1
|
Lin Z, Zheng X, Chen J. Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis. MICROBIAL ECOLOGY 2023; 86:1856-1868. [PMID: 36719456 DOI: 10.1007/s00248-023-02183-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.
Collapse
Affiliation(s)
- Zhenyue Lin
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350001, China.
| | - Xinqing Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, 356015, China
| | - Jianming Chen
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Bao Y, Lin Z, Yao W, Akbar S, Lin W, Powell CA, Xu J, Zhang M. Integration of Transcriptomic and Metabolomic Profiles Provides Insights into the Influence of Nitrogen on Secondary Metabolism in Fusarium sacchari. Int J Mol Sci 2023; 24:10832. [PMID: 37446015 DOI: 10.3390/ijms241310832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.
Collapse
Affiliation(s)
- Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Zhenyue Lin
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Sehrish Akbar
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Wenfeng Lin
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Charles A Powell
- IFAS Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| | - Jianlong Xu
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
- IFAS Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| |
Collapse
|
3
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Jiang L, Sun YF, Zhou GW, Tong HY, Huang LT, Yu XL, Liu CY, Zhang YY, Yuan XC, Qian PY, Huang H. Ocean acidification elicits differential bleaching and gene expression patterns in larval reef coral Pocillopora damicornis under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156851. [PMID: 35750167 DOI: 10.1016/j.scitotenv.2022.156851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The successful dispersal of coral larvae is vital to the population replenishment and reef recovery and resilience. Despite that this critical early stage is susceptible to ocean warming and acidification, little is known about the responses of coral larvae to warming and acidification across different biological scales. This study explored the influences of elevated temperature (29 °C versus 33 °C) and pCO2 (500 μatm versus 1000 μatm) on brooded larvae of Pocillopora damicornis at the organismal, cellular and gene expression levels. Heat stress caused bleaching, depressed light-enhanced dark respiration, photosynthesis and autotrophy, whereas high pCO2 stimulated photosynthesis. Although survival was unaffected, larvae at 33 °C were ten-times more likely to settle than those at 29 °C, suggesting reduced capacity to disperse and differentiate suitable substrate. Remarkably, heat stress induced greater symbiont loss at ambient pCO2 than at high pCO2, while cell-specific pigment concentrations of symbionts at 33 °C increased twofold under ambient pCO2 relative to high pCO2, suggesting pCO2-dependent bleaching patterns. Considerable increases in activities of host antioxidants superoxide dismutase (SOD) and catalase (CAT) at 33 °C indicated oxidative stress, whereas lipid peroxidation and caspase activities were contained, thereby restraining larval mortality at 33 °C. Furthermore, the coral host mounted stronger transcriptional responses than symbionts. High pCO2 stimulated host metabolic pathways, possibly because of the boosted algal productivity. In contrast, host metabolic processes and symbiont photosystem genes were downregulated at 33 °C. Interestingly, the upregulation of extracellular matrix genes and glycosaminoglycan degradation pathway at 33 °C was more evident under ambient pCO2 than high pCO2, suggesting compromised host tissue integrity that could have facilitated symbiont expulsion and bleaching. Our results provide insights into how coral larvae respond to warming and acidification at different levels of biological organization, and demonstrate that ocean acidification can mediate thermal bleaching and gene expression in coral larvae under heat stress.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - You-Fang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Guo-Wei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Hao-Ya Tong
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Yu-Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
5
|
