1
|
Zhu X, Xu C, Mao J, Zhang Y, Bai Y. Protonated carbon nitride for rapid photocatalytic sterilization via synergistic oxidative damage and physical destruction. J Environ Sci (China) 2025; 149:188-199. [PMID: 39181633 DOI: 10.1016/j.jes.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 08/27/2024]
Abstract
Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments. Numerous strategies have been devised to facilitate the generation of reactive oxygen species (ROS) within photocatalysts, ultimately leading to the eradication of bacteria. However, the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured, and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited. Herein, graphitic carbon nitride (g-C3N4) is chemically protonated to expose more sharp edges. PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production. Meanwhile, the sharp edges on the protonated g-C3N4 facilitate the physical disruption of cell walls for further promoting oxidative damage. Protonated C3N4 demonstrated superior bactericidal performance than that of pristine g-C3N4, effectively eliminating Escherichia coli within 40 minutes under irradiation. This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunhong Xu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yizhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Hajlaoui R, Baachaoui S, Ben Aoun S, Ridene S, Raouafi N. Surface Tailoring of MoS 2 Nanosheets with Substituted Aromatic Diazonium Salts for Gas Sensing: A DFT Study. ACS OMEGA 2024; 9:37953-37964. [PMID: 39281914 PMCID: PMC11391560 DOI: 10.1021/acsomega.4c04506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
Two-dimensional (2D) nanomaterials are useful for building gas sensors owing to their desirable electronic and optical properties. However, they usually suffer from selectivity, because they cannot discriminate between gas molecules. Functionalization with organic molecules can be used to tailor their surfaces to recognize a specific family of compounds. In this study, solid-state density functional theory (DFT) was used to elucidate the functionalization of MoS2 with substituted aromatic diazonium salts (R = -H, - CH3, -CO2H, -CHO, -OCH3, and -NO2). Results showed that chemical reaction with diazonium salts is favored to their physical adsorption (E ads = -0.04 to -0.38 eV vs E rxn = -1.47 to -2.20 eV), where organic cations have a preference to attach atop of sulfur atoms. Chemical functionalization induced a small variation in the bandgap energy not exceeding 0.04 eV; thus, the optical properties were well preserved. In the presence of ammonia, the substituted MoS 2 /2(a-f) responded to the target analyte through a change in the interaction energy, varying from -0.08 to -0.83 eV, where the best interaction energy was obtained for MoS 2 /2c, bearing the carboxylic acid group. In the presence of other gases such as CO2, SO2, and H2S, the interaction energy is lower (-0.14 to -0.35 eV), indicating good selectivity of the nanomaterials. Furthermore, the interaction increased in the presence of humidity, which was more realistic than that in the presence of neat NH3. This interaction was confirmed by computing the partial charges. Recovery times estimated from the interaction energies ranged from 0.31 s to several minutes, depending on the interacting molecules. Phenylcarboxyl-modified MoS2 nanosheets show great potential as candidates for the development of chemoresistive gas sensors that are specifically designed for detecting ammonia.
Collapse
Affiliation(s)
- Rabiaa Hajlaoui
- Advanced Materials and Quantum Phenomena Laboratory, Department of Physics, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
- Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Sabrine Baachaoui
- Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah 30002, Saudi Arabia
| | - Said Ridene
- Advanced Materials and Quantum Phenomena Laboratory, Department of Physics, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
| | - Noureddine Raouafi
- Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
3
|
Singh S, Yadav RK, Umar A, Ibrahim AA, Kim TW, Singh AP, Kumar R, Chaudhary S, Dwivedi DK, Singh RV, Gupta NK, Singh C, Baeg JO, Baskoutas S. Transformation of PMMA from sunlight-blocking to sunlight-activated coupled with DNH photocatalytic platform for oxidative coupling of amines and generation/regeneration of LDC/NADH. Photochem Photobiol 2024; 100:1247-1261. [PMID: 38088069 DOI: 10.1111/php.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 09/25/2024]
Abstract
The photocatalytic oxidation and generation/regeneration of amines to imines and leucodopaminechrome (LDC)/NADH are subjects of intense interest in contemporary research. Imines serve as crucial intermediates for the synthesis of solar fuels, fine chemicals, agricultural chemicals, and pharmaceuticals. While significant progress has been made in developing efficient processes for the oxidation and generation/regeneration of secondary amines, the oxidation of primary amines has received comparatively less attention until recently. This discrepancy can be attributed to the high reactivity of imines generated from primary amines, which are prone to dehydrogenation into nitriles. In this study, we present the synthesis and characterization of a novel polymer-based photocatalyst, denoted as PMMA-DNH, designed for solar light-harvesting applications. PMMA-DNH incorporates the light-harvesting molecule dinitrophenyl hydrazine (DNH) at varying concentrations (5%, 10%, 20%, 30%, and 40%). Leveraging its high molar extinction coefficient and slow charge recombination, the 30% DNH-incorporated PMMA photocatalyst proves to be particularly efficient. This photocatalytic system demonstrates exceptional yields (96.5%) in imine production and high generation/regeneration rates for LDC/NADH (65.27%/78.77%). The research presented herein emphasizes the development and application of a newly engineered polymer-based photocatalyst, which holds significant promise for direct solar-assisted chemical synthesis in diverse commercial applications.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| | | | - Rajesh Kumar
- Department of Chemistry, Banaras Hindu University, Varanasi, India
| | - Sandeep Chaudhary
- Department of Medicinal Chemistry, Laboratory of Organic and Medicinal Chemistry, NIPER, Raebareli, India
| | - Dilip K Dwivedi
- Department of Physics and Materials Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Ravindra Vikram Singh
- R&D, Technology and Innovation, Merck-Living Innovation, Sigma Aldrich Chemicals Pvt. Ltd., Bengaluru, India
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, IISC Bangalore Gulmohar Marg, Bangalore, India
| | - Chandani Singh
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jin-O Baeg
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | | |
Collapse
|
4
|
Yuan X, Hu X, Lin Q, Zhang S. Progress of charge carrier dynamics and regulation strategies in 2D C xN y-based heterojunctions. Chem Commun (Camb) 2024; 60:2283-2300. [PMID: 38321964 DOI: 10.1039/d3cc05976f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Two-dimensional carbon nitrides (CxNy) have gained significant attention in various fields including hydrogen energy development, environmental remediation, optoelectronic devices, and energy storage owing to their extensive surface area, abundant raw materials, high chemical stability, and distinctive physical and chemical characteristics. One effective approach to address the challenges of limited visible light utilization and elevated carrier recombination rates is to establish heterojunctions for CxNy-based single materials (e.g. C2N3, g-C3N4, C3N4, C4N3, C2N, and C3N). The carrier generation, migration, and recombination of heterojunctions with different band alignments have been analyzed starting from the application of CxNy with metal oxides, transition metal sulfides (selenides), conductive carbon, and Cx'Ny' heterojunctions. Additionally, we have explored diverse strategies to enhance heterojunction performance from the perspective of carrier dynamics. In conclusion, we present some overarching observations and insights into the challenges and opportunities associated with the development of advanced CxNy-based heterojunctions.
