single-cell sorting approach combining tubulin-specific labelling with photopigment exclusion, we sorted flagellated heterotrophic unicellular eukaryotes from Pacific Ocean samples. We recovered 206 single amplified genomes, predominantly from underrepresented branches on the tree of life. Seventy single amplified genomes contained unique mitochondrial contigs, including 21 complete or near-complete mitochondrial genomes from formerly under-sampled phylogenetic branches, including telonemids, katablepharids, cercozoans and marine stramenopiles, effectively doubling the number of available samples of heterotrophic flagellate mitochondrial genomes. Collectively, these data identify a dynamic history of mitochondrial genome evolution including intron gain and loss, extensive patterns of genetic code variation and complex patterns of gene loss. Surprisingly, we found that stramenopile mitochondrial content is highly plastic, resembling patterns of variation previously observed only in plants.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Living Systems Institute, University of Exeter, Exeter, UK. .,Wissenschaftskolleg zu Berlin, Berlin, Germany. .,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Exeter, UK.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Emily Cook
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, Division of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Finlay Maguire
- Living Systems Institute, University of Exeter, Exeter, UK.,Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David S Milner
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Moore
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Patrick J Keeling
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, Division of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | |
Collapse
|
16
|
Ku C, Sebé-Pedrós A. Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190098. [PMID: 31587645 PMCID: PMC6792447 DOI: 10.1098/rstb.2019.0098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding the diversity and evolution of eukaryotic microorganisms remains one of the major challenges of modern biology. In recent years, we have advanced in the discovery and phylogenetic placement of new eukaryotic species and lineages, which in turn completely transformed our view on the eukaryotic tree of life. But we remain ignorant of the life cycles, physiology and cellular states of most of these microbial eukaryotes, as well as of their interactions with other organisms. Here, we discuss how high-throughput genome-wide gene expression analysis of eukaryotic single cells can shed light on protist biology. First, we review different single-cell transcriptomics methodologies with particular focus on microbial eukaryote applications. Then, we discuss single-cell gene expression analysis of protists in culture and what can be learnt from these approaches. Finally, we envision the application of single-cell transcriptomics to protist communities to interrogate not only community components, but also the gene expression signatures of distinct cellular and physiological states, as well as the transcriptional dynamics of interspecific interactions. Overall, we argue that single-cell transcriptomics can significantly contribute to our understanding of the biology of microbial eukaryotes. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
17
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190088. [PMID: 31587642 PMCID: PMC6792448 DOI: 10.1098/rstb.2019.0088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Royo-Llonch M, Sánchez P, González JM, Pedrós-Alió C, Acinas SG. Ecological and functional capabilities of an uncultured Kordia sp. Syst Appl Microbiol 2019; 43:126045. [PMID: 31831198 DOI: 10.1016/j.syapm.2019.126045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Cultivable bacteria represent only a fraction of the diversity in microbial communities. However, the official procedures for classification and characterization of a novel prokaryotic species still rely on isolates. Nevertheless, due to single cell genomics, it is possible to retrieve genomes from environmental samples by sequencing them individually, and to assign specific genes to a specific taxon, regardless of their ability to grow in culture. In this study, a complete description was performed for uncultured Kordia sp. TARA_039_SRF, a proposed novel species within the genus Kordia, using culture-independent techniques. The type material was a high-quality draft genome (94.97% complete, 4.65% gene redundancy) co-assembled using ten nearly identical single amplified genomes (SAGs) from surface seawater in the North Indian Ocean during the Tara Oceans Expedition. The assembly process was optimized to obtain the best possible assembly metrics and a less fragmented genome. The closest relative of the species was Kordia periserrulae, which shared 97.56% similarity of the 16S rRNA gene, 75% orthologs and 89.13% average nucleotide identity. The functional potential of the proposed novel species included proteorhodopsin, the ability to incorporate nitrate, cytochrome oxidases with high affinity for oxygen, and CAZymes that were unique features within the genus. Its abundance at different depths and size fractions was also evaluated together with its functional annotation, revealing that its putative ecological niche could be particles of phytoplanktonic origin. It could putatively attach to these particles and consume them while sinking to the deeper and oxygen depleted layers of the North Indian Ocean.