Zhou Z, Wan L, Cai W, Tang J, Wu Z, Zhang K. Species-specific microplastic enrichment characteristics of scleractinian corals from reef environment: Insights from an in-situ study at the Xisha Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152845. [PMID: 34990693 DOI: 10.1016/j.scitotenv.2021.152845] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The microplastic pollution has become a worldwide ecological concerns and imposed negative impacts on the coral reef ecosystems. In the present study, the distribution and characteristics of microplastics in the seawater, marine sediment and three scleractinian coral species (Pocillopora damicornis, Galaxea fascicularis, and Porites lutea) at five representative atolls in the Xisha Islands were investigated. The average microplastic abundances in the seawater and marine sediment were 9.5 ± 3.7 particles L-1 and 280.9 ± 231.9 particles kg-1 (dry weight), and the average contents of microplastics in P. damicornis, G. fascicularis and P. lutea were 0.9 ± 0.5 particles cm-2, 1.2 ± 0.6 particles cm-2, and 2.5 ± 1.6 particles cm-2, respectively. There were no significant correlations for the microplastic concentration between the reef environment and the corals. These results infer that the microplastic pollution is severe in the coral reef ecosystem in the Xisha Islands, and scleractinian corals could enrich microplastics from the reef environment. In addition, more than 80% of the microplastics in the seawater, marine sediment and corals were smaller than 2 mm, and the most common types of microplastics were cellophane (61.13%) and polyethylene terephthalate (33.49%). Black and fibers were the most common color and shape of the microplastics in the seawater and marine sediment, respectively. The microplastics in transparent color, film shape and small size (<2 mm) were highly accumulated in corals. Besides, cluster analysis showed that significant difference of microplastic characteristics existed between the corals and the reef environment, and the features of enriched microplastics among three coral species were also different. Moreover, P. lutea exhibited a stronger ability in enriching microplastics than G. fascicularis and P. damicornis. These results suggest that the microplastic-enriching capacities of scleractinian corals are species-specific, and species acclimated to microplastic pollution might become predominant in future coral community.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| | - Lu Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Lin Z, Wang L, Chen M, Zheng X, Chen J. Proteome and microbiota analyses characterizing dynamic coral-algae-microbe tripartite interactions under simulated rapid ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152266. [PMID: 34896508 DOI: 10.1016/j.scitotenv.2021.152266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification (OA) is a pressing issue currently and in the future for coral reefs. The importance of maintenance interactions among partners of the holobiont association in the stress response is well appreciated; however, the candidate molecular and microbial mechanisms that underlie holobiont stress resilience or susceptibility remain unclear. Here, to assess the effects of rapid pH change on coral holobionts at both the protein and microbe levels, combined proteomics and microbiota analyses of the scleractinian coral Galaxea fascicularis exposed to three relevant OA scenarios, including current (pHT = 8.15), preindustrial (pHT = 8.45) and future IPCC-2100 scenarios (pHT = 7.85), were conducted. The results demonstrated that pH changes had no significant effect on the physiological calcification rate of G. fascicularis in a 10-day experiment; however, significant differences were recorded in the proteome and 16S profiling. Proteome variance analysis identified some of the core biological pathways in coral holobionts, including coral host infection and immune defence, and maintaining metabolic compatibility involved in energy homeostasis, nutrient cycling, antibiotic activity and carbon budgets of coral-Symbiodiniaceae interactions were key mechanisms in the early OA stress response. Furthermore, microbiota changes indicate substantial microbial community and functional disturbances in response to OA stress, potentially compromising holobiont health and fitness. Our results may help to elucidate many complex mechanisms to describe scleractinian coral holobiont responses to OA and raise interesting questions for future studies.