Collapse
Affiliation(s)
- Xiaojia Yuan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xuemin Hu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Qiuhan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
5
|
Safartoobi A, Mazloom J, Ghodsi FE. Novel electrospun bead-like Ag 2MoO 4 nanofibers coated on Ni foam for visible light-driven heterogeneous photocatalysis and high-performance supercapacitor electrodes. Phys Chem Chem Phys 2023; 26:430-444. [PMID: 38078493 DOI: 10.1039/d3cp04751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Novel Ag2MoO4 nanocomposite fibers were designed to enhance the photocatalytic response and supercapacitor performance of MoO3 grown via the sol-gel electrospinning technique. The Ag2MoO4 nanocomposite fibers exhibit a high specific surface area of 49.3 m2 g-1 comprising nanobeads that aggregate in the fibrous structure. The photodegradation efficiency of Ag2MoO4 was evaluated as 62% under visible light irradiation which improved to 71% with heterogeneous photocatalysis. The Ag2MoO4@Ni foam exhibited a low Rct of 19.6 Ω, and an enhanced specific capacitance of 1445 F g-1 was obtained at 1 A g-1, with 93% of its initial capacitance remaining after 5000 cycles. In addition, the Ag2MoO4//activated carbon asymmetric supercapacitor possesses an excellent energy density of 76.6 W h kg-1 at 743.2 W kg-1 and a noteworthy cycling durability of 91% after 5000 cycles. Our findings demonstrate that the electrospun Ag2MoO4@Ni foam is an important and inexpensive electrode material for supercapacitor applications and visible light-driven heterogeneous photocatalysis, drawing on the synergic effects of Ag and Mo to exhibit much better performance.
Collapse
Affiliation(s)
- Amirreza Safartoobi
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht, Iran.
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht, Iran.
| | - Farhad Esmaeili Ghodsi
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht, Iran.
| |
Collapse
|
6
|
Perween S, Wissel K, Dallos Z, Weiss M, Ikeda Y, Vasala S, Strobel S, Schützendübe P, Jeschenko PM, Kolb U, Marschall R, Grabowski B, Glatzel P. Topochemical Fluorination of LaBaInO 4 to LaBaInO 3F 2, Their Optical Characterization, and Photocatalytic Activities for Hydrogen Evolution. Inorg Chem 2023; 62:16329-16342. [PMID: 37756217 DOI: 10.1021/acs.inorgchem.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.
Collapse
Affiliation(s)
- Shama Perween
- Institute for Materials Science, Materials Synthesis Group, University of Stuttgart, Heisenbergstrasse 3, Stuttgart 70569, Germany
- Institute for Materials Science, Technical University of Darmstadt, Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Kerstin Wissel
- Institute for Materials Science, Materials Synthesis Group, University of Stuttgart, Heisenbergstrasse 3, Stuttgart 70569, Germany
| | - Zsolt Dallos
- Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, Darmstadt 64287, Germany
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Morten Weiss
- Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95447, Germany
| | - Yuji Ikeda
- Institute for Materials Science, Department of Materials Design, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Sami Vasala
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Sabine Strobel
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Peter Schützendübe
- Max Planck Institute for Intelligent Systems, Stuttgart D-70569, Germany
| | | | - Ute Kolb
- Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, Darmstadt 64287, Germany
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Roland Marschall
- Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95447, Germany
| | - Blazej Grabowski
- Institute for Materials Science, Department of Materials Design, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Pieter Glatzel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
7
|
Varatharajan P, Shameem Banu IB, Mamat MH, Vasimalai N. Electrochemical analysis of asymmetric supercapacitors based on BiCoO 3@g-C 3N 4 nanocomposites. Dalton Trans 2023; 52:13704-13715. [PMID: 37706529 DOI: 10.1039/d3dt01758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Supercapacitors are gaining popularity these days because of their good cycle stability, superior specific capacitance, high power density, and energy density. Herein, we report the synthesis of bismuth cobalt oxide (BiCoO3) combined with graphitic carbon nitride (g-C3N4) by the hydrothermal method. The BiCoO3@g-C3N4 nanocomposite was well characterized using XRD, FE-SEM, FT-IR, and DRS-UV techniques. The supercapacitor properties of the BiCoO3@g-C3N4 nanocomposite were then studied using cyclic voltammetry, galvanic charging-discharging, and impedance spectroscopy techniques. Due to the synergistic effect, BiCoO3@g-C3N4 showed a high specific capacitance value of 341 F g-1 at a current density of 1 A g-1 and excellent retention of specific capacitance (98.82%) after 1000 cycles and a high power density of 1125 W kg-1. Using the impedance spectroscopy technique, the charge transfer resistance of BiCoO3, g-C3N4, and BiCoO3@g-C3N4 was measured. BiCoO3@g-C3N4 showed a low charge transfer resistance compared with BiCoO3 and g-C3N4. The asymmetric supercapacitor (ASC) device was prepared using activated carbon (negative side) and BiCoO3@g-C3N4 (positive side) electrodes. It showed a specific capacitance of 129 F g-1 at 1 A g-1, power density 2800 W kg-1 and energy density 35 W h kg-1. Finally, we conclude that, due to the high specific capacitance, good cycle retention, fast redox activity, and low charge transfer resistance BiCoO3@g-C3N4 is a good electrode material for energy storage applications.
Collapse
Affiliation(s)
- Pandiaraja Varatharajan
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai-600 048, India.
| | - I B Shameem Banu
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai-600 048, India.
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Nagamalai Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai-600 048, India.
| |
Collapse
|
8
|
Singh J, Soni RK, Nguyen DD, Kumar Gupta V, Nguyen-Tri P. Enhanced photocatalytic and SERS performance of Ag nanoparticles functionalized MoS 2 nanoflakes. CHEMOSPHERE 2023; 339:139735. [PMID: 37544527 DOI: 10.1016/j.chemosphere.2023.139735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
We report the preparation of Ag nanoparticles functionalized MoS2 nanoflakes by using the chemical reduction method followed by the hydrothermal method. Field emission scanning electron microscopy and elemental mapping reveals the uniform functionalization of Ag nanoparticles with MoS2 nanoflakes. High density of Ag plasmonic nanoparticles onto MoS2 nanoflakes demonstrates tremendously improved charge separation behavior in Ag-MoS2 nanohybrids. Photodecomposition capability of plasmonic Ag-MoS2 nanohybrids was explored by the decomposition of industrial pollutant molecules, showing a direct correlation between the Ag content over the MoS2 surface with their photodecomposition ability. The SERS-based detection profiles of the plasmonic were investigated by the ultra-low detection of MB molecules. The Ag-MoS2 nanohybrids SERS substrate manifests the detection of MB molecules solution up to a concentration of 10-9 M with an enhancement factor of 107. In the current study, we proposed and elucidated the probable efficient charge transfer mechanism for improved photocatalytic behavior and SERS-based sensing performance.
