1
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Ribeiro R, Moreira JN, Goncalves J. Development of a new affinity maturation protocol for the construction of an internalizing anti-nucleolin antibody library. Sci Rep 2024; 14:10608. [PMID: 38719911 PMCID: PMC11079059 DOI: 10.1038/s41598-024-61230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal.
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal.
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
3
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLoS Biol 2024; 22:e3002566. [PMID: 38652717 PMCID: PMC11037538 DOI: 10.1371/journal.pbio.3002566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, United States of America
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| |
Collapse
|
4
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages interact with respiratory epithelial cells and induce the secretion of antiviral and proinflammatory cytokines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579115. [PMID: 38370761 PMCID: PMC10871231 DOI: 10.1101/2024.02.06.579115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
5
|
Trayford C, Wilhalm A, Habibovic P, Smeets H, van Tienen F, van Rijt S. One-pot, degradable, silica nanocarriers with encapsulated oligonucleotides for mitochondrial specific targeting. DISCOVER NANO 2023; 18:161. [PMID: 38127184 PMCID: PMC10739632 DOI: 10.1186/s11671-023-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Mutations in nuclear and mitochondrial genes are responsible for severe chronic disorders such as mitochondrial myopathies. Gene therapy using antisense oligonucleotides is a promising strategy to treat mitochondrial DNA (mtDNA) diseases by blocking the replication of the mutated mtDNA. However, transport vehicles are needed for intracellular, mitochondria-specific transport of oligonucleotides. Nanoparticle (NP) based vectors such as large pore mesoporous silica nanoparticles (LP) often rely on surface complexation of oligonucleotides exposing them to nucleases and limiting mitochondria targeting and controlled release ability. In this work, stable, fluorescent, hollow silica nanoparticles (HSN) that encapsulate and protect oligonucleotides in the hollow core were synthesized by a facile one-pot procedure. Both rhodamine B isothiocyanate and bis[3-(triethoxysilyl)propyl]tetrasulfide were incorporated in the HSN matrix by co-condensation to enable cell tracing, intracellular-specific degradation and controlled oligonucleotide release. We also synthesized LP as a benchmark to compare the oligonucleotide loading and release efficacy of our HSN. Mitochondria targeting was enabled by NP functionalization with cationic, lipophilic Triphenylphosphine (TPP) and, for the first time a fusogenic liposome based carrier, previously reported under the name MITO-Porter. HSN exhibited high oligonucleotide incorporation ratios and release dependent on intracellular degradation. Further, MITO-Porter capping of our NP enabled delayed, glutathione (GSH) responsive oligonucleotide release and mitochondria targeting at the same efficiency as TPP functionalized NP. Overall, our NP are promising vectors for anti-gene therapy of mtDNA disease as well as many other monogenic disorders worldwide.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alissa Wilhalm
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Hubert Smeets
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Florence van Tienen
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Żaczek M, Górski A, Skaradzińska A, Łusiak-Szelachowska M, Weber-Dąbrowska B. Phage penetration of eukaryotic cells: practical implications. Future Virol 2019. [DOI: 10.2217/fvl-2019-0110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inability to infect eukaryotic cells has been considered as the most undeniable feature of all bacterial viruses. Such specificity, limited only for bacterial hosts, raises questions about the paths and challenges phages should overcome when circulating through the human body. Recently, it has been shown that phages are able to continually penetrate human organs and tissues. Latest reports revealed that phages can cross eukaryotic cell barriers both para- and transcellularly and even reach the nucleus. Further, phages are capable of internalizing within cells through different endocytic mechanisms. Such phenomenon indicates that phages could shape human microbiome composition and affect all aspects of human health. Thus, herein, we summarize the current state of knowledge and describe this phenomenon with a particular emphasis on endocytic pathways.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology & Food Microbiology, Faculty of Biotechnology & Food Science, Wrocław University of Environmental & Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
7
|
Sun S, Zhang D, Zhang J, Huang C, Xiong Y. High activity chimeric snake gamma-type phospholipase A2 inhibitor created by DNA shuffling. Toxicon 2018; 153:32-38. [DOI: 10.1016/j.toxicon.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
8
|
Zhan Z, Zhang X, Huang J, Huang Y, Huang Z, Pan X, Quan G, Liu H, Wang L, Wu AC. Improved Gene Transfer with Functionalized Hollow Mesoporous Silica Nanoparticles of Reduced Cytotoxicity. MATERIALS 2017; 10:ma10070731. [PMID: 28773087 PMCID: PMC5551774 DOI: 10.3390/ma10070731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/27/2023]
Abstract
Gene therapy is a promising strategy for treatment of genetically caused diseases. Successful gene delivery requires an efficient carrier to transfer the desired gene into host cells. Recently, mesoporous silica nanoparticles (MSNs) functionalized with 25 kD polyethyleneimine (PEI) were extensively used as gene delivery carriers. However, 25 kD PEI could significantly reduce the safety of the modified MSNs although it is efficient for intracellular delivery of nucleic acids. In addition, limited drug loading remains a challenge for conventional MSNs drug carriers. Hollow mesoporous silica nanoparticles (HMSNs) with high pore volume, tunable pore size, and excellent biocompatibility are attractive alternatives. To make them more efficient, a less toxic 1.8 kD PEI polymer was used to functionalize the HMSNs which have large pore size (~10 nm) and form PEI-HMSNs. Scanning and transmission electron microscopic images showed that HMSNs were spherical in shape and approximately 270 nm in diameter with uniform hollow nanostructures. The maximum loading capacity of green fluorescent protein labeled DNA (GFP-DNA) in PEI-HMSNs was found to be 37.98 mg/g. The loading capacity of PEI-HMSNs was nearly three-fold higher than those of PEI modified solid nanoparticles, indicating that both hollow and large pores contributed to the increase in DNA adsorption. The transfection of GFP-DNA plasmid loaded in PEI-HMSNs was increased two-fold in comparison to that of 25 kD PEI. MTT assays in Lovo cells showed that the cell viability was more than 85% when the concentration of PEI-HMSNs was 120 µg/mL, whereas the cell viability was less than 20% when the 25 kD PEI was used at the same concentration. These results indicated that PEI-HMSNs could be used as a delivery system for nucleic acids due to good biocompatibility, high gene loading capacity, and enhanced gene transfer efficiency.
Collapse
Affiliation(s)
- Zhengwen Zhan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xiaoxu Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jiayuan Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Zhongshan WanYuan New Drug R&D Co., Ltd., Zhongshan 528451, China.
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hu Liu
- School of Pharmacy, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, NL A1B 3V6, Canada.
| | - Lili Wang
- School of Pharmacy, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, NL A1B 3V6, Canada.
| | - And Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|