Collapse
Affiliation(s)
- Zhenyue Lin
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Liuying Wang
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xinqing Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Zhou Z, Zhang K, Wang L, Su Y, Wang J, Song T, Yang X, Tang J, Lin S. Nitrogen availability improves the physiological resilience of coral endosymbiont Cladocopium goreaui to high temperature. JOURNAL OF PHYCOLOGY 2021; 57:1187-1198. [PMID: 33650119 DOI: 10.1111/jpy.13156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The physiological response of symbiotic Symbiodiniaceae to high temperature is believed to result in coral bleaching. However, the potential effect of nitrogen availability on heat acclimatization of symbiotic Symbiodiniaceae is still unclear. In this study, physiological responses of Symbiodiniaceae Cladocopium goreaui to temperature and nitrogen nutrient stress conditions were investigated. Nitrogen deficiency caused significant declines in cell concentration and chlorophyll content per cell, but significant increases in nitric oxide synthase activity, caspase3 activation level, and cellular carbon content of C. goreaui at normal temperature. Algal cells under high temperature and nitrogen deficiency showed significant rises in Fv/Fm, catalase activity, and caspase3 activation level, but no significant changes in cell yield, cell size, chlorophyll content, superoxide dismutase, nitric oxide synthase activity, and cellular contents of nitrogen and carbon, in comparison with those under normal temperature and nitrogen deficiency. Growth, chlorophyll, and nitrogen contents of algal cells under the high temperature and nitrogen-replete conditions were significantly higher than those under high temperature or nitrogen deficiency alone, whereas nitric oxide synthase activity, superoxide dismutase activity, catalase activity, carbon content, and caspase3 activation level exhibited opposite trends of variation. Transcriptomic and network analyses revealed ion transport and metabolic processes mainly involved in regulating these physiological activities under different temperature and nitrogen nutrient. The totality of results shows that high temperature activates stress responses, induces antioxidant capacity of apoptosis, and limits the growth rate of C. goreaui. Adequate nitrogen nutrient can improve the resilience of this Symbiodiniaceae against heat stress through repressed apoptosis, promoted ion transport, and optimized metabolism.
Collapse
Affiliation(s)
- Zhi Zhou
- Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| | - Kaidian Zhang
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lingui Wang
- Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yilu Su
- Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jierui Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting Song
- Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaohong Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jia Tang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
8
|
Tracing the Trophic Plasticity of the Coral-Dinoflagellate Symbiosis Using Amino Acid Compound-Specific Stable Isotope Analysis. Microorganisms 2021; 9:microorganisms9010182. [PMID: 33466994 PMCID: PMC7830491 DOI: 10.3390/microorganisms9010182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
The association between corals and photosynthetic dinoflagellates is one of the most well-known nutritional symbioses, but nowadays it is threatened by global changes. Nutritional exchanges are critical to understanding the performance of this symbiosis under stress conditions. Here, compound-specific δ15N and δ13C values of amino acids (δ15NAA and δ13CAA) were assessed in autotrophic, mixotrophic and heterotrophic holobionts as diagnostic tools to follow nutritional interactions between the partners. Contrary to what was expected, heterotrophy was mainly traced through the δ15N of the symbiont’s amino acids (AAs), suggesting that symbionts directly profit from host heterotrophy. The trophic index (TP) ranged from 1.1 to 2.3 from autotrophic to heterotrophic symbionts. In addition, changes in TP across conditions were more significant in the symbionts than in the host. The similar δ13C-AAs signatures of host and symbionts further suggests that symbiont-derived photosynthates are the main source of carbon for AAs synthesis. Symbionts, therefore, appear to be a key component in the AAs biosynthetic pathways, and might, via this obligatory function, play an essential role in the capacity of corals to withstand environmental stress. These novel findings highlight important aspects of the nutritional exchanges in the coral–dinoflagellates symbiosis. In addition, they feature δ15NAA as a useful tool for studies regarding the nutritional exchanges within the coral–symbiodiniaceae symbiosis.
Collapse
|
9
|
Tracy AM, Weil E, Burge CA. Ecological Factors Mediate Immunity and Parasitic Co-Infection in Sea Fan Octocorals. Front Immunol 2021; 11:608066. [PMID: 33505396 PMCID: PMC7829190 DOI: 10.3389/fimmu.2020.608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The interplay among environment, demography, and host-parasite interactions is a challenging frontier. In the ocean, fundamental changes are occurring due to anthropogenic pressures, including increased disease outbreaks on coral reefs. These outbreaks include multiple parasites, calling into question how host immunity functions in this complex milieu. Our work investigates the interplay of factors influencing co-infection in the Caribbean sea fan octocoral, Gorgonia ventalina, using metrics of the innate immune response: cellular immunity and expression of candidate immune genes. We used existing copepod infections and live pathogen inoculation with the Aspergillus sydowii fungus, detecting increased expression of the immune recognition gene Tachylectin 5A (T5A) in response to both parasites. Cellular immunity increased by 8.16% in copepod infections compared to controls and single Aspergillus infections. We also detected activation of cellular immunity in reef populations, with a 13.6% increase during copepod infections. Cellular immunity was similar in the field and in the lab, increasing with copepod infections and not the fungus. Amoebocyte density and the expression of T5A and a matrix metalloproteinase (MMP) gene were also positively correlated across all treatments and colonies, irrespective of parasitic infection. We then assessed the scaling of immune metrics to population-level disease patterns and found random co-occurrence of copepods and fungus across 15 reefs in Puerto Rico. The results suggest immune activation by parasites may not alter parasite co-occurrence if factors other than immunity prevail in structuring parasite infection. We assessed non-immune factors in the field and found that sea fan colony size predicted infection by the copepod parasite. Moreover, the effect of infection on immunity was small relative to that of site differences and live coral cover, and similar to the effect of reproductive status. While additional immune data would shed light on the extent of this pattern, ecological factors may play a larger role than immunity in controlling parasite patterns in the wild. Parsing the effects of immunity and ecological factors in octocoral co-infection shows how disease depends on more than one host and one parasite and explores the application of co-infection research to a colonial marine organism.