Collapse
Affiliation(s)
- Jaspal Singh
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada; Laser Spectroscopy Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - R K Soni
- Laser Spectroscopy Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Parkgate, Barony Campus, DG1 3NE, Dumfries, United Kingdom
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada.
| |
Collapse
|
9
|
Alhammadi S, Rabie AM, Sayed MS, Kang D, Shim JJ, Kim WK. Highly effective direct decomposition of organic pollutants via Ag-Zn co-doped In 2S 3/rGO photocatalyst. CHEMOSPHERE 2023:139125. [PMID: 37277002 DOI: 10.1016/j.chemosphere.2023.139125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Currently, novel photocatalysts have attracted increasing attention to effectively utilizing abundant solar energy to meet the energy demands of humans and mitigate environmental burdens. In this work, we developed a novel and highly efficient photocatalyst consisting of In2S3 doped with two elements (Ag and Zn) and decorated with reduced graphene oxide (rGO) sheets. The crystal structure, morphology, electrical properties, and optical properties of the prepared materials were studied using various analytical techniques, and their photocatalytic activity was thoroughly investigated. It was confirmed that within 10 min, over 97% decomposition of organic dyes was achieved by using Ag-Zn co-doped In2S3/rGO catalyst, while only 50 and 60% decompositions were achieved by conventional pure In2S3 and In2S3/rGO nanocomposite, respectively. Its photoelectrochemical (PEC) water-splitting performance was also significantly improved (∼120%) compared with pure In2S3 nanoparticles. This study provides a new vision of using Ag-Zn:In2S3 decorated on rGO sheets as an efficient photocatalyst under solar light irradiation for environmental remediation and hydrogen production.
Collapse
Affiliation(s)
- Salh Alhammadi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Mostafa S Sayed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt
| | - Dohyung Kang
- Department of Future Energy Convergence, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea.
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
10
|
Heterojunction Design between WSe2 Nanosheets and TiO2 for Efficient Photocatalytic Hydrogen Generation. Catalysts 2022. [DOI: 10.3390/catal12121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Design and fabrication of efficient and stable photocatalysts are critically required for practical applications of solar water splitting. Herein, a series of WSe2/TiO2 nanocomposites were constructed through a facile mechanical grinding method, and all of the nanocomposites exhibited boosted photocatalytic hydrogen evolution. It was discovered that the enhanced photocatalytic performance was attributed to the efficient electron transfer from TiO2 to WSe2 and the abundant active sites provided by WSe2 nanosheets. Moreover, the intimate heterojunction between WSe2 nanosheets and TiO2 favors the interfacial charge separation. As a result, a highest hydrogen evolution rate of 2.28 mmol/g·h, 114 times higher than pristine TiO2, was obtained when the weight ratio of WSe2/(WSe2 + TiO2) was adjusted to be 20%. The designed WSe2/TiO2 heterojunctions can be regarded as a promising photocatalysts for high-throughput hydrogen production.
Collapse
|
11
|
Peng L, Liu J, Li Z, Jing Y, Zou Y, Chu H, Xu F, Sun L, Huang P. One-step thermal polymerization synthesis of nitrogen-rich g-C 3N 4 nanosheets enhances photocatalytic redox activity. RSC Adv 2022; 12:33598-33604. [PMID: 36505684 PMCID: PMC9682490 DOI: 10.1039/d2ra05867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4) has attracted enormous attention as a visible-light-responsive carbon-based semiconductor photocatalyst. However, fast charge recombination seriously limits its application. Therefore, it is urgent to modify the electronic structure of g-C3N4 to obtain excellent photocatalytic activity. Herein, we reported a one-step thermal polymerization synthesis of nitrogen-rich g-C3N4 nanosheets. Benefiting from the N self-doping and the ultrathin structure, the optimal CN-70 exhibits its excellent performance. A 6.7 times increased degradation rate of rhodamine B (K = 0.06274 min-1), furthermore, the hydrogen evolution efficiency also reached 2326.24 μmol h-1 g-1 (λ > 420 nm). Based on a series of characterizations and DFT calculations, we demonstrated that the N self-doping g-C3N4 can significantly introduce midgap states between the valence band and conduction band, which is more conducive to the efficient separation of photogenerated carriers. Our work provides a facile and efficient method for self-atom doping into g-C3N4, providing a new pathway for efficient photocatalysts.
Collapse
Affiliation(s)
- Leyu Peng
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Jiaxi Liu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China,School of Mechanical & Electrical Engineering, Guilin University of Electronic TechnologyGuilin 541004China
| | - Ziyuan Li
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Yifan Jing
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Yongjin Zou
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Hailiang Chu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Fen Xu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Lixian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China,School of Mechanical & Electrical Engineering, Guilin University of Electronic TechnologyGuilin 541004China
| | - Pengru Huang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| |
Collapse
|
12
|
Kulhary D, Singh S. Design of g‐C
3
N
4
/BaBiO
3
Heterojunction Nanocomposites for Photodegradation of an Organic Dye and Diclofenac Sodium under Visible Light via Interfacial Charge Transfer. ChemistrySelect 2022. [DOI: 10.1002/slct.202201964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dinesh Kulhary
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| | - Satyendra Singh
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
13
|
Radhakrishnan S, Lakshmy S, Santhosh S, Kalarikkal N, Chakraborty B, Rout CS. Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. BIOSENSORS 2022; 12:467. [PMID: 35884271 PMCID: PMC9313175 DOI: 10.3390/bios12070467] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/09/2023]
Abstract
Diabetes is a health disorder that necessitates constant blood glucose monitoring. The industry is always interested in creating novel glucose sensor devices because of the great demand for low-cost, quick, and precise means of monitoring blood glucose levels. Electrochemical glucose sensors, among others, have been developed and are now frequently used in clinical research. Nonetheless, despite the substantial obstacles, these electrochemical glucose sensors face numerous challenges. Because of their excellent stability, vast surface area, and low cost, various types of 2D materials have been employed to produce enzymatic and nonenzymatic glucose sensing applications. This review article looks at both enzymatic and nonenzymatic glucose sensors made from 2D materials. On the other hand, we concentrated on discussing the complexities of many significant papers addressing the construction of sensors and the usage of prepared sensors so that readers might grasp the concepts underlying such devices and related detection strategies. We also discuss several tuning approaches for improving electrochemical glucose sensor performance, as well as current breakthroughs and future plans in wearable and flexible electrochemical glucose sensors based on 2D materials as well as photoelectrochemical sensors.
Collapse
Affiliation(s)
- Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Shilpa Santhosh
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure and Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, Maharashtra, India
- Homi Bhabha National Institute, Mumbai 400 094, Maharashtra, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| |
Collapse
|
14
|
Reddy CV, Koutavarapu R, Shim J, Cheolho B, Reddy KR. Novel g-C 3N 4/Cu-doped ZrO 2 hybrid heterostructures for efficient photocatalytic Cr(VI) photoreduction and electrochemical energy storage applications. CHEMOSPHERE 2022; 295:133851. [PMID: 35124089 DOI: 10.1016/j.chemosphere.2022.133851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Pure ZrO2, graphitic carbon nitride, Cu-doped ZrO2 nanoparticles (Cu-Zr), and doped Cu-Zr nanoparticles decorated on the g-C3N4 surface (g-CuZr nanohybrids) were successfully prepared by a hydrothermal technique. Synthesized catalysts were examined by XRD, FE-SEM, TEM, UV-Vis spectroscopy, photoluminescence (PL), and BET surface measurements, respectively. The photocatalytic reduction of Cr(VI) photoreduction as well as energy storage supercapacitor applications were thoroughly investigated. The g-CuZr hybrid photocatalyst outperformed other pristine photocatalysts in terms of light absorption and catalytic Cr(VI) reduction performance under stimulated solar light irradiation. Furthermore, methylene blue (MB) was used as a photosensitizer to further improve the Cr(VI) photoreduction performance. In precise, the heterostructured hybrid catalyst exhibited improved photocatalytic Cr(VI) photoreduction activity (∼88.1%) in 5 mg/L MB solution over other catalysts. Moreover, the decoration of Cu-Zr on the surface of g-C3N4 enhanced the absorption ability of light and catalytic Cr(VI) photoreduction performance. The PL, EIS, and transient photocurrent analysis demonstrated that the efficiency of the charge carrier's separation in the nanohybrid catalyst was superior over other catalysts. Furthermore, heterostructured g-CuZr nanohybrid electrode exhibited superior specific capacitance (297.2 F/g) over other electrodes, which are 5.5 folds (54.01 F/g), ∼2 folds (144.01 F/g) better than pure ZrO2 and g-C3N4 electrodes. Likewise, the nanohybrid electrode retained about 90% of the capacitive value after 2500 cycles over its initial capacitance.
