1
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
2
|
Green L, Coronado-Zamora M, Radío S, Rech GE, Salces-Ortiz J, González J. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biol 2022; 20:275. [PMID: 36482348 PMCID: PMC9733279 DOI: 10.1186/s12915-022-01479-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Escalation in industrialization and anthropogenic activity have resulted in an increase of pollutants released into the environment. Of these pollutants, heavy metals such as copper are particularly concerning due to their bio-accumulative nature. Due to its highly heterogeneous distribution and its dual nature as an essential micronutrient and toxic element, the genetic basis of copper tolerance is likely shaped by a complex interplay of genetic and environmental factors. RESULTS In this study, we utilized the natural variation present in multiple populations of Drosophila melanogaster collected across Europe to screen for variation in copper tolerance. We found that latitude and the degree of urbanization at the collection sites, rather than any other combination of environmental factors, were linked to copper tolerance. While previously identified copper-related genes were not differentially expressed in tolerant vs. sensitive strains, genes involved in metabolism, reproduction, and protease induction contributed to the differential stress response. Additionally, the greatest transcriptomic and physiological responses to copper toxicity were seen in the midgut, where we found that preservation of gut acidity is strongly linked to greater tolerance. Finally, we identified transposable element insertions likely to play a role in copper stress response. CONCLUSIONS Overall, by combining genome-wide approaches with environmental association analysis, and functional analysis of candidate genes, our study provides a unique perspective on the genetic and environmental factors that shape copper tolerance in natural D. melanogaster populations and identifies new genes, transposable elements, and physiological traits involved in this complex phenotype.
Collapse
Affiliation(s)
- Llewellyn Green
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Coronado-Zamora
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Radío
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E. Rech
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Judit Salces-Ortiz
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190341. [PMID: 32075557 PMCID: PMC7061994 DOI: 10.1098/rstb.2019.0341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most of the genotype–phenotype analyses to date have largely centred attention on single nucleotide polymorphisms. However, transposable element (TE) insertions have arisen as a plausible addition to the study of the genotypic–phenotypic link because of to their role in genome function and evolution. In this work, we investigate the contribution of TE insertions to the regulation of gene expression in response to insecticides. We exposed four Drosophila melanogaster strains to malathion, a commonly used organophosphate insecticide. By combining information from different approaches, including RNA-seq and ATAC-seq, we found that TEs can contribute to the regulation of gene expression under insecticide exposure by rewiring cis-regulatory networks. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL, Horváth V, Fiston-Lavier AS, Luyten I, Venkataram S, Quesneville H, Petrov DA, González J. Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genet 2019; 15:e1007900. [PMID: 30753202 PMCID: PMC6372155 DOI: 10.1371/journal.pgen.1007900] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/16/2018] [Indexed: 11/30/2022] Open
Abstract
Most of the current knowledge on the genetic basis of adaptive evolution is based on the analysis of single nucleotide polymorphisms (SNPs). Despite increasing evidence for their causal role, the contribution of structural variants to adaptive evolution remains largely unexplored. In this work, we analyzed the population frequencies of 1,615 Transposable Element (TE) insertions annotated in the reference genome of Drosophila melanogaster, in 91 samples from 60 worldwide natural populations. We identified a set of 300 polymorphic TEs that are present at high population frequencies, and located in genomic regions with high recombination rate, where the efficiency of natural selection is high. The age and the length of these 300 TEs are consistent with relatively young and long insertions reaching high frequencies due to the action of positive selection. Besides, we identified a set of 21 fixed TEs also likely to be adaptive. Indeed, we, and others, found evidence of selection for 84 of these reference TE insertions. The analysis of the genes located nearby these 84 candidate adaptive insertions suggested that the functional response to selection is related with the GO categories of response to stimulus, behavior, and development. We further showed that a subset of the candidate adaptive TEs affects expression of nearby genes, and five of them have already been linked to an ecologically relevant phenotypic effect. Our results provide a more complete understanding of the genetic variation and the fitness-related traits relevant for adaptive evolution. Similar studies should help uncover the importance of TE-induced adaptive mutations in other species as well.
Collapse
Affiliation(s)
- Gabriel E. Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - María Bogaerts-Márquez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Maite G. Barrón
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Vivien Horváth
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna-Sophie Fiston-Lavier
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | | | - Sandeep Venkataram
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | | | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
6
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
7
|
Villanueva‐Cañas JL, Rech GE, Cara MAR, González J. Beyond
SNP
s: how to detect selection on transposable element insertions. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Gabriel E. Rech
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Maria Angeles Rodriguez Cara
- Ecoanthropology and Ethnobiology Laboratory, UMR 7206, CNRS/MNHN/Universite Paris 7 Museum National d'HistoireNaturelle F‐75116 Paris France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|