Collapse
Affiliation(s)
- Allison M. Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, United States
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
10
|
Kenkel CD, Mocellin VJL, Bay LK. Global gene expression patterns in Porites white patch syndrome: Disentangling symbiont loss from the thermal stress response in reef-building coral. Mol Ecol 2020; 29:3907-3920. [PMID: 32858771 DOI: 10.1111/mec.15608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The mechanisms resulting in the breakdown of the coral symbiosis once the process of bleaching has been initiated remain unclear. Distinguishing the process of symbiont loss from the thermal stress response may shed light on the cellular and molecular pathways involved in each process. This study examined physiological changes and global gene expression patterns associated with white patch syndrome (WPS) in Porites lobata, which manifests in localized bleaching independent of thermal stress. In addition, a meta-analysis of global gene expression studies in other corals and anemones was used to contrast differential regulation as a result of disease and thermal stress from patterns correlated with symbiotic state. Symbiont density, chlorophyll a content, holobiont productivity, instant calcification rate, and total host protein content were uniformly reduced in WPS relative to healthy tissue. While expression patterns associated with WPS were secondary to fixed effects of source colony, specific functional enrichments combined with a lack of immune regulation suggest that the viral infection putatively giving rise to this condition affects symbiont rather than host cells. Expression in response to WPS also clustered independently of patterns in white syndrome impacted A. hyacinthus, further supporting a distinct aetiology of this syndrome. Expression patterns in WPS-affected tissues were significantly correlated with prior studies that examined short-term thermal stress responses independent of symbiotic state, suggesting that the majority of expression changes reflect a nonspecific stress response. Across studies, the magnitude and direction of expression change among particular functional enrichments suggests unique responses to stressor duration and highlights distinct responses to bleaching in an anemone model.