Collapse
Affiliation(s)
- Ch Venkata Reddy
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea
| | - R Koutavarapu
- Department of Robotics and Intelligent Machine Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Jaesool Shim
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.
| | - Bai Cheolho
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
15
|
Hussain N, Ali Abdelkareem M, Alawadhi H, Elsaid K, Olabi AG. Synthesis of Cu-g-C3N4/MoS2 composite as a catalyst for electrochemical CO2 reduction to alcohols. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Environment Friendly g-C3N4-Based Catalysts and Their Recent Strategy in Organic Transformations. HIGH ENERGY CHEMISTRY 2022. [PMCID: PMC8960706 DOI: 10.1134/s0018143922020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic molecules synthesized in an environmentally friendly manner have excellent therapeutic potential. The entire preparation technique was examined in the existence of a light source, implying that light has been replaced by heating and the usage of dangerous chemicals has decreased, resulting in less pollution of the environment. The advantages of these nanocarbon catalysts include high efficiency, environmentally friendly synthesis, eco-friendly, inexpensive, and non-corrodible. In organic transformations, solid metal base/metal-free catalysts produce better results. Here, the metal-free semiconductor g-C3N4 was used to demonstrate the catalytic behavior of organic conversions. g-C3N4 is a two-dimensional material and a p‑type semiconductor to enhance the photocatalytic activity. The excellent properties of g-C3N4 sheet lead to the support of metals to form metal-organic frameworks. Most of the reactions gained positive response under visible light irradiation. This review will inspire readers in widen the applications of g-C3N4 based catalyst in various organic transformation reactions.
Collapse
|
17
|
Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ismael M. Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4
)-based photocatalysis. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Photocatalytic splitting of water into hydrogen and oxygen using semiconductor photocatalysts and light irradiation has been attracted much attention and considered to be an alternative for nonrenewable fossil fuel to solve environmental problems and energy crisis and also an as promising approach to produce clean, renewable hydrogen fuel. Owing to their various advantages such as low cost and environmental friendly, chemical, and thermal stability, appropriate band structure, graphitic carbon nitride (g-C3N4
) photocatalysts have gained multitudinous attention because of their great potential in solar fuels production and environmental remediation. However, due to its fast charge carrier’s recombination, low surface, and limited absorption of the visible light restrict their activity toward hydrogen evolution and numerous modification techniques were applied to solve these problems such as structural modification, metal/nonmetal doping, and noble metal loading, and coupling semiconductors. In this chapter, we summarize recent progress in the synthesis and characterization of the g-C3N4-based photocatalyst. Several modification methods used to enhance the photocatalytic hydrogen production of g-C3N4-based photocatalyst were also highlighted. This chapter ends with the future research and challenges of hydrogen production over g-C3N4-based photocatalyst.
Collapse
Affiliation(s)
- Mohammed Ismael
- Institute of Chemistry, Technical Chemistry, Carl von Ossietzky University Oldenburg , Carl-von-Ossietzky-Str. 9-11 , 26129 Oldenburg , Germany
| |
Collapse
|
19
|
Zhao M, Guo X, Meng Z, Wang Y, Peng Y, Ma Z. Ultrathin MoS2 nanosheet as co-catalyst coupling on graphitic g-C3N4 in suspension system for boosting photocatalytic activity under visible-light irradiation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Facile Preparation of Carbon Nitride-ZnO Hybrid Adsorbent for CO2 Capture: The Significant Role of Amine Source to Metal Oxide Ratio. Catalysts 2021. [DOI: 10.3390/catal11101253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of CO2 in gaseous fuel and feedstock stream of chemical reaction was always considered undesirable. High CO2 content will decrease quality and heating value of gaseous fuel, such as biohydrogen, which needs a practical approach to remove it. Thus, this work aims to introduce the first C3N4-metal oxide hybrid for the CO2 cleaning application from a mixture of CO2-H2 gas. The samples were tested for their chemical and physical properties, using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), physical adsorption analysis (BET), fourier-transform infrared (FTIR), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The CO2 capacity test was carried out by means of a breakthrough test at 1 atm and 25° C using air as a desorption system. Among the samples, amine/metal oxide mass ratio of 2:1 (CNHP500-2(2-1)) showed the best performance of 26.9 wt. % (6.11 mmol/g), with a stable capacity over 6 consecutive cycles. The hybrid sample also showed 3 times better performance than the raw C3N4. In addition, it was observed that the hydrothermal C3N4 synthesis method demonstrated improved chemical properties and adsorption performance than the conventional dry pyrolysis method. In summary, the performance of hybrid samples depends on the different interactive factors of surface area, pore size and distribution, basicity, concentration of amine precursors, ratio of amines precursors to metal oxide, and framework stability.
Collapse
|
21
|
Palanisamy G, Al-Shaalan NH, Bhuvaneswari K, Bharathi G, Bharath G, Pazhanivel T, V E S, Arumugam MK, Pasha SKK, Habila MA, El-Marghany A. An efficient and magnetically recoverable g-C 3N 4/ZnS/CoFe 2O 4 nanocomposite for sustainable photodegradation of organic dye under UV-visible light illumination. ENVIRONMENTAL RESEARCH 2021; 201:111429. [PMID: 34146527 DOI: 10.1016/j.envres.2021.111429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Effective improvement of an easily recoverable photocatalyst is equally vital to its photocatalytic performance from a practical application view. The magnetically recoverable process is one of the easiest ways, provided the photocatalyst is magnetically strong enough to respond to an external magnetic field. Herein, we prepared graphitic carbon nitride nanosheet (g-C3N4), and ZnS quantum dots (QDs) supported ferromagnetic CoFe2O4 nanoparticles (NPs) as the gC3N4/ZnS/CoFe2O4 nanohybrid photocatalyst by a wet-impregnation method. The loading of CoFe2O4 NPs in the g-C3N4/ZnS nanohybrid resulted in extended visible light absorption. The ferromagnetic g-C3N4/ZnS/CoFe2O4 nanohybrid exhibited better visible-light-active photocatalytic performance (97.11%) against methylene blue (MB) dye, and it was easily separable from the aqueous solution by an external bar magnet. The g-C3N4/ZnS/CoFe2O4 nanohybrid displayed excellent photostability and reusability after five consecutive cycles. The favourable band alignment and availability of a large number of active sites affected the better charge separation and enhanced photocatalytic response. The role of active species involved in the degradation of MB dye during photocatalyst by g-C3N4/ZnS/CoFe2O4 nanohybrid was also investigated. Overall, this study provides a facile method for design eco-friendly and promising g-C3N4/ZnS/CoFe2O4 nanohybrid photocatalyst as applicable in the eco-friendly dye degradation process.