Collapse
Affiliation(s)
- M Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - P Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - J M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - C Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - S G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|
19
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
20
|
Abstract
Cells are the building blocks of life, from single-celled microbes through to multi-cellular organisms. To understand a multitude of biological processes we need to understand how cells behave, how they interact with each other and how they respond to their environment. The use of new methodologies is changing the way we study cells allowing us to study them on minute scales and in unprecedented detail. These same methods are allowing researchers to begin to sample the vast diversity of microbes that dominate natural environments. The aim of this special issue is to bring together research and perspectives on the application of new approaches to understand the biological properties of cells, including how they interact with other biological entities. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003 Barcelona, Spain
| | - Stefano Pagliara
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
| |
Collapse
|
21
|
Benites LF, Poulton N, Labadie K, Sieracki ME, Grimsley N, Piganeau G. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190089. [PMID: 31587637 DOI: 10.1098/rstb.2019.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Planktonic photosynthetic organisms of the class Mamiellophyceae include the smallest eukaryotes (less than 2 µm), are globally distributed and form the basis of coastal marine ecosystems. Eight complete fully annotated 13-22 Mb genomes from three genera, Ostreococcus, Bathycoccus and Micromonas, are available from previously isolated clonal cultured strains and provide an ideal resource to explore the scope and challenges of analysing single cell amplified genomes (SAGs) isolated from a natural environment. We assembled data from 12 SAGs sampled during the Tara Oceans expedition to gain biological insights about their in situ ecology, which might be lost by isolation and strain culture. Although the assembled nuclear genomes were incomplete, they were large enough to infer the mating types of four Ostreococcus SAGs. The systematic occurrence of sequences from the mitochondria and chloroplast, representing less than 3% of the total cell's DNA, intimates that SAGs provide suitable substrates for detection of non-target sequences, such as those of virions. Analysis of the non-Mamiellophyceae assemblies, following filtering out cross-contaminations during the sequencing process, revealed two novel 1.6 and 1.8 kb circular DNA viruses, and the presence of specific Bacterial and Oomycete sequences suggests that these organisms might co-occur with the Mamiellales. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- L Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France
| | - Nicole Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, université Paris Saclay, 9105 Evry, France
| | | | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France
| | - Gwenael Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
22
|
Keeling PJ. Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190085. [PMID: 31587641 DOI: 10.1098/rstb.2019.0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microbial eukaryotes (protists) are structurally, developmentally and behaviourally more complex than their prokaryotic cousins. This complexity makes it more difficult to translate genomic and metagenomic data into accurate functional inferences about systems ranging all the way from molecular and cellular levels to global ecological networks. This problem can be traced back to the advent of the cytoskeleton and endomembrane systems at the origin of eukaryotes, which endowed them with a range of complex structures and behaviours that still largely dominate how they evolve and interact within microbial communities. But unlike the diverse metabolic properties that evolved within prokaryotes, the structural and behavioural characteristics that strongly define how protists function in the environment cannot readily be inferred from genomic data, since there is generally no simple correlation between a gene and a discrete activity or function. A deeper understanding of protists at both cellular and ecological levels, therefore, requires not only high-throughput genomics but also linking such data to direct observations of natural history and cell biology. This is challenging since these observations typically require cultivation, which is lacking for most protists. Potential remedies with current technology include developing a more phylogenetically diverse range of model systems to better represent the diversity, as well as combining high-throughput, single-cell genomics with microscopic documentation of the subject cells to link sequence with structure and behaviour. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
23
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
24
|
Sieracki ME, Poulton NJ, Jaillon O, Wincker P, de Vargas C, Rubinat-Ripoll L, Stepanauskas R, Logares R, Massana R. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci Rep 2019; 9:6025. [PMID: 30988337 PMCID: PMC6465268 DOI: 10.1038/s41598-019-42487-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
Marine planktonic protists are critical components of ocean ecosystems and are highly diverse. Molecular sequencing methods are being used to describe this diversity and reveal new associations and metabolisms that are important to how these ecosystems function. We describe here the use of the single cell genomics approach to sample and interrogate the diversity of the smaller (pico- and nano-sized) protists from a range of oceanic samples. We created over 900 single amplified genomes (SAGs) from 8 Tara Ocean samples across the Indian Ocean and the Mediterranean Sea. We show that flow cytometric sorting of single cells effectively distinguishes plastidic and aplastidic cell types that agree with our understanding of protist phylogeny. Yields of genomic DNA with PCR-identifiable 18S rRNA gene sequence from single cells was low (15% of aplastidic cell sorts, and 7% of plastidic sorts) and tests with alternate primers and comparisons to metabarcoding did not reveal phylogenetic bias in the major protist groups. There was little evidence of significant bias against or in favor of any phylogenetic group expected or known to be present. The four open ocean stations in the Indian Ocean had similar communities, despite ranging from 14°N to 20°S latitude, and they differed from the Mediterranean station. Single cell genomics of protists suggests that the taxonomic diversity of the dominant taxa found in only several hundreds of microliters of surface seawater is similar to that found in molecular surveys where liters of sample are filtered.