Collapse
Affiliation(s)
- Carly D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| |
Collapse
|
11
|
Li J, Long L, Zou Y, Zhang S. Microbial community and transcriptional responses to increased temperatures in coral Pocillopora damicornis holobiont. Environ Microbiol 2020; 23:826-843. [PMID: 32686311 PMCID: PMC7984454 DOI: 10.1111/1462-2920.15168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
A few studies have holistically examined successive changes in coral holobionts in response to increased temperatures. Here, responses of the coral host Pocillopora damicornis, its Symbiodiniaceae symbionts, and associated bacteria to increased water temperatures were investigated. High temperatures induced bleaching, but no coral mortality was observed. Transcriptome analyses showed that P. damicornis responded more quickly to elevated temperatures than its algal symbionts. Numerous genes putatively associated with apoptosis, exocytosis, and autophagy were upregulated in P. damicornis, suggesting that Symbiodiniaceae can be eliminated or expelled through these mechanisms when P. damicornis experiences heat stress. Furthermore, apoptosis in P. damicornis is presumably induced through tumour necrosis factor and p53 signalling and caspase pathways. The relative abundances of several coral disease-associated bacteria increased at 32°C, which may affect immune responses in heat-stressed corals and potentially accelerates the loss of algal symbionts. Additionally, consistency of Symbiodiniaceae community structures under heat stress suggests non-selective loss of Symbiodiniaceae. We propose that heat stress elicits interrelated response mechanisms in all parts of the coral holobiont.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Luter HM, Kenkel CD, Terzin M, Peirce T, Laffy PW, Gibb K, Webster NS. Gene correlation networks reveal the transcriptomic response to elevated nitrogen in a photosynthetic sponge. Mol Ecol 2020; 29:1452-1462. [PMID: 32223031 DOI: 10.1111/mec.15417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
Nutrient levels in coastal environments have been increasing globally due to elevated inputs of sewage and terrigenous sediments carrying fertilizers. Yet, despite their immense filtering capacities, marine sponges appear to be less affected by elevated nutrients than sympatric benthic organisms, such as corals. While the molecular-level stress response of sponges to elevated seawater temperatures and other toxicants has been defined, this study represents the first global gene expression analysis of how sponges respond to elevated nitrogen. Gene correlation network analysis revealed that sponge gene modules, coded by colours, became either highly upregulated (Blue) or downregulated (Turquoise, Black, Brown) as nitrogen treatment levels increased. Gene Ontology enrichment analysis of the different modules revealed genes involved in cell signalling, immune response and flagella motility were affected by increasing nitrogen levels. Notably, a decrease in the regulation of NF-kappaB signalling and an increase in protein degradation was identified, which is comparable to metabolic pathways associated with the sponge thermal stress response. These results highlight that Cymbastela stipitata can rapidly respond to changes in the external environment and identifies pathways that probably contribute to the ability of C. stipitata to tolerate short-term nutrient pulses.
Collapse
Affiliation(s)
- Heidi M Luter
- NAMRA and the Research Institute for the Environment & Livelihoods, Charles Darwin University, Darwin, NT, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Carly D Kenkel
- Australian Institute of Marine Science, Townsville, QLD, Australia.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Marko Terzin
- Australian Institute of Marine Science, Townsville, QLD, Australia.,Marine Biology Research Group, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Tyler Peirce
- Australian Institute of Marine Science, Townsville, QLD, Australia.,AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Karen Gibb
- Research Institute for the Environment & Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Zheng T, Lin Y, Wang L, Lin Q, Lin X, Chen Z, Lin Z. De novo Assembly and Characterization of the Floral Transcriptomes of Two Varieties of Melastoma malabathricum. Front Genet 2019; 10:521. [PMID: 31275350 PMCID: PMC6594232 DOI: 10.3389/fgene.2019.00521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022] Open
Abstract
Melastoma malabathricum is an important medicinal and landscape plant that is globally distributed in temperate and subtropical regions. However, available genomic information for the entire Melastomataceae family is notably limited. In view of the application potential of floral parts in secondary metabolite extraction, we characterized for the first time the floral transcriptomes of two key M. malabathricum varieties, purple variety and white variety. Our transcriptome assembly generated 52,498 and 49,380 unigenes with an N50 of 1,906 and 1,929 bases for the purple and white varieties, respectively. Comparative analysis of two transcriptomes demonstrated that they are highly similar but also highlighted genes that are presumably lineage specific, which explains the phenotypes of each variety. Additionally, a shared transcriptional signature across the floral developmental stages was identified in both M. malabathricum varieties; this signature included pathways related to secondary metabolite synthesis, plant hormone signaling and production, energy homeostasis and nutrient assimilation pathways, and cellular proliferation. The expression levels of flavonoid accumulation and candidate flavonoid biosynthesis-related genes in M. malabathricum flower development stages validated the transcriptome findings. The transcriptome data presented in this study will serve as a valuable resource for future work on the exploitation of M. malabathricum and other related species. The gene expression dynamics during flower development will facilitate the discovery of lineage-specific genes associated with phenotypic characteristics and will elucidate the mechanism of the ontogeny of individual flower types.