Collapse
Affiliation(s)
- G Palanisamy
- Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - K Bhuvaneswari
- Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - G Bharathi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518060, PR China
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - T Pazhanivel
- Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Sathishkumar V E
- Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode, 638101, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - S K Khadeer Pasha
- Department of Physics, VIT-AP University, Amaravati, Guntur, 522501, Andhra Pradesh, India
| | - Mohamed A Habila
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adel El-Marghany
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
22
|
Tran Huu H, Thi MDN, Nguyen VP, Thi LN, Phan TTT, Hoang QD, Luc HH, Kim SJ, Vo V. One-pot synthesis of S-scheme MoS 2/g-C 3N 4 heterojunction as effective visible light photocatalyst. Sci Rep 2021; 11:14787. [PMID: 34285258 PMCID: PMC8292365 DOI: 10.1038/s41598-021-94129-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Despite pioneering as the holy grail in photocatalysts, abundant reports have demonstrated that g-C3N4 performs poor photocatalytic activity due to its high recombination rate of photo-induced charge carriers. Many efforts have been conducted to overcome this limitation in which the semiconductor-semiconductor coupling strategies toward heterojunction formation were considered as the easiest but the most effective method. Herein, a one-pot solid-state reaction of thiourea and sodium molybdate as precursors at different temperatures under N2 gas was applied for preparing composites of MoS2/g-C3N4. The physicochemical characterization of the final products determines the variation in contents of components (MoS2 and g-C3N4) via the increase of synthesis temperature. The enhanced photocatalytic activity of the MoS2/g-C3N4 composites was evaluated by the degradation of Rhodamine B in an aqueous solution under visible light. Therein, composites synthesized at 500 °C showed the best photocatalytic performance with a degradation efficiency of 90%, much higher than that of single g-C3N4. The significant improvement in photocatalytic performance is attributed to the enhancement in light-harvesting and extension in photo-induced charge carriers' lifetime of composites which are originated from the synergic effect between the components. Besides, the photocatalytic mechanism is demonstrated to well-fit into the S-scheme pathway with apparent evidences.
Collapse
Affiliation(s)
- Ha Tran Huu
- grid.444874.f0000 0000 8688 4708Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, 55000 Binh Dinh Vietnam
| | - My Duyen Nguyen Thi
- grid.444874.f0000 0000 8688 4708Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, 55000 Binh Dinh Vietnam
| | - Van Phuc Nguyen
- grid.444874.f0000 0000 8688 4708Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, 55000 Binh Dinh Vietnam
| | - Lan Nguyen Thi
- grid.444874.f0000 0000 8688 4708Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, 55000 Binh Dinh Vietnam
| | - Thi Thuy Trang Phan
- grid.444874.f0000 0000 8688 4708Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, 55000 Binh Dinh Vietnam
| | - Quoc Dat Hoang
- grid.452916.dVietnam Ministry of Science and Technology, 113 Tran Duy Hung, Cau Giay, Hanoi, 10000 Vietnam
| | - Huy Hoang Luc
- grid.440774.40000 0004 0451 8149Faculty of Physics, Hanoi National University of Education, Hanoi, 100000 Vietnam
| | - Sung Jin Kim
- grid.255649.90000 0001 2171 7754Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750 South Korea
| | - Vien Vo
- grid.444874.f0000 0000 8688 4708Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, 55000 Binh Dinh Vietnam
| |
Collapse
|
23
|
Monga D, Basu S. Tuning the photocatalytic/electrocatalytic properties of MoS 2/MoSe 2 heterostructures by varying the weight ratios for enhanced wastewater treatment and hydrogen production. RSC Adv 2021; 11:22585-22597. [PMID: 35480422 PMCID: PMC9034378 DOI: 10.1039/d1ra01760h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/19/2021] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional (2D) heterojunctions with layered structures give high flexibility in varying their photocatalytic/electrocatalytic properties. Herein, 2D/2D heterostructures of MoS2/MoSe2 with different weight-ratios (1 : 1, 1 : 3, and 3 : 1) have been prepared by a simple one-step microwave-assisted technique. The characterization studies confirm formation of crystalline MoS2/MoSe2 nanoparticles with a high surface area (60 m2 g−1) and porous structure. The high synergistic-effect (1.73) and narrow bandgap (∼1.89 eV) of the composites result in enhanced photo-degradation efficiency towards methylene blue dye (94%) and fipronil pesticide (80%) with high rate constants (0.33 min−1 and 0.016 min−1 respectively) under visible light. The effect of pH, catalyst dose, and illumination area on photodegradation has been optimized. Photodegradation of real-industrial wastewater shows 65% COD and 51.5% TOC removal. Trapping experiments confirm that holes are mainly responsible for degradation. The composites were highly reusable showing 75% degradation after 5-cycles. MoS2/MoSe2 composites show excellent electrochemical water-splitting efficacy through hydrogen-evolution-reaction (HER) exhibiting a stable high current density of −19.4 mA cm−2 after 2500 cyclic-voltammetry (CV) cycles. The CV-plots reveal high capacitance activity (Cdl value ∼607 μF cm−2) with a great % capacitance retention (>90%). The as-prepared 2D/2D-catalysts are highly active in sunlight and beneficial for long-time physico-chemical wastewater treatment. Moreover, the electrochemical studies confirm that these composites are potential materials for HER activity and energy-storage applications. The 2D/2D-MoS2/MoSe2 catalysts with good photocatalytic/electrocatalytic properties can be potential materials for wastewater treatment and hydrogen production.![]()
Collapse
Affiliation(s)
- Divya Monga
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
24
|
Wang C, Yang G, Shi W, Matras-Postolek K, Yang P. Construction of 2D/2D MoS 2/g-C 3N 4 Heterostructures for Photoreduction of Cr (VI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6337-6346. [PMID: 33977717 DOI: 10.1021/acs.langmuir.1c00929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2D/2D MoS2/g-C3N4 (MCN) surface heterostructures were created by second thermal polymerization of bulk g-C3N4 and the reaction of thiourea and MoO3 at 670 °C. MoS2 networks grew vertically along the (002) facet on superior thin g-C3N4 nanosheets. The layered heterostructures drastically improved the Cr(VI) removal ability. In the dark case, 27% of Cr(VI) was removed within 45 min. The result indicates that the adsorption of Cr(VI) was a chemical adsorption process involving the sharing and transfer of electrons. The equilibrium data indicate that the adsorbent was covered with a monolayer adsorbate, which conformed to the Langmuir isotherm model (R2 = 0.9618). In addition, MCN nanocomposites could convert Cr(VI) into non-toxic Cr(III) by photoreduction under visible light irradiation. With an optimized composition, 100% of Cr(VI) was removed within 30 min, which was ∼10 times quicker compared with Cr(VI) removal under dark conditions. Because g-C3N4 nanosheets (sample CN670) with higher photocurrent density revealed the lowest photoreduction Cr(VI) ability, adsorption plays an important role in Cr(VI) removal. For MoS2/g-C3N4 nanocomposites used in Cr(VI) removal, adsorption and photoreduction were incorporated together to get excellent performance.