Collapse
Affiliation(s)
- M E Sieracki
- National Science Foundation, 2415 Eisenhower Ave., Alexandria, VA, 22314, USA.
| | - N J Poulton
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - O Jaillon
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - P Wincker
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - C de Vargas
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - L Rubinat-Ripoll
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - R Stepanauskas
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - R Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Maritim de la Barceloneta, 37-49, Barcelona, E-08003, Catalonia, Spain
| | - R Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Maritim de la Barceloneta, 37-49, Barcelona, E-08003, Catalonia, Spain
| |
Collapse
|
25
|
Hu SK, Liu Z, Alexander H, Campbell V, Connell PE, Dyhrman ST, Heidelberg KB, Caron DA. Shifting metabolic priorities among key protistan taxa within and below the euphotic zone. Environ Microbiol 2018; 20:2865-2879. [PMID: 29708635 DOI: 10.1111/1462-2920.14259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
A metatranscriptome study targeting the protistan community was conducted off the coast of Southern California, at the San Pedro Ocean Time-series station at the surface, 150 m (oxycline), and 890 m to link putative metabolic patterns to distinct protistan lineages. Comparison of relative transcript abundances revealed depth-related shifts in the nutritional modes of key taxonomic groups. Eukaryotic gene expression in the sunlit surface environment was dominated by phototrophs, such as diatoms and chlorophytes, and high abundances of transcripts associated with synthesis pathways (e.g., photosynthesis, carbon fixation, fatty acid synthesis). Sub-euphotic depths (150 and 890 m) exhibited strong contributions from dinoflagellates and ciliates, and were characterized by transcripts relating to digestion or intracellular nutrient recycling (e.g., breakdown of fatty acids and V-type ATPases). These transcriptional patterns underlie the distinct nutritional modes of ecologically important protistan lineages that drive marine food webs, and provide a framework to investigate trophic dynamics across diverse protistan communities.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zhenfeng Liu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, USA
| | - Victoria Campbell
- Division Allergy and Infectious Diseases, UW Medicine, Seattle, WA, USA
| | - Paige E Connell
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res 2018; 28:569-580. [PMID: 29496730 PMCID: PMC5880246 DOI: 10.1101/gr.228429.117] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 11/24/2022]
Abstract
Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities.
Collapse
Affiliation(s)
- Patrick T West
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, California 94709, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun 2018; 9:310. [PMID: 29358710 PMCID: PMC5778133 DOI: 10.1038/s41467-017-02235-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology. The biology of many marine protists, such as stramenopiles, remains obscure. Here, the authors exploit single-cell genomics and metagenomics to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles.
Collapse
|
28
|
Orsi WD, Wilken S, Del Campo J, Heger T, James E, Richards TA, Keeling PJ, Worden AZ, Santoro AE. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ Microbiol 2018; 20:815-827. [PMID: 29215213 DOI: 10.1111/1462-2920.14018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 11/29/2022]
Abstract
Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean.
Collapse
Affiliation(s)
- William D Orsi
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thierry Heger
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erick James
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas A Richards
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Alyson E Santoro
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| |
Collapse
|
29
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci Rep 2017; 7:11025. [PMID: 28887541 PMCID: PMC5591225 DOI: 10.1038/s41598-017-11466-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/17/2017] [Indexed: 11/08/2022] Open
Abstract
Single-cell genomics (SCG) appeared as a powerful technique to get genomic information from uncultured organisms. However, SCG techniques suffer from biases at the whole genome amplification step that can lead to extremely variable numbers of genome recovery (5-100%). Thus, it is unclear how useful can SCG be to address evolutionary questions on uncultured microbial eukaryotes. To provide some insights into this, we here analysed 3 single-cell amplified genomes (SAGs) of the choanoflagellate Monosiga brevicollis, whose genome is known. Our results show that each SAG has a different, independent bias, yielding different levels of genome recovery for each cell (6-36%). Genes often appear fragmented and are split into more genes during annotation. Thus, analyses of gene gain and losses, gene architectures, synteny and other genomic features can not be addressed with a single SAG. However, the recovery of phylogenetically-informative protein domains can be up to 55%. This means SAG data can be used to perform accurate phylogenomic analyses. Finally, we also confirm that the co-assembly of several SAGs improves the general genomic recovery. Overall, our data show that, besides important current limitations, SAGs can still provide interesting and novel insights from poorly-known, uncultured organisms.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain.
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
30
|
|
31
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|