Collapse
Affiliation(s)
- Tao Zheng
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Yihua Lin
- Fujian Institute of Tropical Crops, Zhangzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Longping Wang
- Fujian Institute of Tropical Crops, Zhangzhou, China.,Xiamen Forest Quarantine and Prevention Station, Xiamen Greening Administration Center, Xiamen, China
| | - Qiujin Lin
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Xiuxiang Lin
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Zhendong Chen
- Fujian Institute of Tropical Crops, Zhangzhou, China
| | - Zhenyue Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
14
|
Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatio-temporal survey in Moorea. Sci Rep 2019; 9:7921. [PMID: 31138834 PMCID: PMC6538640 DOI: 10.1038/s41598-019-44017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
One of the mechanisms of rapid adaptation or acclimatization to environmental changes in corals is through the dynamics of the composition of their associated endosymbiotic Symbiodiniaceae community. The various species of these dinoflagellates are characterized by different biological properties, some of which can confer stress tolerance to the coral host. Compelling evidence indicates that the corals’ Symbiodiniaceae community can change via shuffling and/or switching but the ecological relevance and the governance of these processes remain elusive. Using a qPCR approach to follow the dynamics of Symbiodiniaceae genera in tagged colonies of three coral species over a 10–18 month period, we detected putative genus-level switching of algal symbionts, with coral species-specific rates of occurrence. However, the dynamics of the corals’ Symbiodiniaceae community composition was not driven by environmental parameters. On the contrary, putative shuffling event were observed in two coral species during anomalous seawater temperatures and nutrient concentrations. Most notably, our results reveal that a suit of permanent Symbiodiniaceae genera is maintained in each colony in a specific range of quantities, giving a unique ‘Symbiodiniaceae signature’ to the host. This individual signature, together with sporadic symbiont switching may account for the intra-specific differences in resistance and resilience observed during environmental anomalies.
Collapse
|
15
|
Guzman C, Shinzato C, Lu TM, Conaco C. Transcriptome analysis of the reef-building octocoral, Heliopora coerulea. Sci Rep 2018; 8:8397. [PMID: 29849113 PMCID: PMC5976621 DOI: 10.1038/s41598-018-26718-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 05/09/2018] [Indexed: 01/15/2023] Open
Abstract
The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These findings thus offer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment.
Collapse
Affiliation(s)
- Christine Guzman
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines.,Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, 277-8564, Japan
| | - Tsai-Ming Lu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Cecilia Conaco
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
16
|
Kenkel CD, Bay LK. Novel transcriptome resources for three scleractinian coral species from the Indo-Pacific. Gigascience 2018; 6:1-4. [PMID: 28938722 PMCID: PMC5603760 DOI: 10.1093/gigascience/gix074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/02/2017] [Indexed: 12/03/2022] Open
Abstract
Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species were assembled from replicate colony fragments exposed to elevated (31°C) and ambient (27°C) temperatures. Trinity was used to create de novo assemblies for each species from 92–102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific assemblies contained 65 460–72 405 contigs, representing 26 693–37 894 isogroups (∼genes) with an average N50 of 2254. Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained 93.1–94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98–91.92% of the single-copy metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the complement of transcriptomic resources available for scleractinian coral species, including the first reference for a representative of Goniopora spp. as well as species with novel morphology.
Collapse
Affiliation(s)
- Carly D Kenkel
- Australian Institute of Marine Science, PMB No 3, Townsville MC, Queensland 4810, Australia.,Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Line K Bay
- Australian Institute of Marine Science, PMB No 3, Townsville MC, Queensland 4810, Australia
| |
Collapse
|
17
|
Zhou Z, Wu Y, Zhang C, Li C, Chen G, Yu X, Shi X, Xu Y, Wang L, Huang B. Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress. FISH & SHELLFISH IMMUNOLOGY 2017; 67:322-330. [PMID: 28606864 DOI: 10.1016/j.fsi.2017.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| | - Yibo Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Chengkai Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Can Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Guangmei Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiaopeng Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | | | - Yanlai Xu
- Qingdao First Sanitarium of Jinan Military Region, Qingdao 266071, China
| | - Lingui Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Bo Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|