Collapse
Affiliation(s)
- Chuanjie Wang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Guanglei Yang
- Winbond Construction Group Company Ltd., Qingzhou 262500, PR China
| | - Wenbin Shi
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Katarzyna Matras-Postolek
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St., 31-155 Krakow, Poland
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
25
|
Qumar U, Hassan J, Naz S, Haider A, Raza A, Ul-Hamid A, Haider J, Shahzadi I, Ahmad I, Ikram M. Silver decorated 2D nanosheets of GO and MoS 2serve as nanocatalyst for water treatment and antimicrobial applications as ascertained with molecular docking evaluation. NANOTECHNOLOGY 2021; 32:255704. [PMID: 33556921 DOI: 10.1088/1361-6528/abe43c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) was realized through a modified Hummers route. Different concentrations (5 and 10 wt%) of Ag were doped in MoS2and rGO using a hydrothermal technique. Synthesized Ag-MoS2and Ag-rGO were evaluated through XRD that confirmed the hexagonal structure of MoS2along with the transformation of GO to Ag-rGO as indicated by a shift in XRD peaks while Mo-O bonding and S=O functional groups were confirmed with FTIR. Morphological information of GO and formation of MoS2nanopetals as well as interlayer spacing were verified through FESEM and HRTEM respectively. Raman analysis was employed to probe any evidence regarding defect densities of GO. Optical properties of GO, MoS2, Ag-rGO, and Ag-MoS2were visualized through UV-vis and PL spectroscopy. Prepared products were employed as nanocatalysts to purify industrial wastewater. Experimental results revealed that Ag-rGO and Ag-MoS2showed 99% and 80% response in photocatalytic activity. Besides, the nanocatalyst (Ag-MoS2and Ag-rGO) exhibited 6.05 mm inhibition zones againstS. aureusgram positive (G+) and 3.05 mm forE. coligram negative (G-) in antibacterial activity. To rationalize biocidal mechanism of Ag-doped MoS2NPs and Ag-rGO,in silicomolecular docking study was employed for two enzymes i.e.β-lactamase and D-alanine-D-alanine ligase B (ddlB) from cell wall biosynthetic pathway and enoyl-[acylcarrier-protein] reductase (FabI) from fatty acid biosynthetic pathway belonging toS. aureus. The present study provides evidence for the development of cost-effective, environment friendly and viable candidate for photocatalytic and antimicrobial applications.
Collapse
Affiliation(s)
- U Qumar
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - J Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - S Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - A Raza
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - I Shahzadi
- College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - I Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
26
|
Amedlous A, Majdoub M, Amaterz E, Anfar Z, Benlhachemi A. Synergistic effect of g-C3N4 nanosheets/Ag3PO4 microcubes as efficient n-p-type heterostructure based photoanode for photoelectrocatalytic dye degradation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Vinoth S, Subramani K, Ong WJ, Sathish M, Pandikumar A. CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor. J Colloid Interface Sci 2021; 584:204-215. [DOI: 10.1016/j.jcis.2020.09.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
|
28
|
Ramesh Reddy N, Mamatha Kumari M, Shankar MV, Raghava Reddy K, Woo Joo S, Aminabhavi TM. Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO 2 nanoflower heterogeneous catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111433. [PMID: 33070019 DOI: 10.1016/j.jenvman.2020.111433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In this research, efficient and novel catalysts based on hierarchical carbon nanohorns-titanium nanoflowers have been prepared by one-pot solvothermal process. Hydrogen generation from dye-contaminated water and dye degradation along with electrochemical supercapacitance performance have been investigated using the synthesized hierarchical catalyst to produce 4500 μmol g-1 h-1 of hydrogen from the photocatalytically generated aqueous methylene blue and methyl orange dyes, which were degraded up to 90% under natural solar light irradiation. These results offer a new path to generate hydrogen from the aqueous dyes. The catalysts electrode showed 164.6 F g-1 supercapacitance at 5 mV s-1 scan rate, which is nearly 1.3 and 1.65-times higher than that of pristine titanium nanoflower and carbon nanohorns electrodes, respectively. Such superior results were achieved due to good crystallinity, improved optical absorption strength, strong chemical composition between the two components, and hierarchical morphology as demonstrated from XRD, UV-DRS, TEM, XPS, and Raman spectral characterizations.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - M Mamatha Kumari
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - M V Shankar
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | | |
Collapse
|
29
|
Xavier MM, Mohanapriya S, Mathew R, Adarsh NN, Nair PR, Mathew S. Fabrication of ternary composites with polymeric carbon nitride/MoS 2/reduced graphene oxide ternary hybrid aerogel as high-performance electrode materials for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02960f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Presenting a remarkable ternary hybrid aerogel, as an excellent electrode material with a specific capacitance of 467 Fg−1 and capacitance retention upto 80.4% even after 2000 cycles, demonstrating good stability and improved cyclic performance.
Collapse
Affiliation(s)
- Marilyn Mary Xavier
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - S. Mohanapriya
- CSIR-Central Electro Chemical Research Institute, College Road, Karaikudi, Tamil Nadu, 630003, India
| | - Reshma Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Nayarassery N. Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York, 13699, USA
| | - P. Radhakrishnan Nair
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Suresh Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
30
|
Song Q, Yang C, Yu CM. The green one-step electrodeposition of oxygen-functionalized porous g-C 3N 4 decorated with Fe 3O 4 nanoparticles onto Ni-foam as a binder-free outstanding material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d0nj02980g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the binder-free high-performance nanocomposite of Fe3O4/oxygen-functionalized g-C3N4 was fabricated through a one-pot electrophoretic-electrochemical (EP-EC) process.
Collapse
Affiliation(s)
- Qichao Song
- School of Control Technology
- Wuxi Institute of Technology
- Wuxi-214121
- China
| | - Chunguang Yang
- School of Control Technology
- Wuxi Institute of Technology
- Wuxi-214121
- China
| | - Chun-Ming Yu
- School of Physical Science and Technology
- Inner Mongolia University
- Hohhot
- China
| |
Collapse
|
31
|
Paliwal MK, Meher SK. 3D-heterostructured NiO nanofibers/ultrathin g-C3N4 holey nanosheets: An advanced electrode material for all-solid-state asymmetric supercapacitors with multi-fold enhanced energy density. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Govindan R, Hong XJ, Sathishkumar P, Cai YP, Gu FL. Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136502] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Guo F, Huang X, Chen Z, Ren H, Li M, Chen L. MoS 2 nanosheets anchored on porous ZnSnO 3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122158. [PMID: 32004762 DOI: 10.1016/j.jhazmat.2020.122158] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
In this study, MoS2/ZnSnO3 (MS-ZSO) composite photocatalyst with loading MS nanosheets onto the surface of porous ZSO microcubes was synthesized using a simple hydrothermal route. The prepared MS-ZSO composite can be easily excited under visible light, and 3 % MS-ZSO exhibits an outstanding photo-degradation (>80 % in 60 min) and mineralization performance (>42 % in 60 min) of the tetracycline. A remarkable improvement in the photocatalytic activity of MS-ZSO composite derived from a positive synergistic effect of well-matched energy level positions, increasement the absorption of visible light, prolonged life time decay and improved interfacial charge transfer between MS and ZSO. In-depth investigation on charge carrier separation mechanism toward MS/ZSO composite under visible light was proposed, which was further evidenced by capture experiments and electron spin resonance (ESR) techniques. Furthermore, the corresponding intermediates of tetracycline degradation over MS-ZSO composites were inspected by liquid chromatography-mass spectrometry (LC-MS) analysis, and the possible degradation paths were proposed.
Collapse
Affiliation(s)
- Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, PR China.
| | - Xiliu Huang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Zhihao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Hongji Ren
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Mingyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Lizhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China.
| |
Collapse
|
34
|
Beyhaqi A, Zeng Q, Chang S, Wang M, Taghi Azimi SM, Hu C. Construction of g-C 3N 4/WO 3/MoS 2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light. CHEMOSPHERE 2020; 247:125784. [PMID: 31978669 DOI: 10.1016/j.chemosphere.2019.125784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has enormous potentials for photocatalysis, yet it only possesses moderate activity because of excitonic effects and sluggish charge transfer. Here, we develop a novel two-dimensional g-C3N4/WO3/MoS2 (CWM) ternary nanocomposite through a facile co-calcination and a hydrothermal process to reach a highly-efficient photocatalyst for organic pollutant elimination under visible light. The WO3 and MoS2 nanoparticles were dispersed on the ultra-thin g-C3N4 nanosheets, in which the electronegative g-C3N4 facilitates formation of oxygen vacancies in WO3. Compared to pure g-C3N4, WO3, and binary composites, CWM exhibited higher photocatalytic activities for various organic pollutants removal under visible light irradiation. For instance, the CWM showed a removal ratio of ∼99% for RhB after only 10 min irradiation of visible light (λ > 420 nm) and nearly 100% for ciprofloxacin after 2 h of operation. The results showed that OH radicals are the main active species for organic degradation, which suggests a direct Z-scheme heterojunction in CWM that improved spatial separation of charge carries. Furthermore, the collection of electrons is significantly enhanced by MoS2 for oxygen reduction reaction, and the increased oxygen vacancies of WO3 further enhanced the separation of electron-hole pairs; therefore, it led to an effective suppression of charge carriers recombination. The above synergistic effects of ternary photocatalyst result in higher photocatalytic oxidation performance for wastewater treatment compared with pure WO3, g-C3N4 and their binary composites.
Collapse
Affiliation(s)
- Ahmad Beyhaqi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Qingyi Zeng
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Sheng Chang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Mingqi Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Seyed Mohammad Taghi Azimi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
35
|
Rana A, Killa M, Yadav N, Mishra A, Mathur A, Kumar A, Khanuja M, Narang J, Pilloton R. Graphitic Carbon Nitride as an Amplification Platform on an Electrochemical Paper-Based Device for the Detection of Norovirus-Specific DNA. SENSORS 2020; 20:s20072070. [PMID: 32272681 PMCID: PMC7180435 DOI: 10.3390/s20072070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Norovirus is one of the leading causes of gastroenteritis, acute vomiting, intense diarrhoea, acute pain in the stomach, high fever, headaches, and body pain. Conventional methods of detection gave us very promising results but had disadvantages such as low sensitivity, cost ineffectiveness, reduced specificity and selectivity, etc. Therefore, biosensors can be a viable alternative device which can overcome all setbacks associated with the conventional method. An electrochemical sensor based on oxidized graphitic carbon nitride (Ox-g-C3N4) modified electrochemical paper-based analytical device (ePAD) was fabricated for the detection of norovirus DNA. The synthesized Ox-g-C3N4 nanosheets were characterized by field emission scanning electron microscopy (FESEM), X-ray Diffraction (XRD), UV-Vis spectroscopy and X-Ray Photoelectron Spectroscopy. The capture probe DNA (PDNA) modified electrodes were characterized by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These two characterization techniques were also employed to find the optimal scan rate, response time and temperature of the fabricated sensor. The fabricated biosensor showed a limit of detection (LOD) of 100 fM. Furthermore, the specificity of the reported biosensor was affirmed by testing the response of capture probe DNA with oxidized graphitic carbon nitride (PDNA/Ox-g-C3N4) modified ePAD on the introduction of a non-complimentary DNA. The fabricated ePAD sensor is easy to fabricate, cost effective and specific, and requires a minimum analysis time of 5 s.
Collapse
Affiliation(s)
- Aditya Rana
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Manjari Killa
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Neelam Yadav
- Centre for Biotechnology Maharshi Dayanand University, Haryana 124001, India;
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Haryana 131039, India
| | - Annu Mishra
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Ashish Mathur
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Arun Kumar
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia University, New Delhi 110025, India;
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia University, New Delhi 110025, India;
- Correspondence: (M.K.); (R.P.)
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | - Roberto Pilloton
- National Research Council (CNR), Institute of Crystallography (IC), Via Salaria Km 29.3, Rome I-00015, Italy
- Correspondence: (M.K.); (R.P.)
| |
Collapse
|
36
|
Core-shell MoS2 nanosheet-bonded carbon nanotubes through dispersant molecules for enhanced photoelectrical and photocatalytic performances. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Sharma MD, Mahala C, Basu M. 2D Thin Sheet Heterostructures of MoS2 on MoSe2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Range. Inorg Chem 2020; 59:4377-4388. [DOI: 10.1021/acs.inorgchem.9b03445] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mamta Devi Sharma
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan-333031, India
| | - Chavi Mahala
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan-333031, India
| | - Mrinmoyee Basu
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
38
|
Li Y, Wang X, Huo H, Li Z, Shi J. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Pudkon W, Bahruji H, Miedziak PJ, Davies TE, Morgan DJ, Pattisson S, Kaowphong S, Hutchings GJ. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00234h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic applications of flower-like ZnIn2S4/MoS2 composite, synthesized by biomolecule-assisted microwave heating method, in H2 evolution and Cr(vi) reduction reactions.
Collapse
Affiliation(s)
- Watcharapong Pudkon
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Hasliza Bahruji
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Peter J. Miedziak
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Thomas E. Davies
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - David J. Morgan
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Samuel Pattisson
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Sulawan Kaowphong
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | | |
Collapse
|
40
|
Singh S, Sangle AL, Wu T, Khare N, MacManus-Driscoll JL. Growth of Doped SrTiO 3 Ferroelectric Nanoporous Thin Films and Tuning of Photoelectrochemical Properties with Switchable Ferroelectric Polarization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45683-45691. [PMID: 31710804 DOI: 10.1021/acsami.9b15317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ferroelectric polarization is an intriguing physical phenomenon for tuning charge-transport properties and finds application in a wide range of optoelectronic devices. So far, ferroelectric materials in a planar geometry or chemically grown nanostructures have been used. However, these structural architectures possess serious disadvantages such as small surface areas and structural defects, respectively, leading to reduced performance. Herein, the growth of room-temperature ferroelectric nanoporous/nanocolumnar structure of Ag,Nb-codoped SrTiO3 (Ag/Nb:STO) using pulsed laser deposition is reported and demonstrated to have enhanced photoelectrochemical (PEC) properties using ferroelectric polarization. By manipulating the external electrical bias, ∼3-fold enhancement in the photocurrent from 40 to 130 μA·cm-2 of film area is obtained. Concurrently, the flat-band potential is decreased from -0.55 to -1.13 V, revealing a giant ferroelectric tuning of the band alignment at the semiconductor surface and enhanced charge transfer. In addition, an electrochemical impedance spectroscopy study confirmed the tuning of the charge transfer with ferroelectric polarization. Our nanoporous ferroelectric-semiconductor approach offers a new platform with great potential for achieving highly efficient PEC devices for renewable energy applications.
Collapse
Affiliation(s)
- Simrjit Singh
- School of Materials Science and Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- Department of Physics , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Abhijeet Laxman Sangle
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| | - Tom Wu
- School of Materials Science and Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Neeraj Khare
- Department of Physics , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| |
Collapse
|
41
|
S. LP, K. S, Mamba G, V. M. 1D/2D MnWO4 nanorods anchored on g-C3N4 nanosheets for enhanced photocatalytic degradation ofloxacin under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
TiO 2 Coated ZnO Nanorods by Mist Chemical Vapor Deposition for Application as Photoanodes for Dye-Sensitized Solar Cells. NANOMATERIALS 2019; 9:nano9091339. [PMID: 31546832 PMCID: PMC6781505 DOI: 10.3390/nano9091339] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/17/2022]
Abstract
In this study, a mist chemical vapor deposition method was applied to create a coating of titanium dioxide particles in order to fabricate ZnO/TiO2 core-shell nanostructures. The thin layers of titanium dioxide on the zinc oxide nanorods were uniform and confirmed as pure anatase phase. The morphological, structural, optical and photoluminescence properties of the ZnO/TiO2 core-shell structures were influenced by coating time. For instance, the crystallinity of the titanium dioxide increased in accordance with an increase in the duration of the coating time. Additionally, the thickness of the titanium dioxide layer gradually increased with the coating time, resulting in an increased surface area. The transmittance of the arrayed ZnO/TiO2 core-shell structures was 65% after 15 min of coating. The obtained ZnO/TiO2 core-shell nanostructures demonstrated high potentiality to serve as photoanodes for application in dye-sensitized solar cells.
Collapse
|
43
|
Kadam SR, Gosavi SW, Kale BB, Suzuki N, Terashima C, Fujishima A. Unique CdS@MoS 2 Core Shell Heterostructure for Efficient Hydrogen Generation Under Natural Sunlight. Sci Rep 2019; 9:12036. [PMID: 31427636 PMCID: PMC6700150 DOI: 10.1038/s41598-019-48532-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
The hierarchical nanostructured CdS@MoS2 core shell was architectured using template free facile solvothermal technique. More significantly, the typical hexagonal phase of core CdS and shell MoS2 has been obtained. Optical study clearly shows the two steps absorption in the visible region having band gap of 2.4 eV for CdS and 1.77 eV for MoS2. The FESEM of CdS@MoS2 reveals the formation of CdS microsphere (as a core) assemled with 40-50 nm nanoparticles and covered with ultrathin nanosheets of MoS2 (Shell) having size 200-300 nm and the 10-20 nm in thickness. The overall size of the core shell structure is around 8 µm. Intially, there is a formation of CdS microsphre due to high affinity of Cd ions with sulfur and further growth of MoS2 thin sheets on the surface. Considering band gap ideally in visible region, photocatalytic hydrogen evolution using CdS@MoS2 core shell was investigated under natural sunlight. The utmost hydrogen evolution rate achieved for core shell is 416.4 µmole h-1 with apparent quantum yield 35.04%. The photocatalytic activity suggest that an intimate interface contact, extended visible light absorption and effective photo generated charge carrier separation contributed to the photocatalytic enhancement of the CdS@MoS2 core shell. Additional, the enhanced hole trapping process and effective electrons transfer from CdS to MoS2 in CdS@MoS2 core shell heterostructures can significantly contribute for photocatalytic activity. Such core shell heterostructure will also have potential in thin film solar cell and other microelectronic devices.
Collapse
Affiliation(s)
- Sunil R Kadam
- Centre for Advanced Studies in Materials Science, Department of Physics, Savitribai Phule Pune University, (Formerly University of Pune) Ganeshkhind, Pune, 411007, India
| | - Suresh W Gosavi
- Centre for Advanced Studies in Materials Science, Department of Physics, Savitribai Phule Pune University, (Formerly University of Pune) Ganeshkhind, Pune, 411007, India.
- Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Bharat B Kale
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Government of India, Panchawati, Off. Pashan Road, Pune, 411008, India.
| | - Norihiro Suzuki
- Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
44
|
An innovative combination of electrochemical and photocatalytic processes for decontamination of bisphenol A endocrine disruptor form aquatic phase: Insight into mechanism, enhancers and bio-toxicity assay. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
|
46
|
Electrospun Nanofiber Mats with Embedded Non-Sintered TiO2 for Dye-Sensitized Solar Cells (DSSCs). FIBERS 2019. [DOI: 10.3390/fib7070060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
TiO2 is a semiconductor that is commonly used in dye-sensitized solar cells (DSSCs). However, the necessity of sintering the TiO2 layer is usually problematic due to the desired temperatures of typically 500 °C in cells that are prepared on polymeric or textile electrodes. This is why textile-based DSSCs often use metal fibers or metallic woven fabrics as front electrodes on which the TiO2 is coated. Alternatively, several research groups investigate the possibilities to reduce the necessary sintering temperatures by chemical or other pre-treatments of the TiO2. Here, we report on a simple method to avoid the sintering step by using a nanofiber mat as a matrix embedding TiO2 nanoparticles. The TiO2 layer can be dyed with natural dyes, resulting in a similar bathochromic shift of the UV/Vis spectrum, as it is known from sintered TiO2 on glass substrates, which indicates an equivalent chemical bonding. Our results indicate a new possibility for producing textile-based DSSCs with TiO2, even on textile fabrics that are not high-temperature resistant.
Collapse
|
47
|
Extended π-conjugative n-p type homostructural graphitic carbon nitride for photodegradation and charge-storage applications. Sci Rep 2019; 9:7186. [PMID: 31076639 PMCID: PMC6510722 DOI: 10.1038/s41598-019-43312-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/09/2019] [Indexed: 11/08/2022] Open
Abstract
An n-p type homostructural metal-free graphitic carbon nitride (g-C3N4) semiconductor is designed and developed for pollutant abatement and energy storage application. The successful grafting of vibrio-like morphology-based g-C3N4 by 2, 5-Thiophenedicarboxylic acid (TDA) molecule and the development of amide-type linkage substantiated the prosperous uniting of g-C3N4 with organic TDA moiety is demonstrated. An extended π-conjugative TDA grafted g-C3N4 exhibited band gap tunability with broadband optical absorbance in the visible region. Mott-Schottky analysis exhibited the formation of n-p type homostructural property. As a result, obtained TDA grafted g-C3N4 has extended π-conjugation, high surface area and adequate separation of charge carriers. The change in the photocatalytic performance of grafted g-C3N4 is inspected for degradation of acid violet 7 (AV 7) dye under visible light irradiation. The charge storage capacity of grafted g-C3N4 was additionally assessed for supercapacitive behaviour. The charge capacitive studies of grafted g-C3N4 exhibited the areal capacitance of 163.17 mF cm−2 and robust cyclic stability of 1000 cycles with capacity retention of 83%.
Collapse
|
48
|
Electrochemical Properties of Polyoxometalate (H3PMo12O40)-Functionalized Graphitic Carbon Nitride (g-C3N4). Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00523-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Joseph N, Bose AC. Metallic MoS2 grown on porous g-C3N4 as an efficient electrode material for supercapattery application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Gao H, Liu Y, Wang L, Zhu J, Gao S, Xia X. Synthesis of a reticular porous MoS2/g-C3N4 heterojunction with enhanced visible light efficiency in photocatalytic degradation of RhB. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03815-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|